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(CO)TRIPLES AND HOCHSCHILD (CO)HOMOLOGY OF
SUPERALGEBRAS

PAUL A. BLAGA

Abstract. We show that the Hochschild homology and cohomology of a given
(not necessarily commutative) Z2-graded algebra (superalgebra) R over a graded-
commutative Z2-graded ring, with coefficients in an R-bimodule can be defined as
the homology (cohomology) of a suitable chosen cotriple (triple), with coefficients
in a functor.
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1. INTRODUCTION

The Hochschild homology of an algebra was introduced by Gerhard Hoch-
schild ([6]) in 1945 and it soon became a standard tool for algebraist, for the
investigation of the structure of an associative algebra and, in particular, of a
ring. In the early 1980s, Alain Connes introduced his noncommutative spaces,
whose studies amounts, actually, to the investigation of some noncommutative
algebras and suggested that Hochschild (co)homology could play an important
role in the process. It became clear, also, that Hochschild homology has closed
connections to K-theory and, as such, today is an important tool in many
branches of mathematics, beside the algebra itself. The Hochschild homology
of superalgebras (Z2-graded algebras) came into the picture in the second
part of the eighties (see, for instance, [8] or [9]). The initial definition was
similar to the one for ungraded algebras (see [10]), being just an adaptation
of the definition given by MacLane in the cited reference for arbitrary graded
algebras. Kassel ([8]) shown that in the case when the ground ring is field (with
the trivial grading), then the Hochschild homology of the superalgebra R is an
(absolute) Tor functor over the enveloping superalgebra Re ≡ R⊗Rop, where
Rop is just R with the opposite multiplication (here opposite should be taken
in the graded sense, see bellow.) In a previous paper ([3]) we proved that this
is true in the general case, provided we substitute the absolute Tor functor
with a relative one. In a similar manner, the Hochschild cohomology turns out
to be a relative Ext functor over the enveloping algebra and, again, in good
cases (for instance when the ground ring is a field), the attribute “relative”
can be replaced by “absolute”. We mention, however, that in some books (for
instance in the classical book of Cartan and Eilenberg, [4]) the Hochschild
homology is defined as an absolute Tor functor, therefore, for arbitrary ground
rings, the notion introduced by Cartand and Eilenberg does not coincide with
the (quasi) generally accepted notion.
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In the late sixtieth, in a seminal paper ([1]) Barr and Beck showed that
many homology theories can be constructed by using a functorial machinery
called a triple. It is the aim of this paper to show that this is, also, the case
of Hochschild homology of superalgebras.

2. SUPERALGEBRAS AND THEIR HOCHSCHILD (CO)HOMOLOGY

2.1. Superalgebras. We shall expose here only the very basic notions of su-
peralgebra that will be used in the sequel. For details, one can use the books
[2], [12].

Definition 1. A Z2-graded ring is a ring (R, +, ·) which is Z2-graded as
an Abelian group, i.e. it has two subgroups R0 and R1 such that

R = R0 ⊕R1

and, moreover, for any α, β ∈ Z2, we have

RαRβ ⊂ Rα+β.

The elements of Ri are called homogeneous elements of R, of degree i, for
i = 1, 2. More specifically, the elements of R0 are called even elements, while
the elements of R1 are called odd elements of R. If x ∈ Ri, we shall say that
x is an element of degree or parity i and we shall write |x| = i.

Hereafter, all the graduation will be Z2-graduation, therefore we shall drop
the prefix and we shall simple use the term “graded object”.

A graded ring R is called graded-commutative, supercommutative or, there
is no danger of confusion, just commutative, if for any homogeneous elements
x, y ∈ R, we have

x · y = (−1)|x|·|y|y · x.

Let R be a graded ring and M a left (right) R-module.

Definition 2. M is called a graded left (right) R-module if
(i) M is graded as an Abelian group, i.e. it has two subgroups M0 and M1

such that
M = M0 ⊕M1

and
(ii) the graduations of R and M are compatible, in the sense that, for any

α, β ∈ Z2, we have

RαMβ ⊆ Mα+β (respectivelyMαRβ ⊆ Mα+β).

If, in particular, R is a commutative graded ring, then any graded left
R-module M has a natural structure of graded right R-module, if we let

xr = (−1)|x|·|r|rx,

for any r ∈ R and x ∈ M . Obviously, the converse is also true, therefore, if
R is commutative, it makes sense to speak, simply, about graded R-modules,
dropping the attributes “left” and “right”.
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A map between two graded R-modules M and N is linear if it is linear in
the ordinary, ungraded sense. However, we can introduce a grading on the
R-module HomR(M, N), if we put, for α = 0, 1,

HomR(M,N)α = {f ∈ HomR(M,N), |f | = α} ,

where |f | = α if f(Mβ) ⊂ Nα+β, for any β ∈ Z2. Usually, a linear map
between two graded R-module is called a morphism of graded modules if it
has degree zero. It is easy to check that graded left (right) R-modules over a
graded ring, with the corresponding morphisms (linear maps of degree zero)
is a category.

A graded R − S-bimodule, where R and S are two graded rings is just
an R − S-bimodule which is graded both as a left R-module and as a right
S-module.

If M is a graded right R-module and N – a graded left R-module, their ten-
sor product in the graded category is their ordinary, ungraded tensor product,
with the grading given by

(M ⊗N)0 := (M0 ⊗N0)⊕ (M1 ⊗N1),

(M ⊗N)1 := (M0 ⊗N1)⊕ (M1 ⊗N0).

The tensor product of linear maps between graded modules is, again, defined
as in the classical case, up to a sign. Thus, let f : M → M ′ and g : N → N ′
be two homogeneous linear maps between graded right (respectively left) R-
modules. Their tensor product is, by definition, the map

f ⊗ g : M ⊗M ′ → N ⊗N ′,

given, for each homogeneous elements m ∈ M, n ∈ M , by

(f ⊗ g)(m⊗ n) := (−1)|g||m|f(m)⊗ g(n).

We have now all the necessary ingredients to define the central objects of the
paper, the superalgebras.

Definition 3. Let R be a graded-commutative Z2-graded ring. A Z2-
graded R-algebra (or a superalgebra over R) is, by definition, a graded R-
module A endowed with two linear morphisms of degree zero π : A⊗ A → A
(the multiplication) and I : R → A (the unity) such that the following two
diagrams commute:

A⊗A⊗A

1⊗π
²²

π⊗1 // A⊗A

π

²²
A⊗A

π // A

R⊗A

I⊗1
²²

A A⊗R

1⊗I
²²

A⊗A
π // A

π // A⊗A

If A and B are superalgebras over the same graded ring R, then they are,
both, bimodules over R, therefore it makes sense to speak about their tensor
product, as graded modules. Moreover, we can endow this tensor product with
a structure of superalgebra over R.
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Definition 4. Let A and B be two R-superalgebras. The tensor product
of the two algebras is the tensor product of A and B, as graded R-modules,
with the multiplication given by

(a⊗ b) · (a′ ⊗ b′) = (−1)|b||a
′|aa′ ⊗ bb′,

for any a, a′ ∈ A, b, b′ ∈ B, the unit being 1A ⊗ 1B.

It is not difficult to check that, indeed, A ⊗ B with this multiplication
becomes a superalgebra.

Clearly, any superalgebra A over a graded ring R is, in particular, a graded
ring itself, therefore it makes sense to speak about graded A-modules, which,
restricting the scalars, are, in particular, also graded R-modules. We mention
that for graded A-modules (over an R-superalgebra A) we have to kinds of
tensor products, over A and over R. As a convention, all the tensor products
without any subscript will be taken over the ground ring of the superalgebra.

2.2. The Hochschild homology and cohomology of a superalgebra.
In the sequel we shall denote by k a fixed graded ring and by R a fixed
superalgebra over k. We also choose an R-R-bimodule M . To define the
Hochschild homology of the superalgebra R with values in the bimodule M ,
we proceed as in the ungraded case (see, for instance, [13]) and we consider
a simplcial k-module M ⊗R∗, with [n] → M ⊗R⊗n and with the convention
that M ⊗R⊗0 ≡ M .

For a fixed n ∈ N, we define the face and degeneracy maps through

(1) di
n(m⊗r1⊗· · ·⊗rn) =





mr1 ⊗ r2 ⊗ · · · ⊗ rn if i = 0
m⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn if 0 < i < n

εn · rnm⊗ r1 ⊗ · · · ⊗ rn−1 if i = n

,

where εn = (−1)|rn|(|m|+|r1|+···+|rn−1|), respectively

(2) σi
n(m⊗ r1 ⊗ rn) = m⊗ . . . ri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn.

It is easily checked that we defined, indeed, a simplicial module, as the simpli-
cial identities are fulfilled. Therefore, we can proceed and define the Hochschild
homology of R with coefficients in the R-module M as being the homology
associated to the simplicial module (1) (2), in other words – the homology of
the complex

(3) 0 ←− M
d1←− M ⊗R

d2←− M ⊗R⊗R
d3←− · · · ,

where

(4) dn =
n∑

i=0

(−1)idi
n.

Dually, to define the Hochschild cohomology, we can define first a cosimpli-
cial k-module, by letting [n] → Homk(R⊗n, M), with the convention that
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Homk(R⊗n,M) ≡ M and defining the face and degeneracy mappings by

(5) (dn
i f)(r0, . . . , rn) =





r0f(r1, . . . , rn) if i = 0
f(r0, . . . , ri−1ri, . . . , rn) if 0 < i < n

f(r0, . . . , rn−1)rn if i = n

,

respectively

(6) σn
i (r1, . . . , rn−1) = f(r1, . . . , ri, 1, ri+1, . . . , rn−1).

Then the Hochschild cohomology of R with coefficients in M is, by definition,
the cohomology of the complex

(7) 0 −→ M
d1−→ Homk(R, M) d2−→ Homk(R⊗R, M) d3−→ · · · ,

where

(8) dn =
n∑

i=0

(−1)idn
i .

3. TRIPLES, COTRIPLES AND THE ASSOCIATED (CO)SIMPLICIAL OBJECTS

We recall (see, for instance, [13] or [11]) that if A is a category, then a triple
in the category is a system (T, η, µ), where T : A → A is a functor, while
η : IA → T and µ : T → T 2 are functorial morphisms such that the following
diagrams commute:

(9) T 3

µT

²²

Tµ // T 2

µ

²²
T 2

µ // T

T
ηT //

AA
AA

AA
AA

AA
AA

AA
AA

T 2

µ

²²

T
Tηoo

}}
}}

}}
}}

}}
}}

}}
}}

T

We mention that, in fact, the commutativity of the first diagram from (9)
means that, for any A ∈ A, we have

(10) µA ◦ T (µA) = µA ◦ µT (A),

while the meaning of the second one is that, again, for any A ∈ A,

(11) µA ◦ ηT (A) = µA ◦ T (ηA) = 1T (A)

Dually, a cotriple in a category A is a system (L, ε, δ), where L : A → A
is a functor, while ε : L → IA and δ : L → L2 are functorial morphisms such
that the following diagrams commute:

(12) L

δ
²²

δ // L2

Lδ
²²

L2 δL // L3

L

δ
²²~~

~~
~~

~~

~~
~~

~~
~~

@@
@@

@@
@@

@@
@@

@@
@@

L L2εLoo Lε // L
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As in the case of triples, after fixing an object A ∈ A, the first diagram of (12)
reads

(13) L(δA) ◦ δA = δL(A) ◦ δA,

while the second one becomes

(14) εL(A) ◦ δA = L(εA) ◦ δA = 1L(A).

The triples are also called monad and cotriples – comonad or standard con-
structions. Clearly, a cotriple is nothing but a triple in the opposite category
of A, Aop.

If (L, ε, δ) is a cotriple in an Abelian category A, then, for any A ∈ A it
determines a simplicial object if we put Cn(A) := Ln+1(A) and we define the
faces and degeneracy maps by

(15) ∂i
n := Li(εLn−i(A)) : Ln+1(A) → Ln(A), i = 0, . . . n

and, respectively,

(16) si
n := Li(δLn−i(A)) : Ln+1(A) → Ln+2(A), i = 0, . . . n.

It can be checked using the axioms of the cotriple (see, for instance, [13]), that
all the identities of a simplicial object are, indeed, fulfilled for this family of
objects and maps.

4. ADJOINT FUNCTORS AND (CO)TRIPLES

Let A and B be two categories. We recall that a pair of functors

A
F // B
G

oo

is called an adjoint pair (or, else, it is said that G is a left adjoint of F ), if
there exist two functorial morphisms ε : FG → IB and η : IA → GF such that

(17)

{
Gε ◦ ηG = 1G

εF ◦Gη = 1F
.

i.e., for any fixed A ∈ A and B ∈ B,

(18)

{
G(εB) ◦ ηG(B) = 1G(B)

εF (A) ◦G(ηA) = 1F (A)

.

It is a known fact ([13], [11]), that any adjoint pair (F,G, η, ε), gives rise
to a cotriple (and, hence, to a simplicial object) in the category B, namely
L = (FG, ε, FηG).
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5. THE BASE-CHANGE FUNCTOR AND ITS ASSOCIATED COTRIPLE

Let, hereafter, k be a fixed, commutative, superring and R a k-superalgebra
(not necessarily commutative). We denote by A the category of Z2-graded k-
modules and by B – the category of Z2-graded R-modules. Let F : A → B be
the base change functor. In other words, for each k-module M , F is given by

(19) F (M) = R⊗k M,

and for any k-modules M,N and each morphism f : M → N , we have

(20) F (f) ≡ 1R ⊗ f : R⊗k M → R⊗k N.

As one checks easily, F has a left adjoint, the forgetful (underlying) functor
U : B → A. The unit of the adjunction is given by the functorial morphism
η : IA → UF , such that, for any k-module M ,

(21) ηM : M → U(F (M)) ≡ R⊗k M, ηM (m) = 1⊗m, ∀m ∈ M,

while the counit is ε : FU → IB such that, for any R-module N we have
(22)
εN : FU(N) ≡ R⊗k U(N) ≡ R⊗k N → N, ε(r⊗ n) = rn, ∀r ∈ R, n ∈ N.

We shall check now directly that, indeed, L = (FU, ε, FηU) is a cotriple in the
category of R-modules. In other words, we shall check that the identities (13)
and (14) are fulfilled.

First of all, we notice that, for any R-module N , we have

(23) L(N) ≡ FU(N) = R⊗k U(N) = R⊗k N,

where, in the right hand side, N is thought of with its underlying structure of
k-module only, forgetting the initial R-module structure, while if f : M → N
is a morphism of R-modules, then

(24) L(f) = 1R ⊗ f : R⊗k M → R⊗k N,

where, in the tensor product, f is thought of as a morphism of k-modules,
instead of R-modules.

Now, let M be an arbitrary R-module. Then, according to the definition,
we have

δM : L(M) ≡ R⊗M → L2(M) ≡ R⊗R⊗M,

δM = F (ηU(M)) = 1R ⊗ ηU(M).

In other words,

δM (r ⊗m) = (1R ⊗ ηU(M))(r ⊗m) = 1R(r)⊗ ηU(M)(m) = r ⊗ 1⊗m,

for any r ∈ R, m ∈ M .
We start by evaluating the left hand side of (13). We have

(L(δM ) ◦ δM )(r ⊗m) = L(δM )(r ⊗ 1⊗m) = (1R ⊗ δM )(r ⊗ 1⊗m) =
= r ⊗ 1⊗ 1⊗m.
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On the other hand, for the right hand side of the same equality, we obtain
(
δL(M) ◦ δM

)
(r ⊗m) = δR⊗M (r ⊗ 1⊗m) = r ⊗ 1⊗ 1⊗m,

therefore (13) holds true in our case.
As for (14), we have, first of all,

(εL(M) ◦ δM )(r⊗m) = εR⊗M (r⊗ 1⊗m) = (r⊗ 1)m = r⊗m ≡ 1L(M)(r⊗m).

On the other hand,
(L(εM ) ◦ δM )(r ⊗m) = (1R ⊗ εM )(r ⊗ 1⊗m) = r ⊗ εM (1⊗m) = r ⊗m =

= 1L(M)(r ⊗m),

therefore (14) holds true, as well.
We shall compute now the faces and the degeneracy maps of the symplicial

object associated to the cotriple we built. We have

∂n
i : Ln+1(M) ≡ R⊗(n+1) ⊗M → Ln(M) ≡ R⊗n ⊗M,

∂n
i = Li(εLn−i(M)).

More specifically, we have, for any r1 ⊗ r2 ⊗ · · · ⊗ rn+1 ⊗m ∈ R⊗(n+1) ⊗M ,

∂n
i (r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗m) = Li(εLn−i(M))(r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗m) =

= r0 ⊗ · · · ⊗ ri−1 ⊗ εR⊗(n−i)⊗M (ri ⊗ ri+1 ⊗ · · · ⊗ rn ⊗m) =
= r0 ⊗ r1 ⊗ · · · ⊗ ri−1 ⊗ riri+1 ⊗ ri+2 ⊗ · · · ⊗ rn ⊗m,

if i = 0, 1, . . . , n− 1, while

∂n
i (r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗m) = r0 ⊗ r1 ⊗ · · · ⊗ rn−1 ⊗ rnm.

As for the degeneracy maps, we have

sn
i : Ln+1(M) ≡ R⊗(n+1) ⊗M → Ln+2(M) ≡ R⊗(n+2) ⊗M,

sn
i (r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗m) = Li(δLn−i(M))(r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗m) =

= r0 ⊗ r1 ⊗ · · · ⊗ ri−1 ⊗ δR⊗(n−i)⊗M (ri ⊗ · · · ⊗ rn ⊗m) =
= r0 ⊗ . . . ri−1 ⊗ ri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn ⊗m,

again, if i = 0, . . . , n− 1, and

sn
n(r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗m) = r0 ⊗ r1 ⊗ · · · ⊗ rn ⊗ 1⊗m.

6. HOCHSCHILD HOMOLOGY OF A SUPERALGEBRA AS A COTRIPLE HOMOLOGY

Let (L, ε, δ) be a cotriple in a category A, M – an Abelian category and
E : A →M – a given functor. We give the following definition (see [1]):

Definition 5. The cotriple homology of an object A from A with coeffi-
cients in E, with respect to the given cotriple is the homology of the chain
complex

(25) 0 ←− E(L(A)) δ←− E(L2(A)) δ←− E(L3(A)) ←− . . .
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Theorem 1. Let R be a k-superalgebra and M – an R-bimodule. Then
the Hochschild homology of R with coefficients in M is the cotriple homology
of R associated to the base-change functor, with values in the functor E ≡
M ⊗R⊗Rop −.

Proof. Let us denote, as customarily, by Re the enveloping superalgebra
R⊗Rop of the superalgebra R. Then the chain complex (25) becomes

0 ←− M⊗Re R⊗R
1M⊗Re∂1

←−−−−−− M⊗Re R⊗R⊗R ←− · · · ←− M⊗Re R⊗(n+2) ←− · · · ,

hence the n-chains are given by

Cn(R, M) = M ⊗Re R⊗(n+2), n = 0, 1, . . . ,

while the differentials are δn : Cn(R,M) → Cn−1(R, M), n = 1, 2, . . . ,

δn =
n∑

i=0

(−1)i1M ⊗Re ∂i
n.

More explicitly, we have

δn(m⊗Re r0 ⊗ r1 ⊗ . . . rn+1) =
n∑

i=0

(−1)im⊗Re r0 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn+1.

We shall show know that there is an isomorphism between the cotriple com-
plex (C(R,M), δ) and the Hochschild complex (A(R,M), d). As we saw in a
previous paper, for each n there is an isomorphism θn between Cn(R, M) and
A(R,M) given by

θn(m⊗Re r0 ⊗ r1 ⊗ · · · ⊗ rn+1) = (−1)|rn+1|(|m|+|r0|+···+|rn|)·
· rn+1mr0 ⊗ r1 ⊗ · · · ⊗ rn.

(26)

θn is, clearly, linear and preserves the parity, therefore it is, indeed, a mor-
phism of Z2-graded modules (supermodules). Its inverse, as it can be seen
immediately, is given by θ−1

n : An(R, M) → Cn(R, M),

(27) θ−1
n (m⊗ r1 ⊗ · · · ⊗ rn) = m⊗Re 1⊗ r1 ⊗ · · · ⊗ rn ⊗ 1.

The fact that the family of maps θn, n = 0, 1, . . . is a morphism of complexes
between the cotriple complex and the Hochschild complex simple means that
for each n the following diagram is commutative

M ⊗Re R⊗(n+2)

1M⊗Re∂n

²²

θn // M ⊗R⊗n

dn

²²
M ⊗Re R⊗(n+1)

θn−1 // M ⊗R⊗(n−1)

or, in other words, that

(28) dn = θn−1 ◦ (1M ⊗Re ∂n) ◦ θ−1
n .
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Clearly, it is enough to check that this relation is true on components, i.e. for
faces:

(29) di
n = θn−1 ◦ (1M ⊗Re ∂i

n) ◦ θ−1
n ,

for i = 0, 1, . . . , n. We shall make this check separately for i = 0, 1 ≤ i ≤ n−1
and i = n.

For i = 0, we have

(θn−1 ◦ (1M ⊗Re ∂0
n) ◦ θ−1

n )(m⊗ r1 ⊗ · · · ⊗ rn) =

= (θn−1 ◦ (1M ⊗Re ∂0
n))(m⊗Re 1⊗ r1 ⊗ · · · ⊗ rn ⊗ 1) =

= θn−1(m⊗Re r1 ⊗ · · · ⊗ rn ⊗ 1) =

= (−1)|1|(|m|+|r1|+···+|rn|+|1|)1 ·m · r1 ⊗ r2 ⊗ · · · ⊗ rn =

= mr1 ⊗ r2 ⊗ · · · ⊗ rn = d0
n(m⊗ r1 ⊗ · · · ⊗ rn).

Let us assume now that 1 ≤ i ≤ n− 1. Then

(θn−1 ◦ (1M ⊗Re ∂i
n) ◦ θ−1

n )(m⊗ r1 ⊗ · · · ⊗ rn) =

= (θn−1 ◦ (1M ⊗Re ∂i
n))(m⊗Re 1⊗ r1 ⊗ · · · ⊗ rn ⊗ 1) =

= θn−1(m⊗Re 1⊗ r1 ⊗ · · · ⊗ ri−1 ⊗ riri+1 ⊗ ri+2 ⊗ · · · ⊗ rn ⊗ 1) =

= (−1)|1|(|m|+|r1|+···+|rn|+|1|)1 ·m · 1⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn =

= m⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn = di
n(m⊗ r1 ⊗ · · · ⊗ rn).

Finally, let i = n. We have

(θn−1 ◦ (1M ⊗Re ∂n
n) ◦ θ−1

n )(m⊗ r1 ⊗ · · · ⊗ rn) =

= (θn−1 ◦ (1M ⊗Re ∂n
n))(m⊗Re 1⊗ r1 ⊗ · · · ⊗ rn ⊗ 1) =

= θn−1(m⊗Re 1⊗ r1 ⊗ · · · ⊗ rn) =

= (−1)|rn|(|m|+|r1|+···+|rn−1|)rn ·m · 1⊗ r1 ⊗ · · · ⊗ rn−1 =

= (−1)|rn|(|m|+|r1|+···+|rn−1|)rnm⊗ r1 ⊗ · · · ⊗ rn−1 =

= dn
n(m⊗ r1 ⊗ · · · ⊗ rn).

In fact, the isomorphisms θn provide – even more – an isomorphism of simpli-
cial objects, in the simplicial category, because it can be checked, in exactly
the same manner, that they are compatible, also, with the degeneracy maps,
in other words we have, for each n,

σi
n = θn+1 ◦ si

nθ−1
n , i = 0, . . . , n

i.e. the following diagrams are commutative, for each n and each i:

M ⊗Re R⊗(n+2)

1M⊗Resi
n

²²

θn // M ⊗R⊗n

σi
n

²²
M ⊗Re R⊗(n+3)

θn+1 // M ⊗R⊗(n+1)

.
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Thus, as the simplicial object associated to the cotriple and the Hochschild
simplicial objects are isomorphic, they have the same homology, which con-
cludes the proof. ¤

7. HOCHSCHILD COHOMOLOGY AS THE COHOMOLOGY OF A COTRIPLE

The coefficient functor used in the definition of the homology of a triple
with coefficients in a functor is a covariant functor. If, instead, we apply
a contravariant functor to the simplicial object associated to a cotriple L,
we obtain a cosimplicial object. More precisely, we can give the following
definition:

Definition 6. Let A a category endowed with a cotriple (L, ε, δ), M – an
Abelian category and E : A → M – a contravariant functor. The cotriple
cohomology of an object A from A with respect to the cotriple L, with coeffi-
cients in the functor E is the cohomology of the complex of cochains

0 −→ E(L(A)) δ−→ E(L2(A)) δ−→ . . .

Let us return to ours superalgebra R and let, again, M be an R-bimodule.
Then we have the following theorem, whose proof is analogous to the previous
one and it is based on the construction of an isomorphism between the complex
of cochains associated to the triple cohomology and the standard complex of
cochains of Hochschild cohomology.

Theorem 2. The Hochschild cohomology of the superalgebra R with coef-
ficients in the bimodule M is the cotriple cohomology associated to the base-
change cotriple, with coefficients in the contravariant functor

E ≡ HomRe(−,M).
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