A CLASS OF MODULES CHARACTERIZED BY WEAKLY ASSOCIATED PRIME IDEALS

IULIU CRIVEI

Abstract. Let R be a commutative ring with non-zero identity. For a nonempty set \mathcal{P}_R of prime ideals of R, we study the class \mathcal{C}_R of R-modules A with the property that each weakly associated prime ideal of A belongs to \mathcal{P}_R . We show that \mathcal{C}_R is a torsion class for a hereditary torsion theory if and only if $\mathcal{C}_R = R$ -Mod. Also, we prove that \mathcal{C}_R is a torsionfree class for some hereditary torsion theory, provided R is Artinian.

MSC 2000. Primary 13A15.

Key words. Associated prime ideal, weakly associated prime ideal.

1. INTRODUCTION

Throughout the paper we denote by R a commutative ring with non-zero identity. All modules considered are in the category R-Mod of unital R-modules. Let A be a module. We denote by E(A) the injective hull of A and by $\operatorname{Ann}_R x$ the annihilator of an element $x \in A$ in R. Let p be a prime ideal of R. Then p is said to be an associated prime ideal of A if there exists $x \in A$ such that $p = \operatorname{Ann}_R x$. Also, p is said to be a weakly associated prime ideal of A if there exists $x \in A$ such that p is a prime ideal which is minimal among the prime ideals containing $\operatorname{Ann}_R x$. We shall denote by $\operatorname{Ass}_R(A)$ (respectively $\operatorname{Ass}_R(A)$) the set of associated prime ideals of A (respectively weakly associated prime ideals of A). In general, we have the inclusion $\operatorname{Ass}_R(A) \subseteq \operatorname{Ass}_R(A)$, where we have equality if R is Noetherian. But there exist non-Noetherian rings for which the equality holds and rings for which the above inclusion is strict [5]. In [4] and [5], Yassemi established some properties of the sets $\operatorname{Ass}_R(A)$ and $\operatorname{Ass}_R(A)$ and studied when they are equal.

For a non-empty set \mathcal{P}_R of prime ideals of R, denote by \mathcal{C}_R the class of R-modules A for which $\operatorname{Ass}_R(A) \subseteq \mathcal{P}_R$. We show that \mathcal{C}_R is closed under submodules, direct sums and extensions and \mathcal{C}_R is a torsion class for a hereditary torsion theory if and only if $\mathcal{C}_R = R$ -Mod. Also, we show that \mathcal{C}_R is closed under direct limits and injective hulls, provided R is Noetherian, and under direct products, provided R is Artinian. Therefore, \mathcal{C}_R is a torsionfree class for some hereditary torsion theory, provided R is Artinian.

2. THE CLASS \mathcal{C}_R

We shall recall first some results that will be used later in the paper.

THEOREM 2.1. [1, Chapter 4], [5] Let A be a module. Then the following hold:

- (i) $\operatorname{Ass}_R(A) \subseteq \operatorname{Ass}_R(A)$.
- (ii) If either R or A is Noetherian, then $\operatorname{Ass}_R(A) = \operatorname{Ass}_R(A)$.
- (iii) If $0 \to A \to B \to C \to 0$ is a short exact sequence of modules, then

$$\operatorname{Ass}_R(A) \subseteq \operatorname{Ass}_R(B) \subseteq \operatorname{Ass}_R(A) \cup \operatorname{Ass}_R(C)$$

- (iv) If $A = \bigoplus_{i \in I} A_i$, then $A_{ss}^{\sim}_R(A) = \bigcup_{i \in I} A_{ss}^{\sim}_R(A_i)$.
- (v) If S is a multiplicative closed system of R, then

$$\operatorname{Ass}_{S^{-1}R}(S^{-1}A) = \{ pS^{-1}R \mid p \in \operatorname{Ass}_{R}(A) \text{ with } p \cap S = \emptyset \}.$$

(vi) If R is Noetherian and B is a finitely generated module, then

$$\operatorname{Ass}_R(\operatorname{Hom}_R(B,A)) = \{ p \in \operatorname{Ass}_R(A) \mid q \subseteq p \text{ for some } q \in \operatorname{Ass}_R(B) \}.$$

(vii) $\operatorname{Ass}_{R}(A) \neq \emptyset$ if and only if $A \neq 0$.

PROPOSITION 2.2. [4] Let A be a module such that each weakly associated prime ideal of A is finitely generated. Then $\operatorname{Ass}_R(A) = \operatorname{Ass}_R(A)$.

THEOREM 2.3. [4] Let $\varphi : R \to S$ be a homomorphism of commutative rings and let A be an S-module. Then

$$\{\varphi^{-1}(p) \mid p \in \operatorname{Ass}_S(A)\} \subseteq \operatorname{Ass}_R(A) \subseteq \operatorname{Ass}_R(A) \subseteq \{\varphi^{-1}(p) \mid p \in \operatorname{Ass}_S(A)\}.$$

In what follows, let \mathcal{P}_R be a non-empty set of prime ideals of R and denote by \mathcal{C}_R the class of R-modules with the property $Ass_R(A) \subseteq \mathcal{P}_R$. Obviously, \mathcal{C}_R is closed under isomorphic copies.

THEOREM 2.4. (i) The class C_R is closed under submodules, extensions and direct sums.

(ii) If $R \in C_R$, then every projective module belongs to C_R .

(iii) Let $R \in C_R$. Then the class C_R is closed under homomorphic images if and only if $C_R = R$ -Mod.

Proof. (i) Let $A \in \mathcal{C}_R$ and let D be a submodule of A. By Theorem 2.1, we have $Ass_R(D) \subseteq Ass_R(A) \subseteq \mathcal{P}_R$, hence $D \in \mathcal{C}_R$.

Let $0 \to A \to B \to C \to 0$ be a short exact sequence of modules with $A, C \in \mathcal{C}_R$. By Theorem 2.1, we have $A\widetilde{ss}_R(B) \subseteq A\widetilde{ss}_R(A) \cup A\widetilde{ss}_R(C) \subseteq \mathcal{P}_R$, hence $B \in \mathcal{C}_R$.

Let $A = \bigoplus_{i \in I} A_i$. By Theorem 2.1, $A_{ssR}^{\sim}(A) = \bigcup_{i \in I} A_{ssR}^{\sim}(A_i) \subseteq \mathcal{P}_R$, hence $A \in \mathcal{C}_R$.

(ii) Using (i), every free module belongs to C_R as a direct sum of copies of R and then every projective module belongs to C_R , as a submodule of a free module.

(iii) Suppose that C_R is closed under homomorphic images. By (ii), every module belongs to C_R , as a homomorphic image of a free module.

COROLLARY 2.5. Let $R \in C_R$. Then the class C_R is a torsion class for some hereditary torsion theory if and only if $C_R = R$ -Mod.

Proof. Note that a class of modules is a torsion class for a hereditary torsion theory if and only if it is closed under submodules, homomorphic images, direct sums and extensions [2, Proposition 1.7]. Now apply Theorem 2.4. \Box

PROPOSITION 2.6. Let R be an integral domain, $\mathcal{P}_R = A_{\mathrm{SS}_R}^{\sim}(R)$ and let A be a non-zero module. Then $A \in \mathcal{C}_R$ if and only if A is torsionfree.

Proof. Clearly, 0 is a prime ideal of R and $\operatorname{Ann}_R r = 0$ for every $0 \neq r \in R$, hence $\mathcal{P}_R = \operatorname{Ass}_R(R) = \{0\}$. Then $A \in \mathcal{C}_R$ if and only if $\operatorname{Ass}_R(A) = \{0\}$ if and only if $\operatorname{Ann}_R x = 0$ for every $0 \neq x \in A$ if and only if A is torsionfree. \Box

THEOREM 2.7. Let A be the direct limit of a direct system $((A_i)_{i \in I}; (\varphi_i^{j})_{i,j \in I})$ of modules with $A_i \in C_R$ for every $i \in I$ and suppose that every weakly associated prime ideal of A is finitely generated. Then $A \in C_R$.

Proof. For every $i \in I$, denote by $\varphi_i : A_i \to A$ the canonical homomorphism. By Proposition 2.2, $\operatorname{Ass}_R(A) = \operatorname{Ass}_R(A)$. We may suppose that $A \neq 0$. Let $p \in \operatorname{Ass}_R(A)$. Then there exists $0 \neq x \in A$ such that $p = \operatorname{Ann}_R x$. Hence there exists $x_i \in A_i$ for some $i \in I$ such that $\varphi_i(x_i) = x$.

We claim that $r \subseteq \operatorname{Ann}_R(x_j)$. Let $r \in p$. Then $\varphi_i(rx_i) = rx = 0$. Since p is finitely generated, there exists $j \in I$ with $j \ge i$ such that $\varphi_i^j(rx_i) = 0$. Denote $x_j = \varphi_i^j(x_i) \in A_j$. Since $rx_j = \varphi_i^j(rx_i) = 0$, we have $r \in \operatorname{Ann}_R(x_j)$. Hence $r \subseteq \operatorname{Ann}_R(x_j)$.

Now let $s \in \operatorname{Ann}_R(x_j)$. Since $x = \varphi_i(x_i) = \varphi_j(\varphi_i^j(x_i)) = \varphi_j(x_j)$, we have $sx = \varphi_j(sx_j) = \varphi_j(0) = 0$, hence $s \in p$. It follows that

$$p \subseteq \operatorname{Ann}_R(x_j) \in \operatorname{Ass}_R(A_j) \subseteq \operatorname{Ass}_R(A_j) \subseteq \mathcal{P}_R$$
.

Hence $\operatorname{Ass}_{R}(A) \subseteq \mathcal{P}_{R}$, showing that $A \in \mathcal{C}_{R}$.

COROLLARY 2.8. Let R be Noetherian and let A be the direct limit of a direct system $((A_i)_{i \in I}; (\varphi_i^j)_{i,j \in I})$ of modules with $A_i \in C_R$ for every $i \in I$. Then $A \in C_R$.

COROLLARY 2.9. If R is Noetherian and $R \in C_R$, then every flat module belongs to C_R .

Proof. Every flat module is a direct limit of a direct system of finitely generated free modules [3, Chapter 2, Theorem 1.2]. Now the conclusion follows by Theorem 2.4 and Corollary 2.8. \Box

THEOREM 2.10. Let A be a module and suppose that there exists a strictly increasing chain

$$0 = A_0 \subset A_1 \subset \cdots \subset A_\alpha \subset A_{\alpha+1} \subset \cdots \subset A_\sigma = A$$

of submodules of A, for some ordinal σ , such that $A_{\alpha+1}/A_{\alpha} \in C_R$ for every $0 \leq \alpha < \sigma$ and $A_{\beta} = \bigcup_{\alpha < \beta} A_{\alpha}$ for every limit ordinal $\beta \leq \sigma$. Then $A \in C_R$.

Proof. For $\alpha = 0$, we have $A_1 \cong A_1/A_0 \in \mathcal{C}_R$. Let $1 \le \alpha < \beta$ and assume that $A_\alpha \in \mathcal{C}_R$ for every $1 \le \alpha < \beta$.

Suppose first that β is a successor of an ordinal γ , that is, $\beta = \gamma + 1$, and consider the short exact sequence of modules $0 \to A_{\gamma} \to A_{\beta} \to A_{\beta}/A_{\gamma} \to 0$. We have $A_{\gamma}, A_{\beta}/A_{\gamma} \in C_R$, hence $A_{\beta} \in C_R$ by Theorem 2.4.

Now suppose that β is a limit ordinal. Then $A_{\beta} = \bigcup_{\alpha < \beta} A_{\alpha}$ and $A_{\alpha} \in C_R$ for every limit ordinal $\alpha < \beta$. Let $p \in Ass_R(A_{\beta})$. Then there exists $x \in A$ such that p is the minimal prime ideal that contains $Ann_R x$. Also, there exists an ordinal $\delta < \beta$ such that $x \in A_{\delta}$. Hence $p \in Ass_R(A_{\delta}) \subseteq \mathcal{P}_R$. Therefore, $Ass_R(A_{\beta}) \subseteq \mathcal{P}_R$, that is, $A_{\beta} \subseteq C_R$.

Consequently, by transfinite induction, $A = A_{\sigma} \in C_R$.

LEMMA 2.11. Let R be such that every weakly associated prime ideal of R is finitely generated, let p be a prime ideal of R and let $\mathcal{P}_R = \operatorname{Ass}_R(R)$. Then $R/p \in \mathcal{C}_R$ if and only if there exists an ideal I of R such that $I \cong R/p$.

Proof. By Proposition 2.2, $\operatorname{Ass}_R(R) = \operatorname{Ass}_R(R)$.

Suppose first that $R/p \in C_R$. Since $A\widetilde{ss}_R(R/p) = \{p\}$, we have $p \in A\widetilde{ss}_R(R)$. Hence there exists $0 \neq r \in R$ such that $Ann_R r = p$. Then $R/p \cong I$, where I = rR.

Conversely, suppose that there exists an ideal I of R such that $I \cong R/p$. Since $\operatorname{Ann}_R x = p$ for every $x \in I$, it follows that $p \in \operatorname{Ass}_R(R)$. Therefore, $R/p \in \mathcal{C}_R$.

EXAMPLE 2.12. Let R be semisimple such that $R \in C_R$. Since R is Artinian, R is a finite direct sum of simple ideals and every prime ideal is maximal. By Theorem 2.1, $\operatorname{Ass}_R(R) = \operatorname{Ass}_R(R)$ and it is the (finite) set of all maximal ideals of R, whence $\mathcal{P}_R = \operatorname{Ass}_R(R)$. Then, by Lemma 2.11, every simple module belongs to C_R . Finally, by Theorem 2.4, it follows that every module belongs to C_R .

THEOREM 2.13. Let R be Artinian. Then the class C_R is closed under direct products.

Proof. Let $A = \prod_{i \in I} A_i$, where each $A_i \in C_R$. By Theorem 2.1, we have $\operatorname{Ass}_R(B) = \operatorname{Ass}_R(B)$ for every module B. By hypothesis, every prime ideal of R is maximal and R has a finite number of maximal ideals. Without loss of generality, we may suppose that $A_i \neq 0$ for every $i \in I$. Let $p \in \operatorname{Ass}_R(A)$. Then there exists $0 \neq x = (x_i)_{i \in I} \in A$, where $x_i \in A_i$ for each $i \in I$, such that $p = \operatorname{Ann}_R x$. We have $p = \bigcap_{i \in I} \operatorname{Ann}_R x_i$. Denote

$$J = \{ i \in I \mid 0 \neq x_i \in A_i \text{ with } x = (x_i)_{i \in I} \}.$$

Clearly, $J \neq \emptyset$. It follows that $p = \bigcap_{i \in J} \operatorname{Ann}_R x_i$, hence $p \subseteq \operatorname{Ann}_R x_i$ for every $i \in J$. Since p is a maximal ideal of R and $\operatorname{Ann}_R x_i \neq R$, we have $p = \operatorname{Ann}_R x_i$ for every $i \in J$. Then $p \in \operatorname{Ass}_R(A_i)$ for every $i \in J$, hence $p \in \mathcal{P}_R$. It follows that $\operatorname{Ass}_R(A) \subseteq \mathcal{P}_R$, that is, $A \in \mathcal{C}_R$.

THEOREM 2.14. Let R be Noetherian. Then the class C_R is closed under injective hulls.

Proof. Let A be a module. If A = 0, then E(A) = 0 and $Ass_R(E(A)) = \emptyset$. Thus $E(A) \in \mathcal{C}_R$.

Suppose that $A \neq 0$. Let $p \in Ass_R(E(A))$. Hence there exists $0 \neq x \in E(A)$ such that $p = Ann_R x$ and there exists $s \in R$ such that $0 \neq sx \in A$. If $r \in p$, then rsx = 0, hence $r \in Ann_R(sx)$. Hence $p \subseteq Ann_R(sx)$.

We claim that $p = \operatorname{Ann}_R(sx)$. Suppose that $p \neq \operatorname{Ann}_R(sx)$. Then there exists $t \in \operatorname{Ann}_R(sx)$ and $t \notin p$. We have tsx = 0, hence $ts \in p$. Since p is prime, $s \in p$. Then sx = 0, which is a contradiction. Therefore, $p = \operatorname{Ann}_R(sx)$.

Now we have $p \in A_{ss_R}^{\sim}(A) \subseteq \mathcal{P}_R$. Therefore, $A_{ss_R}^{\sim}(E(A)) \subseteq \mathcal{P}_R$, that is, $E(A) \in \mathcal{C}_R$.

COROLLARY 2.15. Let R be Artinian. Then the class C_R is a torsionfree class for some hereditary torsion theory.

Proof. By Theorems 2.1, 2.13 and 2.14, the class C_R is closed under submodules, direct products, injective hulls and isomorphic copies, hence it is a torsionfree class for some hereditary torsion theory [2, Proposition 1.10]. \Box

PROPOSITION 2.16. Let R be Noetherian, let B be a finitely generated module and let $A \in C_R$. Then $\text{Hom}(B, A) \in C_R$.

Proof. By Theorem 2.1 (ii) and (vi), because $Ass_R(A) \subseteq \mathcal{P}_R$.

PROPOSITION 2.17. Let S be a multiplicative closed system of R, let $\mathcal{P}_R = Ass_R(R)$, $\mathcal{P}_{S^{-1}R} = Ass_{S^{-1}R}(S^{-1}R)$ and let $A \in \mathcal{C}_R$. Then $S^{-1}A \in \mathcal{C}_{S^{-1}R}$.

Proof. We have $A_{ss_R}^{\sim}(A) \subseteq \mathcal{P}_R = A_{ss_R}^{\sim}(R)$. By Theorem 2.1 (v), it follows that

$$\operatorname{Ass}_{S^{-1}R}(S^{-1}R) = \{ pS^{-1}R \mid p \in \operatorname{Ass}_R(R) \text{ with } p \cap S = \emptyset \}.$$

Hence $\operatorname{Ass}_{S^{-1}R}(S^{-1}A) \subseteq \operatorname{Ass}_{S^{-1}R}(S^{-1}R) = \mathcal{P}_{S^{-1}R}$. Therefore, $S^{-1}A \in \mathcal{C}_{S^{-1}R}$.

PROPOSITION 2.18. Let S be a commutative Noetherian ring and let φ : $R \to S$ be a homomorphism. Also, let $\mathcal{P}_S = \operatorname{Ass}_S(S)$, let A be an S-module such that $A \in \mathcal{C}_S$ and let $S \in \mathcal{C}_R$. Then $A \in \mathcal{C}_R$.

Proof. By Theorem 2.1, $Ass_S(A) = Ass_S(A)$. By Theorem 2.3,

$$\operatorname{Ass}_R(A) = \operatorname{Ass}_R(A) = \{\varphi^{-1}(p) \mid p \in \operatorname{Ass}_S(A)\}.$$

We also have

$$\operatorname{Ass}_{R}(S) = \operatorname{Ass}_{R}(S) = \{\varphi^{-1}(p) \mid p \in \operatorname{Ass}_{S}(S)\}$$

But $\operatorname{Ass}_S(A) \subseteq \mathcal{P}_S = \operatorname{Ass}_S(S)$, because $A \in \mathcal{C}_S$. Hence $\operatorname{Ass}_R(A) \subseteq \operatorname{Ass}_R(S) \subseteq \mathcal{P}_R$, because $S \in \mathcal{C}_R$. It follows that $A \in \mathcal{C}_R$. \Box

REFERENCES

- [1] N. BOURBAKI, Algèbre commutative, Chapters 3 and 4, Herman, Paris, 1967.
- [2] J.S. GOLAN, Torsion theories, Longman Scientific and Technical, New York, 1986.
- [3] D. LAZARD, Autour de la platitude, Bull. Soc. Math. France, 97 (1969), 81–128.
- [4] S. YASSEMI, Weakly associated primes under change of rings, Commun. Algebra, 26 (1998), 2007–2018.
- [5] S. YASSEMI, A survey of associated and coassociated primes, Vietnam J. Math., 28 (2000), 195–208.

Received September 17, 2004

Technical University Department of Mathematics Str. C. Daicoviciu 15 400020 Cluj-Napoca, Romania E-mail: crivei@math.utcluj.ro