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GROUP GRADED ALGEBRAS AND THE RELATIVE FREENESS
OF POINTED GROUPS

CAMELIA DICU

Abstract. The main result of Zhou [1] characterizes relative freeness of pointed
groups on a G-algebra. We show here that this theorem follows from results on
induced modules over group graded algebras.
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1. INTRODUCTION

1.1. Let O be a complete discrete valuation ring with residue field k of
characteristic p > 0, and A be an O-algebra. Recall that α ∈ P(A) is a
point of A if α is a conjugacy class of primitive idempotents of A. Let G be
a finite group. A is a G-algebra over O if there is a group homomorphism
ϕ : G → AutO(A). Throughout this paper, A is a G-algebra. If a ∈ A
and g ∈ G we write ag instead of ϕ(g−1)(a), and for any H ≤ G denote
AH = {a ∈ A | ah = a for all h ∈ H} the set of H-fixed elements of A. The
trace map TrG

H : AH → AG maps a ∈ AH to
∑

g∈[G/H] a
g−1

.

1.2. A pointed group Hβ on A is a pair (H, β) where H ≤ G and β ∈ P(AH).
Given two pointed groups Gα and Hθ on A, we say that Gα is projective
relative to Hθ if H ≤ G and α ⊆ TrG

H(AHθAH); further Gα is free relative
to Hθ if there exist i ∈ α and j ∈ β such that i = TrG

H(j) and jjg = 0 for
any g ∈ G \ H. A pointed group Pγ is local if it is not relative projective
to any pointed group of Q on A for any Q < P . The pointed group Pγ is a
defect pointed group of the pointed group Gα if Pγ ≤ Gα, Pγ is local and Gα

is relative projective to Pγ .
In general, if j is an idempotent of AH , TrG

H(j) need not be an idempotent.
We say that j has an orthogonal G/H-trace if for any g ∈ G \ H we have
jjg = 0. The existence of orthogonal G/H-trace is needed to define induction
of divisors. The G-algebra A is called inductively complete if for any pointed
group Hβ on A, there exist j ∈ β such that j has an orthogonal G/H-trace.
Denote D(AH) the set of divisors of AH . The following results are due to Puig
[4, Chapter 5].

Theorem 1.3. Assume that A is an inductively complete G-algebra. Then
there exists a unique linear map

indG
H : D(AH) → D(AG),
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mapping β ∈ P(AH) to the divisor α containing the idempotent TrG
H(j), where

j ∈ β satisfies jjg = 0 for any g ∈ G \H.

Theorem 1.4. For any G-algebra A, there exist an inductively complete
G-algebra B and a divisor ω ∈ D(BG) such that A ' Bω (so in particular, A
and B are Morita equivalent).

1.5. This paper is a sequel of [2], and our notation is explained there. By us-
ing the bijection established in [2, Proposition 2.4] we can interpret a pointed
group Hβ on A as an isomorphism class of indecomposable RH -direct sum-
mand of A, where R = A ∗G is the G-graded skew group algebra of A and G.
This allows us to consider induction of pointed groups without having to pass
to an inductively complete G-algebra as above.

Let Gα and Hβ be two pointed groups on A, and let Ai, i ∈ α and Aj,
j ∈ θ be the corresponding indecomposable R and RH -modules. We have that
Gα is free relative to Hβ if and only if Ai ' R ⊗RH

Aj. Moreover, by using
the characterization of relative projectivity in [2], we see that Pγ is a defect
pointed group of Gα if and only if P is a vertex of Ai and Ae is a source of Ai,
where e ∈ γ. Thus the pointed group version of the Green correspondence can
be easily deduced from the version for group graded algebras (see [3, Theorem
1.4.23]).

1.6. We fix a strongly G-graded O-algebra R. If Kand H are subgroups
of G, we denote by [H\G/K] a set of representatives for the double cosets of
(H,K) in G, and if K ≤ H and V is an RK-module, we denote IndH

K V =
RH ⊗RK

V .
By the above remarks, the following theorem, applied to the G-graded al-

gebra A ∗G, implies [1, Theorem 1.6]. We shall give a module theoretic proof
using Green’s theory of vertices and sources and the Green correspondence for
group graded algebras.

Theorem 1.7. Let R be a strongly G-graded algebra, P a p-subgroup of G
and H a subgroup of G containing P . Let U an indecomposable R-module
with vertex P and U ′ an indecomposable RH-module with vertex P . Let U ∈
RNG(P )-mod and U ′ ∈ RNH(P )-mod be the Green correspondents of U and U ′
respectively.

Then U ' IndG
H U ′ if and only if U ' IndNG(P )

NH(P ) U ′, and for any Q < P

and any t ∈ [NG(P )\G/H] satisfying Q ≤ tH, IndNG(Q)
NtH(Q) Res

tH
NtH(Q)

tU ′ has no
indecomposable RNG(Q)-summand with vertex Q.

2. PROOF OF THEOREM 1.7

For the proof we need two preliminary results. The first is a generalization of
a theorem of Burry (see [5, Theorem 2.9]). Recall that if V is an R-module and
V1, . . . , Vr a complete set of nonisomorphic indecomposable direct summands
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of V such that V ' ⊕r
i=1 niVi, then ni ∈ N is called the multiplicity of Vi in

the module V .

Proposition 2.1. Let R be a strongly G-graded algebra, P a p-subgroup of
G and H a subgroup of G containing P . Let fG be the Green correspondence
with respect to (G,P, NG(P )), and denote

IP = {t ∈ [NG(P )\G/H] | P ≤ tH}.
a) If V is an RH -module, then fG induces a multiplicity-preserving bijec-

tion between the nonisomorphic indecomposable direct summands of IndG
H V

with vertex P and the nonisomorphic indecomposable direct summands of⊕
t∈IP

IndNG(P )
NtH(P ) Res

tH
NtH(P )

tV with vertex P .
b) If V is an indecomposable RH -module with vertex P , then fG induces a

multiplicity-preserving bijection between the nonisomorphic indecomposable
direct summand of IndG

H V with vertex P and the nonisomorphic indecompos-
able direct summands of IndNG(P )

NH(P ) ResH
NH(P ) V with vertex P .

Proof. a) Let V1, . . . , Vr be nonisomorphic indecomposable R-modules such
that IndG

H V ' ⊕r
i=1 niVi. We may assume that for an s ≤ r, all V1, . . . , Vs

have vertex P . Then for any i ∈ {1, . . . , s}, ResG
NG(P ) Vi has a unique inde-

composable direct summand with vertex P , namely fG(Vi). If s < j ≤ r,
then Vj doesn’t have vertex P , so by the Burry-Carlson theorem (see [5, The-
orem 2.6(ii)]), ResG

NG(P ) Vj has no indecomposable direct summand with ver-
tex P . Then fG induces a multiplicity-preserving bijection between the non-
isomorphic indecomposable direct summands with vertex P of IndG

H V and
ResG

NG(P ) IndG
H V . Note that by the Mackey decomposition,

ResG
NG(P ) IndG

H V '
⊕

x∈[NG(P )\G/H]

IndNG(P )
xH∩NG(P ) Res

xH
xH∩NG(P )

xV.

Thus it suffices to show that if M is an indecomposable RNG(P )-module with

vertex P and M | IndNG(P )
xH∩NG(P ) Res

xH
xH∩NG(P )

xV , then P ≤ xH. But this follows
from the fact that M is relatively xH ∩ NG(P )-projective and M has vertex
P , so P is NG(P )-conjugate to a subgroup of xH ∩NG(P ). Therefore P ≤ xH
and the assertion follows.

b) By a), it suffices to show that if for t ∈ IP , IndNG(P )
NtH(P ) Res

tH
NtH(P )

tV has
an indecomposable direct summand M with vertex P , then t ∈ NG(P )H. But
since M | IndNG(P )

NtH(P ) Res
tH
NtH(P )

tV we may choose an indecomposable RNtH(P )-

module W such that W |Res
tH
NtH(P )

tV and M | IndNG(P )
NtH(P ) W . Since M is a

summand of IndNG(P )
NtH(P ) W and M has vertex P , P is contained in a vertex

Q of W . If U is a source of tV , we have that W |Res
tH
NtH(P ) Ind

tH
tP U . By
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the Mackey decomposition it is easy to deduce that Q is contained in a tH-
conjugate of tP . Then P is tH-conjugate to tP , hence th ∈ NG(P ) for some
h ∈ H, and the result is established. ¤

Proposition 2.2. With notations of Theorem 1.7, if U ' IndG
H U ′ then

U ' IndNG(P )
NH(P ) U ′.

Proof. Observe that IndNG(P )
NH(P ) U ′ is relatively P -projective since U ′ has ver-

tex P . Denote by M a source of U ′. We first prove that IndNG(P )
NH(P ) U ′ has no in-

decomposable direct summand with vertex Q < P . Suppose W | IndNG(P )
NH(P ) U ′ is

an indecomposable direct summand which is relatively Q-projective, for some
Q < P . Therefore W | IndNG(P )

Q W ′ for some RQ-module W ′, so we have that

W | IndNG(P )
P IndP

Q W ′. By the Mackey decomposition we have

ResNG(P )
P W |

⊕

g∈[NG(P )/P ]

g(IndP
Q W ′),

where g(IndP
Q W ′) is a relative Q-projective module. Thus any indecompos-

able direct summand of ResNG(P )
P W is relatively Q-projective. But this is

not possible, since if V |ResNG(P )
P W is an indecomposable direct summand,

then V |ResNG(P )
P IndNG(P )

P M , hence V is isomorphic to gM for some g ∈
[NG(P )/P ], and therefore has vertex P .

We now apply Proposition 2.1 b) to the indecomposable RH -module U ′.
It follows that fG(U) = U is the unique indecomposable direct summand of
IndNG(P )

NH(P ) ResH
NH(P ) U ′ with vertex P . But any indecomposable summand with

vertex P of IndNG(P )
NH(P ) U ′ is a direct summand of IndNG(P )

NH(P ) ResH
NH(P ) U ′, then is

isomorphic to U and U is the only direct summand of IndNG(P )
NH(P ) U ′ with vertex

P and has multiplicity 1. This implies that U ' IndNG(P )
NH(P ) U ′. ¤

Proof of Theorem 1.7. Assume that U ' IndG
H U ′. Proposition 2.2 implies

that U ' IndNG(P )
NH(P ) U ′. For any Q < P , by Proposition 2.1 a) applied to the

RH -module U ′ instead of V and Q instead of P , we have that for any t ∈ IQ,
IndNG(Q)

NtH(Q) Res
tH
NtH(Q)

tU ′ has no indecomposable RNG(Q)-summand with vertex
Q.

Conversely, by the Green correspondence, ResH
NH(P ) U has a unique inde-

composable direct summand with vertex P , namely U ′. But IndNG(P )
NH(P ) U ′ ' U

so IndNG(P )
NH(P ) ResH

NH(P ) U ′ has a unique indecomposable direct summand with

vertex P , namely U . By Proposition 2.1 b), IndG
H U ′ has a unique indecompos-

able direct summand with vertex P and multiplicity 1, namely f−1
G (U) = U .
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But our hypothesis and Proposition 2.1(i) imply that IndG
H U ′ has no inde-

composable direct summands with vertex Q, for any Q < P . Therefore
U ' IndG

H U ′ and the theorem is proved.
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