GROUP GRADED ALGEBRAS AND THE RELATIVE FREENESS OF POINTED GROUPS

CAMELIA DICU

Abstract. The main result of Zhou [1] characterizes relative freeness of pointed groups on a G-algebra. We show here that this theorem follows from results on induced modules over group graded algebras.

MSC 2000. 20C20.

Key words. G-algebras, pointed groups, group graded algebras, Green correspondence.

1. INTRODUCTION

1.1. Let \mathcal{O} be a complete discrete valuation ring with residue field k of characteristic p > 0, and A be an \mathcal{O} -algebra. Recall that $\alpha \in \mathcal{P}(A)$ is a point of A if α is a conjugacy class of primitive idempotents of A. Let G be a finite group. A is a G-algebra over \mathcal{O} if there is a group homomorphism $\varphi : G \to \operatorname{Aut}_{\mathcal{O}}(A)$. Throughout this paper, A is a G-algebra. If $a \in A$ and $g \in G$ we write a^g instead of $\varphi(g^{-1})(a)$, and for any $H \leq G$ denote $A^H = \{a \in A \mid a^h = a \text{ for all } h \in H\}$ the set of H-fixed elements of A. The trace map $\operatorname{Tr}_H^G : A^H \to A^G$ maps $a \in A^H$ to $\sum_{g \in [G/H]} a^{g^{-1}}$.

1.2. A pointed group H_{β} on A is a pair (H, β) where $H \leq G$ and $\beta \in \mathcal{P}(A^H)$. Given two pointed groups G_{α} and H_{θ} on A, we say that G_{α} is projective relative to H_{θ} if $H \leq G$ and $\alpha \subseteq \operatorname{Tr}_{H}^{G}(A^{H}\theta A^{H})$; further G_{α} is free relative to H_{θ} if there exist $i \in \alpha$ and $j \in \beta$ such that $i = \operatorname{Tr}_{H}^{G}(j)$ and $jj^{g} = 0$ for any $g \in G \setminus H$. A pointed group P_{γ} is local if it is not relative projective to any pointed group of Q on A for any Q < P. The pointed group P_{γ} is a defect pointed group of the pointed group G_{α} if $P_{\gamma} \leq G_{\alpha}$, P_{γ} is local and G_{α} is relative projective to P_{γ} .

In general, if j is an idempotent of A^H , $\operatorname{Tr}_H^G(j)$ need not be an idempotent. We say that j has an orthogonal G/H-trace if for any $g \in G \setminus H$ we have $jj^g = 0$. The existence of orthogonal G/H-trace is needed to define induction of divisors. The G-algebra A is called inductively complete if for any pointed group H_β on A, there exist $j \in \beta$ such that j has an orthogonal G/H-trace. Denote $\mathcal{D}(A^H)$ the set of divisors of A^H . The following results are due to Puig [4, Chapter 5].

THEOREM 1.3. Assume that A is an inductively complete G-algebra. Then there exists a unique linear map

$$\operatorname{ind}_{H}^{G}: \mathcal{D}(A^{H}) \to \mathcal{D}(A^{G}),$$

mapping $\beta \in \mathcal{P}(A^H)$ to the divisor α containing the idempotent $\operatorname{Tr}_H^G(j)$, where $j \in \beta$ satisfies $jj^g = 0$ for any $g \in G \setminus H$.

THEOREM 1.4. For any G-algebra A, there exist an inductively complete G-algebra B and a divisor $\omega \in \mathcal{D}(B^G)$ such that $A \simeq B_{\omega}$ (so in particular, A and B are Morita equivalent).

1.5. This paper is a sequel of [2], and our notation is explained there. By using the bijection established in [2, Proposition 2.4] we can interpret a pointed group H_{β} on A as an isomorphism class of indecomposable R_H -direct summand of A, where R = A * G is the G-graded skew group algebra of A and G. This allows us to consider induction of pointed groups without having to pass to an inductively complete G-algebra as above.

Let G_{α} and H_{β} be two pointed groups on A, and let Ai, $i \in \alpha$ and Aj, $j \in \theta$ be the corresponding indecomposable R and R_H -modules. We have that G_{α} is free relative to H_{β} if and only if $Ai \simeq R \otimes_{R_H} Aj$. Moreover, by using the characterization of relative projectivity in [2], we see that P_{γ} is a defect pointed group of G_{α} if and only if P is a vertex of Ai and Ae is a source of Ai, where $e \in \gamma$. Thus the pointed group version of the Green correspondence can be easily deduced from the version for group graded algebras (see [3, Theorem 1.4.23]).

1.6. We fix a strongly *G*-graded \mathcal{O} -algebra *R*. If *K* and *H* are subgroups of *G*, we denote by $[H \setminus G/K]$ a set of representatives for the double cosets of (H, K) in *G*, and if $K \leq H$ and *V* is an R_K -module, we denote $\operatorname{Ind}_K^H V = R_H \otimes_{R_K} V$.

By the above remarks, the following theorem, applied to the G-graded algebra A * G, implies [1, Theorem 1.6]. We shall give a module theoretic proof using Green's theory of vertices and sources and the Green correspondence for group graded algebras.

THEOREM 1.7. Let R be a strongly G-graded algebra, P a p-subgroup of Gand H a subgroup of G containing P. Let U an indecomposable R-module with vertex P and U' an indecomposable R_H -module with vertex P. Let $\overline{U} \in R_{N_G(P)}$ -mod and $\overline{U'} \in R_{N_H(P)}$ -mod be the Green correspondents of U and U'respectively.

Then $U \simeq \operatorname{Ind}_{H}^{G} U'$ if and only if $\overline{U} \simeq \operatorname{Ind}_{N_{H}(P)}^{N_{G}(P)} \overline{U'}$, and for any Q < Pand any $t \in [N_{G}(P) \setminus G/H]$ satisfying $Q \leq {}^{t}H$, $\operatorname{Ind}_{N_{t_{H}}(Q)}^{N_{G}(Q)} \operatorname{Res}_{N_{t_{H}}(Q)}^{t}U'$ has no indecomposable $R_{N_{G}(Q)}$ -summand with vertex Q.

2. PROOF OF THEOREM 1.7

For the proof we need two preliminary results. The first is a generalization of a theorem of Burry (see [5, Theorem 2.9]). Recall that if V is an R-module and V_1, \ldots, V_r a complete set of nonisomorphic indecomposable direct summands

of V such that $V \simeq \bigoplus_{i=1}^{r} n_i V_i$, then $n_i \in \mathbb{N}$ is called the multiplicity of V_i in the module V.

PROPOSITION 2.1. Let R be a strongly G-graded algebra, P a p-subgroup of G and H a subgroup of G containing P. Let f_G be the Green correspondence with respect to $(G, P, N_G(P))$, and denote

$$I_P = \{t \in [N_G(P) \setminus G/H] \mid P \leq {}^tH\}.$$

a) If V is an R_H -module, then f_G induces a multiplicity-preserving bijection between the nonisomorphic indecomposable direct summands of $\operatorname{Ind}_H^G V$ with vertex P and the nonisomorphic indecomposable direct summands of $\bigoplus_{t \in I_P} \operatorname{Ind}_{N_{t_H}(P)}^{N_G(P)} \operatorname{Res}_{N_{t_H}(P)}^{t_H} {}^{t_V}$ with vertex P.

b) If V is an indecomposable R_H -module with vertex P, then f_G induces a multiplicity-preserving bijection between the nonisomorphic indecomposable direct summand of $\operatorname{Ind}_H^G V$ with vertex P and the nonisomorphic indecomposable direct summands of $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \operatorname{Res}_{N_H(P)}^H V$ with vertex P.

Proof. a) Let V_1, \ldots, V_r be nonisomorphic indecomposable R-modules such that $\operatorname{Ind}_H^G V \simeq \bigoplus_{i=1}^r n_i V_i$. We may assume that for an $s \leq r$, all V_1, \ldots, V_s have vertex P. Then for any $i \in \{1, \ldots, s\}$, $\operatorname{Res}_{N_G(P)}^G V_i$ has a unique indecomposable direct summand with vertex P, namely $f_G(V_i)$. If $s < j \leq r$, then V_j doesn't have vertex P, so by the Burry-Carlson theorem (see [5, Theorem 2.6(ii)]), $\operatorname{Res}_{N_G(P)}^G V_j$ has no indecomposable direct summand with vertex P. Then f_G induces a multiplicity-preserving bijection between the non-isomorphic indecomposable direct summands with vertex P of $\operatorname{Ind}_H^G V$ and $\operatorname{Res}_{N_G(P)}^G \operatorname{Ind}_H^G V$. Note that by the Mackey decomposition,

$$\operatorname{Res}_{N_G(P)}^G \operatorname{Ind}_H^G V \simeq \bigoplus_{x \in [N_G(P) \setminus G/H]} \operatorname{Ind}_{xH \cap N_G(P)}^{N_G(P)} \operatorname{Res}_{xH \cap N_G(P)}^{xH} xV.$$

Thus it suffices to show that if M is an indecomposable $R_{N_G(P)}$ -module with vertex P and $M | \operatorname{Ind}_{xH \cap N_G(P)}^{N_G(P)} \operatorname{Res}_{xH \cap N_G(P)}^{xH} xV$, then $P \leq {}^{x}H$. But this follows from the fact that M is relatively ${}^{x}H \cap N_G(P)$ -projective and M has vertex P, so P is $N_G(P)$ -conjugate to a subgroup of ${}^{x}H \cap N_G(P)$. Therefore $P \leq {}^{x}H$ and the assertion follows.

b) By a), it suffices to show that if for $t \in I_P$, $\operatorname{Ind}_{N_t}^{N_G(P)} \operatorname{Res}_{N_t}^{t_H}^{t_H}(P) tV$ has an indecomposable direct summand M with vertex P, then $t \in N_G(P)H$. But since $M | \operatorname{Ind}_{N_t}^{N_G(P)} \operatorname{Res}_{N_t}^{t_H}(P) tV$ we may choose an indecomposable $R_{N_t}(P)$ module W such that $W | \operatorname{Res}_{N_t}^{t_H}(P) tV$ and $M | \operatorname{Ind}_{N_t}^{N_G}(P) W$. Since M is a summand of $\operatorname{Ind}_{N_t}^{N_G}(P) W$ and M has vertex P, P is contained in a vertex Q of W. If U is a source of tV, we have that $W | \operatorname{Res}_{N_t}^{t_H}(P) \operatorname{Ind}_{tP}^{tH} U$. By the Mackey decomposition it is easy to deduce that Q is contained in a ^tHconjugate of ^tP. Then P is ^tH-conjugate to ^tP, hence $th \in N_G(P)$ for some $h \in H$, and the result is established.

PROPOSITION 2.2. With notations of Theorem 1.7, if $U \simeq \operatorname{Ind}_{H}^{G} U'$ then $\overline{U} \simeq \operatorname{Ind}_{N_{H}(P)}^{N_{G}(P)} \overline{U'}$.

Proof. Observe that $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'}$ is relatively *P*-projective since $\overline{U'}$ has vertex *P*. Denote by *M* a source of $\overline{U'}$. We first prove that $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'}$ has no indecomposable direct summand with vertex Q < P. Suppose $W | \operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'}$ is an indecomposable direct summand which is relatively *Q*-projective, for some Q < P. Therefore $W | \operatorname{Ind}_Q^{N_G(P)} W'$ for some R_Q -module W', so we have that $W | \operatorname{Ind}_P^{N_G(P)} \operatorname{Ind}_Q^P W'$. By the Mackey decomposition we have

$$\operatorname{Res}_P^{N_G(P)} W | \bigoplus_{g \in [N_G(P)/P]} {}^g(\operatorname{Ind}_Q^P W'),$$

where ${}^{g}(\operatorname{Ind}_{Q}^{P}W')$ is a relative Q-projective module. Thus any indecomposable direct summand of $\operatorname{Res}_{P}^{N_{G}(P)}W$ is relatively Q-projective. But this is not possible, since if $V|\operatorname{Res}_{P}^{N_{G}(P)}W$ is an indecomposable direct summand, then $V|\operatorname{Res}_{P}^{N_{G}(P)}\operatorname{Ind}_{P}^{N_{G}(P)}M$, hence V is isomorphic to ${}^{g}M$ for some $g \in [N_{G}(P)/P]$, and therefore has vertex P.

We now apply Proposition 2.1 b) to the indecomposable R_H -module U'. It follows that $f_G(U) = \overline{U}$ is the unique indecomposable direct summand of $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \operatorname{Res}_{N_H(P)}^H U'$ with vertex P. But any indecomposable summand with vertex P of $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'}$ is a direct summand of $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \operatorname{Res}_{N_H(P)}^H U'$, then is isomorphic to \overline{U} and \overline{U} is the only direct summand of $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'}$ with vertex P and has multiplicity 1. This implies that $\overline{U} \simeq \operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'}$.

Proof of Theorem 1.7. Assume that $U \simeq \operatorname{Ind}_{H}^{G} U'$. Proposition 2.2 implies that $\overline{U} \simeq \operatorname{Ind}_{N_{H}(P)}^{N_{G}(P)} \overline{U'}$. For any Q < P, by Proposition 2.1 a) applied to the R_{H} -module U' instead of V and Q instead of P, we have that for any $t \in I_Q$, $\operatorname{Ind}_{N_{t_H}(Q)}^{N_{G}(Q)} \operatorname{Res}_{N_{t_H}(Q)}^{t_H} {}^{t}U'$ has no indecomposable $R_{N_{G}(Q)}$ -summand with vertex Q.

Conversely, by the Green correspondence, $\operatorname{Res}_{N_H(P)}^H \overline{U}$ has a unique indecomposable direct summand with vertex P, namely $\overline{U'}$. But $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \overline{U'} \simeq \overline{U}$ so $\operatorname{Ind}_{N_H(P)}^{N_G(P)} \operatorname{Res}_{N_H(P)}^H U'$ has a unique indecomposable direct summand with vertex P, namely \overline{U} . By Proposition 2.1 b), $\operatorname{Ind}_H^G U'$ has a unique indecomposable direct summand with vertex P and multiplicity 1, namely $f_G^{-1}(\overline{U}) = U$.

155

But our hypothesis and Proposition 2.1(i) imply that $\operatorname{Ind}_{H}^{G}U'$ has no indecomposable direct summands with vertex Q, for any Q < P. Therefore $U \simeq \operatorname{Ind}_{H}^{G}U'$ and the theorem is proved.

REFERENCES

- [1] ZHOU, Y., Relative freeness of pointed groups, Algebra Colloquium, 10 (2003), 445–450.
- [2] DICU, C. and MARCUS, A., Group graded algebras and the relative projectivity of pointed groups, to appear.
- [3] MARCUS, A., Representation Theory of Group Graded Algebras, Nova Science Publishers, Commack, NY, 1999
- [4] PUIG, L., Blocks of Finite Groups: The Hyperfocal Subalgebra of a Block, Springer-Verlag, Berlin, 2002.
- [5] KARPILOVSKY, G., Induced modules over group graded algebras, North-Holland Mathematics Studies, 1990.
- [6] THEVENAZ, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.

Received September 29, 2004

"Babeş-Bolyai" University

Faculty of Mathematics and Computer Science Str. Mihail Kogălniceanu Nr. 1 400084 Cluj-Napoca, Romania

E-mail: cdicu@math.ubbcluj.ro