A CHARACTERIZATION THEOREM FOR COMPLETE MULTIALGEBRAS

COSMIN PELEA and IOAN PURDEA

Abstract. In this paper we will give a characterization for the complete multialgebras, which involves universal algebras and their congruences.

MSC 2000. 08A99.

Key words. Universal algebra, congruence, complete multialgebra.

The starting point of this paper is in [8], where a class of multialgebras has been introduced. In [8] is proved that the fundamental algebra of a multialgebra $\mathfrak A$ verifies the identities which are satisfied (even in a weak manner) on $\mathfrak A$. The class of multialgebras we study in this paper appeared while trying to obtain multialgebras which satisfy (at least in a weak manner) the identities verified on their fundamental algebras (see again [8]). Since in the particular case of the (semi)hypergroups these multialgebras are the complete (semi)hypergroups from [3] and [4], these multialgebras were called complete. We will prove that such a multialgebra can be obtained from a universal algebra and an appropriate congruence on it.

Let $\tau = (n_{\gamma})_{\gamma < o(\tau)}$ be a sequence with $n_{\gamma} \in \mathbb{N} = \{0, 1, \ldots\}$, where $o(\tau)$ is an ordinal and for any $\gamma < o(\tau)$, let \mathbf{f}_{γ} be a symbol of an n_{γ} -ary (multi)operation and let us consider the algebra of the *n*-ary terms (of type τ) $\mathfrak{P}^{(n)}(\tau) = (\mathbf{P}^{(n)}(\tau), (f_{\gamma})_{\gamma < o(\tau)})$.

Let A be a set and $P^*(A)$ the set of the nonempty subsets of A. Let $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ be a multialgebra, where, for any $\gamma < o(\tau)$, $f_{\gamma} : A^{n_{\gamma}} \to P^*(A)$ is the multioperation of arity n_{γ} that corresponds to the symbol \mathbf{f}_{γ} . One can admit that the support set A of the multialgebra \mathfrak{A} is empty if there are no nullary multioperations among the multioperations f_{γ} , $\gamma < o(\tau)$. Of course, any universal algebra is a multialgebra (we can identify a one element set with its element).

Let us define for any $\gamma < o(\tau)$ and for any $A_0, \ldots, A_{n_{\gamma}-1} \in P^*(A)$

$$f_{\gamma}(A_0, \dots, A_{n_{\gamma}-1}) = \bigcup \{f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}) \mid a_i \in A_i, i \in \{0, \dots, n_{\gamma}-1\}\}.$$

We obtain a universal algebra on $P^*(A)$ (see [9]). We denote this algebra by $\mathfrak{P}^*(\mathfrak{A})$. As in [5], we can construct, for any $n \in \mathbb{N}$, the algebra

$$\mathfrak{P}^{(n)}(\mathfrak{P}^*(\mathfrak{A})) = (P^{(n)}(\mathfrak{P}^*(\mathfrak{A})), (f_{\gamma})_{\gamma < o(\tau)})$$

of the *n*-ary term functions on $\mathfrak{P}^*(\mathfrak{A})$. Some connections between the multialgebra \mathfrak{A} and the term functions from $P^{(n)}(\mathfrak{P}^*(\mathfrak{A}))$ are presented in [1].

REMARK 1. [5, Corollary 8.2] For any $n \in \mathbb{N}$, $p \in P^{(n)}(\mathfrak{P}^*(\mathfrak{A}))$ and $m \in \mathbb{N}$, $m \geq n$, there exists $q \in P^{(m)}(\mathfrak{P}^*(\mathfrak{A}))$ such that

$$p(A_0,\ldots,A_{n-1})=q(A_0,\ldots,A_{m-1})$$

for any $A_0, ..., A_{m-1} \in P^*(A)$.

Let $\mathbf{q}, \mathbf{r} \in \mathbf{P}^{(n)}(\tau)$. The *n*-ary (strong) identity $\mathbf{q} = \mathbf{r}$ is said to be satisfied on a multialgebra \mathfrak{A} if $q(a_0, \ldots, a_{n-1}) = r(a_0, \ldots, a_{n-1})$ for all $a_0, \ldots, a_{n-1} \in A$, where q and r are the term functions induced by \mathbf{q} and \mathbf{r} respectively on $\mathfrak{P}^*(\mathfrak{A})$. We can also consider that a weak identity $\mathbf{q} \cap \mathbf{r} \neq \emptyset$ is said to be satisfied on a multialgebra \mathfrak{A} if $q(a_0, \ldots, a_{n-1}) \cap r(a_0, \ldots, a_{n-1}) \neq \emptyset$ for all $a_0, \ldots, a_{n-1} \in A$ (q and r have the same signification as before).

REMARK 2. [8, Remark 2] A semihypergroup is a hypergroupoid (H, \circ) for which the multioperation is associative. A semihypergroup (H, \circ) (with $H \neq \emptyset$) is a hypergroup if and only if there exist two binary multioperations /, on H such that on the multialgebra $(H, \circ, /, \setminus)$ are satisfied the following weak identities:

$$\mathbf{x}_1 \cap \mathbf{x}_0 \circ (\mathbf{x}_0 \setminus \mathbf{x}_1) \neq \emptyset, \ \mathbf{x}_1 \cap (\mathbf{x}_1 / \mathbf{x}_0) \circ \mathbf{x}_0 \neq \emptyset.$$

A mapping $h: A \to B$ between the multialgebras \mathfrak{A} and \mathfrak{B} of the same type τ is called homomorphism if for any $\gamma < o(\tau)$ and for all $a_0, \ldots, a_{n_{\gamma}-1} \in A$ we have

(1)
$$h(f_{\gamma}(a_0,\ldots,a_{n_{\gamma}-1})) \subseteq f_{\gamma}(h(a_0),\ldots,h(a_{n_{\gamma}-1})).$$

A bijective mapping h is a multialgebra isomorphism if both h and h^{-1} are multialgebra homomorphisms. The multialgebra isomorphisms can also be characterized as being those bijective homomorphisms for which (1) holds with equality.

PROPOSITION 1. [7, Proposition 1] For a homomorphism $h: A \to B$, if $n \in \mathbb{N}$, $\mathbf{p} \in \mathbf{P}^{(n)}(\tau)$ and $a_0, \ldots, a_{n-1} \in A$ then $h(p(a_0, \ldots, a_{n-1})) \subseteq p(h(a_0), \ldots, h(a_{n-1}))$.

The fundamental relation of a multialgebra \mathfrak{A} is the transitive closure α^* of the relation α given on A as follows: for $x, y \in A$, $x\alpha y$ if and only if $x, y \in p(a_0, \ldots, a_{n-1})$ for some $n \in \mathbb{N}$, $p \in P^{(n)}(\mathfrak{P}^*(\mathfrak{A}))$ and $a_0, \ldots, a_{n-1} \in A$ (see [6] and [8]). The relation α^* is the smallest equivalence relation on A such that the factor multialgebra \mathfrak{A}/α^* is a universal algebra. We denoted the class $\alpha^*\langle a \rangle$ of $a \in A$ modulo α^* by \overline{a} and A/α^* by \overline{A} . We also denoted the algebra \mathfrak{A}/α^* by $\overline{\mathfrak{A}}$ and we called it the fundamental algebra of the multialgebra \mathfrak{A} .

PROPOSITION 2. [8, Proposition 3] The following conditions are equivalent for a multialgebra $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ of type τ :

- (i) for all $\gamma < o(\tau)$, for all $a_0, \dots, a_{n_{\gamma}-1} \in A$, $a \in f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}) \Rightarrow \overline{a} = f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}).$
- (ii) for all $m \in \mathbb{N}$, for all $\mathbf{q}, \mathbf{r} \in P^{(m)}(\tau) \setminus \{\mathbf{x}_i \mid i \in \{0, \dots, m-1\}\}$, for all $a_0, \dots, a_{m-1}, b_0, \dots, b_{m-1} \in A$,

$$q(a_0,\ldots,a_{m-1})\cap r(b_0,\ldots,b_{m-1})\neq\emptyset \Rightarrow q(a_0,\ldots,a_{m-1})=r(b_0,\ldots,b_{m-1}).$$

REMARK 3. From Remark 1 it follows that in condition (ii) is not necessary to consider that the arities of **q** and **r** are equal.

The multialgebras which verify one of the equivalent conditions from the previous proposition are generalizations for the complete (semi)hypergroups (see [3, Definition 137]). This fact suggested the following:

DEFINITION 1. A multialgebra which satisfies one of the equivalent conditions from the previous proposition will be called *complete multialgebra*.

PROPOSITION 3. [8, Proposition 4] Let $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ be a multialgebra of type τ . The multialgebra \mathfrak{A} is complete if and only if there exist a universal algebra $\mathfrak{B} = (B, (f'_{\gamma})_{\gamma < o(\tau)})$ and a partition $\{A_b \mid b \in B\}$ of A such that $A_{b_1} \cap A_{b_2} = \emptyset$ for any $b_1 \neq b_2$ from B and for any $\gamma < o(\tau)$ and $a_0, \ldots, a_{n_{\gamma}-1} \in A$ with $a_i \in A_{b_i}$ $(i \in \{0, \ldots, n_{\gamma} - 1\})$; we have

(2)
$$f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}) = A_{f'_{\gamma}(b_0, \dots, b_{n_{\gamma}-1})}.$$

REMARK 4. For any $n \in \mathbb{N}$, $\mathbf{p} \in \mathbf{P}^{(n)}(\tau) \setminus \{\mathbf{x}_i \mid i \in \{0, \dots, n-1\}\}$ and $a_0, \dots, a_{n-1} \in A$, if $b_0, \dots, b_{n-1} \in B$ such that $a_i \in A_{b_i}$ for each $i \in \{0, \dots, n-1\}$, then

(3)
$$p(a_0, \dots, a_{n-1}) = A_{p'(b_0, \dots, b_{n-1})}$$

(p and p' denote the term functions induced by **p** on $\mathfrak{P}^*(\mathfrak{A})$ and \mathfrak{B} , respectively).

REMARK 5. The fundamental relation of the multialgebra \mathfrak{A} from Proposition 3 is the relation $\alpha_{\mathfrak{A}}^* = \alpha_{\mathfrak{A}}$ defined by $x\alpha_{\mathfrak{A}}y$ if and only if

$$x = y \in A \setminus \left(\bigcup \{ A_{f'_{\gamma}(b_0, \dots, b_{n_{\gamma} - 1})} \mid \gamma < o(\tau), \ b_0, \dots, b_{n_{\gamma} - 1} \in B \} \right)$$

or $x, y \in A_{f'_{\gamma}(b_0, \dots, b_{n_{\gamma}-1})}$ for some $\gamma < o(\tau)$ and $b_0, \dots, b_{n_{\gamma}-1} \in B$.

The main result of this paper is the following theorem:

THEOREM 1. A multialgebra $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ is complete if and only if there exists a structure of universal algebra $\mathfrak{A}'' = (A, (f''_{\gamma})_{\gamma < o(\tau)})$ on A and a congruence relation ρ on \mathfrak{A}'' such that for each $\gamma < o(\tau)$ and for any $a_0, \ldots, a_{n_{\gamma}-1} \in A$

(4)
$$f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}) = \rho \langle f_{\gamma}''(a_0, \dots, a_{n_{\gamma}-1}) \rangle.$$

Proof. Let $\mathfrak{A}'' = (A, (f''_{\gamma})_{\gamma < o(\tau)})$ be a universal algebra and let $\rho \subseteq A \times A$ be a congruence relation on \mathfrak{A}'' . The fact that the multialgebra \mathfrak{A} defined by (4) is complete follows by considering in Proposition 3 $B = A/\rho$, $\mathfrak{B} = \mathfrak{A}''/\rho$ and $A_{\rho\langle a\rangle} = \rho\langle a\rangle$ for any $\rho\langle a\rangle \in B$.

Conversely, let us consider that the multialgebra $\mathfrak A$ is complete and let $\mathfrak B$ and $\{A_b \mid b \in B\}$ be as in Proposition 3. Let us choose in each A_b an element a_{A_b} . For any $\gamma < o(\tau)$ and for any $a_0, \ldots, a_{n_\gamma - 1} \in A$ there exist $b_0, \ldots, b_{n_\gamma - 1} \in B$ (uniquely determined) such that $a_0 \in A_{b_0}, \ldots, a_{n_\gamma - 1} \in A_{b_{n_\gamma - 1}}$. If we define

$$f_{\gamma}''(a_0,\ldots,a_{n_{\gamma}-1}) = a_{A_{f_{\gamma}(b_0,\ldots,b_{n_{\gamma}-1})}},$$

then we obtain a universal algebra \mathfrak{A}'' on A. The relation $\rho = \bigcup_{b \in B} A_b \times A_b$ is a congruence on \mathfrak{A}'' and (4) holds.

Let $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ be a universal algebra. It is clear that

$$A_* = \{ f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}) \mid a_0, \dots, a_{n_{\gamma}-1} \in A, \ \gamma < o(\tau) \}$$

is a subalgebra of \mathfrak{A} . Let us denote by \mathfrak{A}_* the universal algebra determined on A_* by the restrictions of the operations $(f_{\gamma})_{\gamma < o(\tau)}$. If we consider an equivalence relation ρ on A and for any $\gamma < o(\tau)$ and $a_0, \ldots, a_{n_{\gamma}-1} \in A$ we take

(5)
$$f_{\gamma}^{\rho}(a_0,\ldots,a_{n_{\gamma}-1}) = \rho \langle f_{\gamma}(a_0,\ldots,a_{n_{\gamma}-1}) \rangle,$$

then we obtain a multialgebra $\mathfrak{A}_{\rho} = (A, (f_{\gamma}^{\rho})_{\gamma < o(\tau)})$ on A.

From Theorem 1 we deduce that the request for ρ to be a congruence on \mathfrak{A} is sufficient for \mathfrak{A}_{ρ} to be a complete multialgebra. A trivial example will show that this condition is not necessary.

EXAMPLE 1. It is clear that any universal algebra is a complete multialgebra. Let us consider the groupoid (H, \cdot) given by the following table:

and the relation $\rho = (\{a,b\} \times \{a,b\}) \cup (\{c\} \times \{c\}) \cup (\{d\} \times \{d\})$. Since $(a,b) \in \rho$, ab = d, bb = c and $(c,d) \notin \rho$, the relation ρ is not a congruence on (H,\cdot) , but if we consider $x \circ y = \rho \langle xy \rangle$ for any $x,y \in H$ we obtain a groupoid $(H,\circ) = (H,\cdot)$ which is, obviously, a complete multialgebra.

A necessary and sufficient condition on ρ such that \mathfrak{A}_{ρ} is a complete multialgebra will be introduced in the following theorem.

Theorem 2. The multialgebra $\mathfrak{A}_{\rho} = (A, (f_{\gamma}^{\rho})_{\gamma < o(\tau)})$ is complete if and only if

$$\rho' = \left(\bigcup_{a \in A \setminus \rho(A_*)} \{a\} \times \{a\}\right) \cup (\rho \cap (\rho(A_*) \times \rho(A_*)))$$

is a congruence relation on \mathfrak{A} .

Proof. It is easy to observe that ρ' is an equivalence relation on A and $\mathfrak{A}_{\rho} = \mathfrak{A}_{\rho'}$ thus the assumption that ρ' is a congruence relation on $\mathfrak A$ leads us to the conclusion that the multialgebra \mathfrak{A}_{ρ} is complete.

Conversely, let us consider that \mathfrak{A}_{ρ} is a complete multialgebra and let us prove that ρ' is a congruence relation on \mathfrak{A} . It is enough to prove that for any $\gamma < o(\tau)$ and $a_0, \ldots, a_{n_{\gamma}-1}, x, y \in A$ with $x\rho'y$ we have

(6)
$$f_{\gamma}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1})\rho' f_{\gamma}(a_0,\ldots,a_{i-1},y,a_{i+1},\ldots,a_{n_{\gamma}-1}).$$

Since $f_{\gamma}(a_0, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n_{\gamma}-1}), f_{\gamma}(a_0, \ldots, a_{i-1}, y, a_{i+1}, \ldots, a_{n_{\gamma}-1}) \in A_*$, (6) can be written again as

(6')
$$f_{\gamma}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1})\rho f_{\gamma}(a_0,\ldots,a_{i-1},y,a_{i+1},\ldots,a_{n_{\gamma}-1}).$$

If $x = y \in A \setminus \rho(A_*)$, then (6') holds trivially. If $x, y \in \rho(A_*)$ then there exist $\delta, \zeta < o(\tau)$ and $x_0, \ldots, x_{n_{\delta}-1}, y_0, \ldots, y_{n_{\zeta}-1} \in A$ with

$$x \rho f_{\delta}(x_0, \dots, x_{n_{\delta}-1})$$
 and $y \rho f_{\zeta}(y_0, \dots, y_{n_{\zeta}-1})$.

Using (5) it follows that for any $i \in \{0, ..., n_{\gamma} - 1\}$ we have

(7)
$$f_{\delta}^{\rho}(x_0, \dots, x_{n_{\delta}-1}) = \rho \langle x \rangle = \rho \langle y \rangle = f_{\zeta}^{\rho}(y_0, \dots, y_{n_{\zeta}-1}).$$

The nonempty set $f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1})$ is a subset for

$$f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},f_{\delta}^{\rho}(x_0,\ldots,x_{n_{\delta}-1}),a_{i+1},\ldots,a_{n_{\gamma}-1}).$$

Let $m = n_{\delta} + n_{\gamma}$ and let b_0, \ldots, b_{m-1} be $a_0, \ldots, a_{n_{\gamma}-1}, x_0, \ldots, x_{n_{\delta}-1}$ respectively. According to Remark 1, there exists $p^{\rho} \in P^{(m)}(\mathfrak{P}^*(\mathfrak{A}_{\rho}))$ such that

$$f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},f_{\delta}^{\rho}(x_0,\ldots,x_{n_{\delta}-1}),a_{i+1},\ldots,a_{n_{\gamma}-1})=p^{\rho}(b_0,\ldots,b_{m-1}).$$

Since \mathfrak{A}_{ρ} is a complete multialgebra and $f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1})$ is included in $p^{\rho}(b_0,\ldots,b_{m-1})$ we have

$$f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1})=p^{\rho}(b_0,\ldots,b_{m-1}).$$

Using (7) we obtain that $f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},y,a_{i+1},\ldots,a_{n_{\gamma}-1})$ is a subset of

$$f_{\gamma}^{\rho}(a_0, \dots, a_{i-1}, f_{\zeta}^{\rho}(y_0, \dots, y_{n_{\zeta}-1}), a_{i+1}, \dots, a_{n_{\gamma}-1})$$

$$= f_{\gamma}^{\rho}(a_0, \dots, a_{i-1}, f_{\delta}^{\rho}(x_0, \dots, x_{n_{\delta}-1}), a_{i+1}, \dots, a_{n_{\gamma}-1})$$

$$= p^{\rho}(b_0, \dots, b_{m-1}),$$

hence $f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},y,a_{i+1},\ldots,a_{n_{\gamma}-1})=p^{\rho}(b_0,\ldots,b_{m-1})$. So,

$$f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1}) = f_{\gamma}^{\rho}(a_0,\ldots,a_{i-1},y,a_{i+1},\ldots,a_{n_{\gamma}-1}).$$

Thus the classes

$$\rho\langle f_{\gamma}(a_0,\ldots,a_{i-1},x,a_{i+1},\ldots,a_{n_{\gamma}-1})\rangle$$

and

$$\rho\langle f_{\gamma}(a_0,\ldots,a_{i-1},y,a_{i+1},\ldots,a_{n_{\gamma}-1})\rangle$$

are equal and (6') holds.

COROLLARY 1. Let \mathfrak{A} be a universal algebra and let ρ be an equivalence relation on A such that \mathfrak{A}_{ρ} is a complete multialgebra. For any $n \in \mathbb{N}$, $\mathbf{p} \in \mathbf{P}^{(n)}(\tau) \setminus \{\mathbf{x}_i \mid i \in \{0, \dots, n-1\}\}$ and $a_0, \dots, a_{n-1} \in A$ we have

$$p^{\rho}(a_0,\ldots,a_{n-1}) = \rho \langle p(a_0,\ldots,a_{n-1}) \rangle$$

 $(p^{\rho} \text{ and } p \text{ denote the term functions induced by } \mathbf{p} \text{ on } \mathfrak{P}^*(\mathfrak{A}_{\rho}) \text{ and } \mathfrak{A}, \text{ respectively}).$

Indeed, taking in Remark 4 $\mathfrak{B} = \mathfrak{A}/\rho'$ and $A_{\rho'\langle a\rangle} = \rho'\langle a\rangle$ for any $a \in A$ we have

$$p^{\rho}(a_0,\ldots,a_{n-1}) = \rho'\langle p(a_0,\ldots,a_{n-1})\rangle = \rho\langle p(a_0,\ldots,a_{n-1})\rangle.$$

COROLLARY 2. Let \mathfrak{A} be a universal algebra which verifies the identity $\mathbf{q} = \mathbf{r}$ $(\mathbf{q}, \mathbf{r} \in \mathbf{P}^{(n)}(\tau))$ and let ρ be an equivalence relation on A such that \mathfrak{A}_{ρ} is a complete multialgebra.

- i) If $\mathbf{q} = \mathbf{x}_i$ and $\mathbf{r} = \mathbf{x}_j$ for some $i, j \in \{0, ..., n-1\}$, $i \neq j$, then |A| = 1 and the identity $\mathbf{q} = \mathbf{r}$ is trivially satisfied on \mathfrak{A}_{ρ} .
- ii) If $\mathbf{q} = \mathbf{x}_i$ for some $i \in \{0, ..., n-1\}$ and $\mathbf{r} \in \mathbf{P}^{(n)}(\tau) \setminus \{\mathbf{x}_i \mid i \in \{0, ..., n-1\}\}$, then the identity $\mathbf{q} \cap \mathbf{r} \neq \emptyset$ is satisfied on \mathfrak{A}_{ρ} .
- iii) If $\mathbf{q}, \mathbf{r} \in \mathbf{P}^{(n)}(\tau) \setminus \{\mathbf{x}_i \mid i \in \{0, \dots, n-1\}\}\$ and the identity $\mathbf{q} = \mathbf{r}$ is satisfied on \mathfrak{A} , then the identity $\mathbf{q} = \mathbf{r}$ is satisfied on \mathfrak{A}_{ρ} .

From Remark 5 we deduce:

COROLLARY 3. If $\mathfrak A$ is a universal algebra and ρ is an equivalence relation on A such that $\mathfrak A_{\rho}$ is a complete multialgebra then the fundamental relation of the multialgebra $\mathfrak A_{\rho}$ is

$$\alpha_{\mathfrak{A}}^* = \alpha_{\mathfrak{A}} = \left(\bigcup_{a \in A \setminus \rho(A_*)} \{a\} \times \{a\} \right) \cup \left(\rho \cap \left(\rho(A_*) \times \rho(A_*) \right) \right).$$

It is known that any group (G, \cdot) can be seen as a universal algebra with three binary operations $(G, \cdot, /, \setminus)$, with $G \neq \emptyset$, which satisfies the following identities

$$\begin{aligned} (\mathbf{x}_0 \cdot \mathbf{x}_1) \cdot \mathbf{x}_2 &= \mathbf{x}_0 \cdot (\mathbf{x}_1 \cdot \mathbf{x}_2), \ \mathbf{x}_1 &= \mathbf{x}_0 \cdot (\mathbf{x}_0 \backslash \mathbf{x}_1), \ \mathbf{x}_1 &= (\mathbf{x}_1 / \mathbf{x}_0) \cdot \mathbf{x}_0, \\ \mathbf{x}_1 &= \mathbf{x}_0 \backslash (\mathbf{x}_0 \cdot \mathbf{x}_1), \ \mathbf{x}_1 &= (\mathbf{x}_1 \cdot \mathbf{x}_0) / \mathbf{x}_0 \end{aligned}$$

(see [10, p. 215]). Using the previous notations we have $G_* = G$ and for any equivalence relation ρ on G we have $\rho(G_*) = G$.

From Remark 2, Theorem 2, Corollary 2 and Corollary 3 we obtain:

COROLLARY 4. Let (G,\cdot) be a group and let ρ be an equivalence relation on G. The hypergroupoid (G,\circ) , given by $x\circ y=\rho\langle xy\rangle$, is a complete multialgebra if and only if there exists a normal subgroup N of G such that ρ is the equivalence relation induced by N on G. In this case $x\circ y=(xy)N$ and (G,\circ) is a complete hypergroup with the fundamental relation $\beta=\bigcup_{g\in G}gN\times gN$.

The fundamental group of the hypergroup (G, \circ) is the factor group $(G/N, \cdot)$ and the heart of (G, \circ) is $\beta(1) = N$.

REFERENCES

- [1] PELEA, C. and BREAZ, S., Multialgebras and term functions over the algebra of their nonvoid subsets, Mathematica (Cluj), 43(66) (2001), 143–149.
- [2] BURRIS S. and SANKAPPANAVAR H.P., A course in universal algebra, Springer-Verlag, New-York, 1981.
- [3] CORSINI, P., Prolegomena of hypergroup theory, Supplement to Riv. Mat. Pura Appl., Aviani Editore, Tricesimo, 1993.
- [4] CORSINI, P. and LEOREANU, V., Applications of hyperstructure theory, Kluwer Academic Publishers, Boston-Dordrecht-London, 2003.
- [5] GRÄTZER, G., Universal algebra, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968.
- [6] PELEA, C., On the fundamental relation of a multialgebra, Ital. J. Pure Appl. Math., 10 (2001), 141–146.
- [7] PELEA, C., On the direct product of multialgebras, Studia Univ. Babeş-Bolyai Math., 48 (2003), 93–98.
- [8] Pelea, C., Identities and multialgebras, Ital. J. Pure Appl. Math., to appear.
- [9] PICKETT, H. E., Homomorphisms and subalgebras of multialgebras, Pacific J. Math., 21 (1967), 327–342.
- [10] PURDEA, I. and PIC, GH., Tratat de algebră modernă, Vol. I (in Romanian) [Treatise on modern algebra, Vol. I], Editura Academiei Republicii Socialiste România, Bucharest, 1977.

Received September 25, 2003

"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Str. M. Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: cpelea@math.ubbcluj.ro
E-mail: purdea@math.ubbcluj.ro