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REMARKS ON UHLENBECK’S PERTURBATION METHOD

GRAŢIELA CICORTAŞ

Abstract. Let f be a C2-function on a C2-Finsler manifold. Perturb it to
fε = f + εg, ε > 0, g > 0 and assume that fε satisfies the Palais-Smale
condition, for all ε > 0. In [6], K. Uhlenbeck found, under suitable hypothesys,
a method to extend the critical point theory from fε to f. In this paper we give
a variant of this perturbation method.
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1. INTRODUCTION

It is known that there are many variational problems for which the Palais-
Smale condition cannot be verified. An approximating method would be use-
ful. In [6] K. Uhlenbeck found an elegant method to extend the critical point
theory for the perturbed functions to the original one and applied this tech-
nique in particular to harmonic mappings. Instead of looking directly for the
critical points of f, a small perturbation εg is considered and the critical points
of fε = f + εg are studied, with the assumption that f ε satisfies the Palais-
Smale condition. If the critical points of fε are convergent to the critical points
of f as ε −→ 0, then a Morse theory is given. The proof use the fact that it
is possible to associate to f ε a function which has the same critical set and it
satisfies the Palais-Smale condition.

In this paper we give a variant for the perturbation method introduced by
K. Uhlenbeck.

2. MORSE THEORY ON FINSLER MANIFOLDS

In this section we recall basic notions and results on critical point theory
on Finsler manifolds (see [2]–[4]).

Let π : E −→ M be a Banach vector bundle. Recall that ‖ · ‖ : E −→ R+

is called a Finsler structure if
(i) ‖ · ‖ is continuous;
(ii) ∀ p ∈ M, ‖ · ‖p := ‖ · ‖ |Ep is an equivalent norm on Ep := π−1(p);
(iii) ∀ p0 ∈ M, for any neighborhood U of p0 which trivializes the vector

bundle E, ∀k > 1, there exists a neighborhood V of p0 such that
1
k
‖ · ‖p ≤ ‖ · ‖p0 ≤ k‖ · ‖p, ∀p ∈ V.

A regular C1-Banach manifold M together with a Finsler structure on its
tangent bundle TM is called a Finsler manifold. Any paracompact Banach
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manifold posses a Finsler structure on its tangent bundle, so it is a Finsler
manifold. If M is a Finsler manifold with Finsler structure ‖ · ‖, then we can
define

‖(p, x∗)‖ = sup{〈x∗, x〉|x ∈ Tp(M), ‖x‖p ≤ 1}.
Particularly, if M is a paracompact Banach manifold and f ∈ C1(M,R), then
‖(p,df(p))‖ is well defined. We denote ‖(p, df(p))‖ by ‖df(p)‖. If M is a
Finsler manifold and σ ∈ C1([0, 1],M), then L(σ) =

∫ 1
0 ‖(σ(t), σ′(t))‖dt. We

define a metric d as follows:

d(x, y) = inf{L(σ)|σ ∈ C1([0, 1],M), σ(0) = x, σ(1) = y}.
The reduced topology is equivalent to the topology on the manifold.

Let M be a C1-Finsler manifold and f ∈ C1(M,R). A point p ∈ M is called
a critical point of f if df(p) = 0. A real number c is called a critical value of
f if ∃ p ∈ M such that df(p) = 0 and f(p) = c. We denote

K(f) = {p ∈ M | df(p) = 0}
and we call it the critical set of f. If c ∈ R, then

Kc(f) = K(f) ∩ f−1(c)

is the critical set of level c of f and

Mc(f) = {p ∈ M |f(p) ≤ c}
is the set of sublevel c of f.

Let f ∈ C1(M,R) and c ∈ R. We say that f satisfies the Palais-Smale
condition at level c and we denote it by (PS)c if any sequence (xn) in M such
that f(xn) −→ c and df(xn) −→ 0 has a convergent subsequence. We say
that f satisfies the Palais- Smale condition, denoted by (PS), if it satisfies
(PS)c for all c ∈ R.

Basic tools in critical point theory are deformation theorems (see [1] or [2]);
we recall the second deformation lemma:

Theorem 2.1. Let M be a C2-Finsler manifold. Suppose that f ∈ C1(M,R)
satisfies the (PS)c condition for all c ∈ [a, b] and a is the only critical value of
f in [a, b). Assume that the connected components of Ka(f) are only isolated
points. Then Ma(f) is a strong deformation retract of Mb(f) \Kb(f).

An operator L ∈ B(X) (the Banach algebra of all bounded linear operators
from a Banach space X into itself) is called hyperbolic if the spectrum σ(L)
is contained in two compact subsets separated by the imaginary axis.

Let M be a C2-Finsler manifold and f ∈ C2(M,R). Let p0 be an isolated
critical point of f. We say that p0 is nondegenerate if there exists U a neigh-
borhood of p0 on which TM is trivialized to a be U×X, such that there exists
a hyperbolic operator L ∈ B(X) which satisfies the following conditions:

(1) d2f(p0)(Lx, y) = d2f(p0)(x, Ly), ∀x, y ∈ X
(2) d2f(p0)(Lx, x) > 0, ∀x ∈ X \ {0}
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(3) 〈df(p), Lx〉 > 0, ∀p ∈ U, p = p0 + x in the local coordinates.
The dimension of the negative invariant subspace of L is called the index of p.

The following handle body decomposition theorem gives us a picture of the
changes in topological structure as the level sets pass through a critical value
such that the corresponding critical points are nondegenerate (see [5] or [1]):

Theorem 2.2. Let M be a C2 Finsler manifold modeled on a Banach
space with differentiable norms and let f ∈ C1(M,R) satisfying the (PS)
condition on M. Assume that c is a isolated critical value of f such that
Kc(f) = {p1, . . . , pk} consists of only nondegenerate critical points with in-
dices m1, . . . , mk respectively.

Then there exist ε > 0 and homeomorphisms hi : Bmi → M (into),
where Bmi is the mi- dimensional ball, such that Mc+ε(f) can be retracted

onto Mc−ε(f) ∪
k⋃

i=1
hi(Bmi) and

Mc−ε(f) ∩ hi(Bmi) = f−1(c− ε) ∩ hi(Bmi) = hi(∂Bmi)

for i = 1, k.

If the assumptions of the previous theorem are safisfied, we say that Mc+ε(f)
can be retracted onto Mc−ε(f) with handles adjoined corresponding to the
critical points of f in f−1(c − ε, c + ε) and the dimensions of the handles
correspond to the indices of the critical points.

3. UHLENBECK’S PERTURBATION METHOD

Let f be a given function, which does not satisfy the Palais-Smale condition.
Perturb it to fε = f + εg and assume that for any small ε > 0, the function
f ε satisfies the Palais-Smale condition. K. Uhlenbeck [6] found sufficient con-
ditions in order to extend the critical point theory from perturbed functions
f ε to f.

For the following abstract results, see [6] and [1].

Lemma 3.1. Let M be a C2-Finsler manifold and let f, g ∈ C1(M,R) such
that f is bounded below and g > 0. For ε ∈ (0, 1] define fε = f + εg. Suppose
that ‖dg‖ is bounded on sets on which g is bounded and fε satisfies (PS)c, for
some c.

Then h = g
c−f satisfies (PS)ε−1 and Kε−1(h) = Kc(fε).

Corollary 3.1. In the above assumptions, if Kc(f ε) = ∅, ∀ε ∈ (0, ε0], then
Mc(fε0) is a strong deformation retract of Mc(f).

Morse theory for Finsler manifolds together with the above corollary are
used to prove the following theorem:

Theorem 3.1. Let M be a C2-Finsler manifold modeled on a separable
Banach space with differentiable norms. Let f, g ∈ C2(M,R) satisfying the
following assumptions:



140 G. Cicortaş 4

(i) f is bounded below, g > 0 and fε = f + εg satisfies (PS), for all ε > 0;
(ii) ‖dg‖ is bounded on sets on which g is bounded;
(iii) the critical set

⋃
0<ε≤ε0

K(f ε) ∩ (fε)−1[a, b] has compact closure in M,

for some ε0;
(iv) a and b are not critical values of f and the critical points of f with

values in (a, b) are nondegenerate.
Then Ma(f) with handles adjoined corresponding to the critical points of f

with values in (a, b) is a deformation retract of Mb(f). The dimensions of the
handles correspond to the dimensions of the indices of the critical points.

4. A REMARK

We prove the following property:

Proposition 4.1. Let M be a C2-Finsler manifold and f, g ∈ C1(M,R).
For ε > 0 define fε = f + εg, where g > 0. Define h = g

c−f , c being a real
number. Suppose that 1

c−f is bounded and ‖dg‖ is bounded.
Then Kε−1(h) = Kc(f ε). If h satisfies (PS)ε−1 , then fε satisfies (PS)c.

Proof. If x0 ∈ Kε−1(h), then h(x0) = ε−1 and dh(x0) = 0. It follows that
f ε(x0) = c, dfε(x0) = 0 and this implies x0 ∈ Kc(f ε). Conversely, x0 ∈ Kc(f ε)
implies x0 ∈ Kε−1(h).

Let (xn) ⊂ M arbitrary such that fε(xn) −→ c and df ε(xn) −→ 0. Then
h(xn) − ε−1 = g(xn)

c−f(xn) − ε−1 = fε(xn)−c
ε[c−f(xn)] and h(xn) −→ ε−1. The differential

of h at xn has the representation

dh(xn) =g(xn)(c− f(xn))−2(df(xn) + h(xn)−1dg(xn))

=h(xn)(c− f(xn))−1(df ε(xn) + (h(xn)−1 − ε)dg(xn))

and this implies

‖dh(xn)‖ ≤ |h(xn)| · |c− f(xn)|−1(‖dfε(xn)‖+ |h(xn)−1 − ε| · ‖dg(xn)‖)
Then ‖dh(xn)‖ −→ 0; because h verifies (PS)ε−1 , there is a converging subse-
quence (xnk

) of (xn). We conclude that fε verifies (PS)c. ¤

5. A VARIANT OF THE PERTURBATION METHOD

It is possible to give another characterization for the critical set of fε, in
similar hypothesis. For instance, we can consider a small perturbation fε =
f +εg for a given function f by using a positive function g. We want to obtain
information about the critical set of fε, so it is natural to consider the set of
some level c for this function, {x ∈ M |fε(x) = c}; then ε = c−f(x)

g(x) and we

define h = c−f
g .

First of all, we remark that h and fε have the same critical set.
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Proposition 5.1. Let M be a C2-Finsler manifold and let f, g ∈ C1(M,R)
such that g > 0. Define f ε = f + εg, where ε > 0 and h = c−f

g , c being a real
number.

Then Kε(h) = Kc(fε).

Proof. Assume that x0 ∈ Kc(f ε). Then fε(x0) = c and dfε(x0) = 0. By
computation we obtain h(x0) = c−f(x0)

g(x0) = c−fε(x0)+εg(x0)
g(x0) = ε and

dh(x0) =− df(x0)g(x0)−1 − (c− f(x0))g(x0)−2dg(x0)

=− df(x0)g(x0)−1 − h(x0)g(x0)−1dg(x0)

=− g(x0)−1dfε(x0) = 0.

It follows that x0 ∈ Kε(h). Conversely, x0 ∈ Kε(h) implies fε(x0) = c and
df ε(x0) = 0. Then x0 ∈ Kc(fε). ¤

We give now sufficient conditions such that h satisfies the Palais-Smale
condition at some level.

Proposition 5.2. Let M be a C2-Finsler manifold and let f, g ∈ C1(M,R)
such that f is bounded and g > 0. Define f ε = f + εg, where ε > 0, and
h = c−f

g , c being a real number. Assume that ‖dg‖ is bounded on sets on
which g is bounded and f ε satisfies (PS)c.

Then h satisfies (PS)ε.

Proof. Let (xn) be an arbitrary sequence in M such that h(xn) −→ ε and
dh(xn) −→ 0. We obtain fε(xn) − c = (ε − h(xn))g(xn) −→ 0 because f is
bounded and g(xn) < (1 + 1

ε )(c− f(xn)). For dfε(xn) we can write

dfε(xn) = df(xn) + εdg(xn) = −g(xn)dh(xn) + (ε− h(xn))dg(xn).

By using the inequality

‖dfε(xn)‖ ≤ ‖dh(xn)‖ · g(xn) + |ε− h(xn)| · ‖dg(xn)‖
and the assumption that ‖dg‖ is bounded on sets on which g is bounded, it
follows that ‖df ε(xn)‖ −→ 0.

(PS)c- condition for f ε assures the existence of a convergent subsequence
(xnk

) of (xn); we conclude that h satisfies (PS)ε. ¤

If the perturbed function f ε satisfies the Palais- Smale condition at some
level, in some hypothesys, the same holds for h.

Proposition 5.3. Let M be a C2-Finsler manifold and let f, g ∈ C1(M,R).
Define fε = f +εg, for ε > 0, and h = c−f

g , where c is a real number. Assume
that g > 0, 1

g is bounded and ‖dg‖ is bounded.
If h satisfies (PS)ε, then f ε satisfies (PS)c.
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Proof. Let (xn) be a sequence in M with properties f ε(xn) −→ c and
df ε(xn) −→ 0. Then h(xn) − ε = c−f(xn)

g(xn
− ε = c−fε(xn)

g(xn) −→ 0, 1
g being

bounded. We can write

dh(xn) =− df(xn)g(xn)−1 − (c− f(xn))g(xn)−2dg(xn)

=− g(xn)−1(df(xn) + h(xn)dg(xn))

=− g(xn)−1(dfε(xn) + (h(xn)− ε)dg(xn)).

It follows that

‖dh(xn)‖ ≤ g(xn)−1(‖df ε(xn)‖+ |h(xn)− ε| · ‖dg(xn)‖).
By using the assumptions ‖dfε(xn)‖ −→ 0 and h(xn) −→ ε we obtain that
‖dh(xn)‖ −→ 0.

Because h satisfies (PS)ε, there exist a converging subsequence (xnk
) of

(xn); then fε satisfies (PS)c. ¤
For simplicity, for f : M −→ R and c real number we will use the notation

M̃c(f) = {x ∈ M | f(x) ≥ c}.
Corollary 5.1. Suppose all hypothesis of Proposition 5.2 satisfied and

Kc(f ε) = ∅, for allε ∈ (0, ε0].
Then M̃c(f) is a strong deformation retract of M̃c(fε0).

Proof. We apply Proposition 5.1 and Kc(f ε) = Kε(h). Using Kc(fε) = ∅,
for all ε ∈ (0, ε0], it follows that Kε(h) = ∅, for all ε ∈ (0, ε0] and we conclude
that h has no critical values in the interval (0, ε0]. But h satisfies (PS)ε, ∀ ε ∈
(0, ε0], so we can apply the second deformation lemma and we obtain that
M0(h) is a strong deformation retract of Mε0(h). On the other hand,

M0(h) = {x ∈ M | h(x) ≤ 0} = {x ∈ M | f(x) ≥ c} = M̃c(f)

and

Mε0(h) = {x ∈ M | h(x) ≤ ε0} = {x ∈ M | f ε0(x) ≥ c} = M̃c(fε0).

The conclusion follows. ¤
Now we prove the main result of this section:

Theorem 5.1. Let M be a C2-Finsler manifold modeled on a separable
Banach space with differentiable norms. Let f, g ∈ C2(M,R) satisfying the
following assumptions:

(i) f is bounded, g > 0 and f ε = f + εg satisfies (PS), for all ε > 0;
(ii) ‖dg‖ is bounded on sets on which g is bounded;
(iii) the critical set

⋃
0<ε≤ε0

K(fε) ∩ (fε)−1[a, b] has compact closure in M,

for some ε0;
(iv) a and b are not critical values of f and the critical points of f with

values in (a, b) are nondegenerate.
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Then M̃b(f) with handles adjoined corresponding to the critical points of f

with values in (a, b) is a deformation retract of M̃a(f). The dimensions of the
handles correspond to the dimensions of the indices of the critical points.

Proof. Remark that M̃c(f) = M−c(−f) and M̃c(fε0) = M−c(−fε0), for any
real number c.

By using Corollary 5.1, M̃a(f) is a strong deformation retract of M̃a(f ε0)
and M̃b(f) is a strong deformation retract of M̃b(fε0).

fε0 satisfies the Palais- Smale condition and the same is true for −f ε0 . Then

we can apply Theorem 2.2 and it follows that M−b(−fε0)∪
k⋃

i=1
hi(Bmi) is a de-

formation retract of M−a(−fε0), where hi(Bmi) denotes the attached handle.

This is equivalent with the fact that M̃b(fε0) ∪
k⋃

i=1
hi(Bmi) is a deformation

retract of M̃a(fε0).
We obtain that M̃b(f) with handles adjoined corresponding to the critical

points of f with values in (a, b) is a deformation retract of M̃a(f). ¤
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