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ON THE NUMBER OF CONJUGACY CLASSES
OF FINITE p-GROUPS

CASIAN ALEXANDRU PANTEA

Abstract. Denote by k(G) the number of conjugacy classes of a group G. Some
inequalities are deduced by arithmetic means for k(G), where G is a p-group.
As an application, k(G) is calculated for special cases of p-groups. A method of
estimating k(G) for some finite groups, others then p-groups is also presented.
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1. INTRODUCTION

Brauer was the first to estimate k(G) for a group G of order n. He has
proved the inequality k(G) > log log n. The result was later improved by
L. Pyber [8] who emphasized an ε > 0 such that k(G) > ε log n

(log log n)8
. For

smaller classes of finite groups stronger inequalities had been shown; P. Hall
has proved, for instance, that k(G) > log n for any nilpotent group G of order
n; M. Cartwright has shown the existence of two positive constants a and b such
that the inequality k(G) > a(log n)b holds for any solvable group G of order
n. L. Héthely and B. Külshammer [3] have shown that k(G) > 2

√
(p− 1), for

any solvable group G and any prime p dividing the order of G. Moreover, they
have conjectured that this estimation holds for any finite group G. They have
also shown that there are no positive integers a, b such that k(G) > ap + b,
for any group G and prime p, with p2||G|.

In the case of p-groups, using mainly elementary notions and results we will
deduce two main inequalities on k(G). The first one is studied together with
its equality case, and some remarks are made concerning the strength of the
second one. Two classes of p-groups are studied in detail, namely the p-groups
having an abelian subgroup of index p and the groups G with |Z(G)| = |G′| =
p. In the end, we develop a method of estimating k(G) for other classes of
finite groups, other than p-groups.

2. PRELIMINARIES

If no other specifications are made, G will always denote a nonabelian group
of order pn, where p is a prime, n > 2, and the notations are the usual ones:
G′ for the derived subgroup of G, Z(G) for the center of G, CG(x) for the
centralizer of x in G, xG for the conjugacy class of x in G.
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Lemma 2.1. With the above assumptions

|xG| 6 pn−2.

Proof. It is enough to prove that

p2 6 |G : G′| 6 |CG(x)|.
The second inequality is well known and easy to prove by putting it in the
form |G′| > |G : CG(x)| = |xG| and observing that if y is a conjugate of x,
then yx−1 ∈ G′, so y � yx−1 is an injection from xG in G′. For the first
inequality, if we assume that |G : G′| = p, then G/G′ would be cyclic and by
the next more general result([2, Problem 6.31]) its lower central series would
be stationary, impossible as G is nilpotent as a p-group. �

Proposition 2.2. Let G = G(0) 6 G(1) 6 . . . the lower central series of a
group (not necessarily p-group) G. If G/G(1) is cyclic, then G(i) = G(1), for
all i > 1.

Proof. Consider the group G/G(2). Observe that G(1)/G(2) 6 Z(G/G2).
We have (G/G(2))/(G(1)/G(2)) ' G/G(1), thus cyclic. But then it follows that
G/G(2) is abelian, and moreover, G(2) > G(1), thus G(2) = G(1). We can
proceed now by induction. �

3. THE FIRST INEQUALITY

We shall denote by αi, i = 1, . . . , n− 2 the number of conjugacy classes of
G of size pi. The class equation becomes

(1) pn =
n−2∑
i=0

αip
i.

The number of conjugacy classes is then
∑n−2

i=0 αi and α0 = |Z(G)|, so p|α0.
The main result of this section is obtained regarding the relation (1) as an

equation in αi and determining those αi that minimize
∑n−2

i=0 αi. The next
lemma solves the problem of determining this minimum.

Lemma 3.1. Let α0, α1, . . . , αn−2 be positive integers that satisfy the equality
(1) and p|α0. Then the minimum of the sum

∑n−2
i=0 αi is obtained for α0 = p,

α1 = α2 = . . . = αn−3 = p− 1 and αn−2 = p2 − 1.

Proof. Consider the set S of vectors (α0, α1, . . . , αn−2) ∈ Nn−1 which are
solutions for (1), with α0 6= 0 multiple of p, and let (β0, β1, . . . , βn−2) ∈ S
which minimize the sum

∑n−2
i=0 αi. First we prove that β0 = p. Indeed,

suppose that β0 6= p. As p|β0 we get β0 = β′0 + p, where p|β′0 and β′0 6= 0. But
then (β′0, β1 + 1, β2, . . . βn−2) ∈ S, and

β′0 + (β1 + 1) + β2 + . . .+ βn−2 =
n−2∑
i=0

βi + 1− p <
n−2∑
i=0

βi,
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which contradicts the choice of (β0, β1, . . . , βn−2).
We similarly prove that βi 6 p− 1, for i = 1, . . . , n− 3. Suppose there is k

in {1, . . . , n− 3} such that βk > p. Then βk = β′k + p, where β′k ∈ N. We get
(β0, . . . , βk−1, β

′
k, βk+1 + 1, βk+2, . . . , βn−2) ∈ S and

β0 + . . .+ βk−1 + β′k + (βk+1 + 1) + . . .+ βn−2 =
n−2∑
i=0

βi + 1− p <

n−2∑
i=0

βi,

again contradiction. Further on, from (1) and α0 > 0 we get αn−2 6 p2 − 1.
Taking into account that (p, p − 1, p − 1, . . . , p − 1, p2 − 1) ∈ S and what

proved above we conclude that the minimum of the sum
∑n−2

i=1 αi is indeed
reached for αi chosen like in the lemma. �

This lemma immediately implies the next result.

Proposition 3.2. Let G be a group of order pn. Then

(2) k(G) > p2 + (n− 2)(p− 1).

4. ANOTHER PROOF FOR THE INEQUALITY (2). THE EQUALITY CASE

A new proof of Proposition 3.2 allows us to treat the equality case. The
method of the first proof will be used again in this paper since it provides
some information on the structure of groups satisfying the equality in (2).
The second proof uses the following lemma, which is true for any finite group.

Lemma 4.1. Let G be a finite group, H C G and j the number of conjugacy
classes of G which are not included in H. Then

(3) k(G) > k(G/H) + j − 1.

Proof. Define the mapping φ : {xG | x /∈ H} → {(xH)(G/H) | x /∈ H},
φ(xG) = (xH)G/H taking the set of the conjugacy classes of G not included
in H into the set of nontrivial conjugacy classes of G/H. We show that φ
is well defined. Let y ∈ xG; there is g ∈ G such that y = g−1xg, thus
φ(yG) = (g−1xgH)G/H . We need to prove that xH and g−1xgH are conjugate
in G/H. But that is clearly true, since g−1xgH = (gH)−1xHgH.

Now, φ is obviously onto. Then |{xG | x /∈ H}| > |{(xH)G/H | x /∈ H}|, so
k(G)− j > k(G/H)− 1, and the conclusion follows. �

In what the equality in (3) is concerned, the next proposition emphasizes
the subgroups H of G for which it is true.

Proposition 4.2. Maintaining the hypothesis of Lemma 4.1, the equality
holds in (3) if and only if the subgroup H satisfies the condition

(4) for all x, y ∈ G \H, xy−1 ∈ H, implies xG = yG.
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Proof. The equality in (3) is equivalent to the injectivity of φ, or, further,
with the implication

(xH)G/H = (yH)G/H =⇒ xG = yG,

for any x, y ∈ G \H, which is equivalent to the implication

(there is g ∈ G : yH = (g−1xg)H) =⇒ xG = yG,

for x, y ∈ G \H, or

(5) (there is g ∈ G : g−1xgy−1 ∈ H) =⇒ xG = yG.

To finish, we prove that the implications (4) and (5) are equivalent. Let
x, y ∈ G\H with xy−1 ∈ H. Then there is 1 ∈ G : 1−1x1y−1 ∈ H, so xG = yG

according to (5). We conclude that (5) implies (4).
Conversely, let x, y ∈ G \H and g ∈ H : g−1xgy−1 ∈ H. According to (4),

we have (g−1xg)G = yG. But (g−1xg)G = xG, and this proves that (4) implies
(5). �

Remark 4.3. A subgroup H of G satisfies condition (4) if and only if the
cosets xH, x /∈ H represent exactly the conjugacy classes of G not included
in H.

A subgroup H of G is called special (see [2, page 6]) if, for any x, y ∈ G
with x /∈ H, there is a unique u ∈ G such that y−1xy = u−1xu. Note that any
special subgroup H of G provides equality in (3).

Indeed, first we prove that H C G. Let v ∈ H, y ∈ G and x = yvy−1. We
need to show that x ∈ H. Suppose x /∈ H. Then there exists u ∈ H such
that v = y−1xy = u−1xu. It follows that uvu−1 = x ∈ H, contradiction.
Further on, in order to prove that (4) is fulfilled, let x ∈ G − H. Because
H is special, the elements u−1xux−1 are pairwise distinct and form a set
of cardinal |H|. But u−1(xux−1) ∈ H, so H = {u−1xux−1|u ∈ H}. Thus
Hx = {u−1xu|u ∈ H} = {y−1xy|y ∈ G}.

Now we can give a proof of Proposition 3.2 using (3). Taking in 4.1 H =
Z(G), we obtain k(G) > k(G/Z(G)) + |Z(G)| − 1. We use induction on n.
For n = 2 we have equality. Suppose that k(P ) > p2 + (α− 2)(p− 1), for any
group P with |P | = pα, α < n. Let |Z(G)| = pn−k. The inequality above and
the hypothesis of induction applied to G/Z(G) give k(G) > p2 + (k − 2)(p −
1) + pn−k − 1, and the obvious inequality pn−k > (n − k)(p − 1) + 1 leads to
the desired conclusion.

Observe the fact that the equality in (2) imposes equalities in each of the
inequalities used above. By 4.3 it follows that the nontrivial conjugacy classes
of G are exactly the cosets xZ(G), where x /∈ Z(G), and they all have the
same cardinal. On the other hand, we have saw that n > 4 implies the
existence of p2 − 1 conjugacy classes of size pn−2 and of p − 1 classes of size
pn−3. Consequently, n can only be 3, and in this case it is well known that
k(G) = p2 + p− 1, so the equality in (2) holds.

The next proposition summarizes the above observations.
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Proposition 4.4. The following statements are equivalent:
(i) k(G) = p2 + (n− 2)(p− 1);
(ii) G has exactly p2 − 1 conjugacy classes of size pn−2, exactly p − 1 con-

jugacy classes of size pi, i = 1, . . . , n− 3 and |Z(G)| = p;
(iii) n = 3.

5. THE SECOND INEQUALITY

Let p be a prime and |G| = pn, where n = 2m + e, m > 0 and e = 0, 1. A
result of P. Hall states that

k(G) = pe + (p2 − 1)(m+ (p− 1)k)

for some positive integer k. The original proof is rather complicated; simpler
proofs use characters and can be found in [7] and [4, Theorem 26.5]. As an
immediate consequence, one obtains

Theorem 5.1. With the above notations we have

k(G) > pe + (p2 − 1)m.

Separating into two cases, we can write

(6) k(G) > m(p2 − 1) + 1, if |G| = 2m,

(7) k(G) > m(p2 − 1) + p, if |G| = 2m+ 1.

The equality
χ1(1)2 + χ2(1)2 + . . .+ χk(1)2 = |G|,

where χ1, . . . , χk are the complex irreducible characters of G, can be further
written

(8) p2m =
m−1∑
i=0

αip
2i,

if n = 2m is even and

(9) p2m+1 =
m∑

i=0

αip
2i

if n = 2m + 1 is odd, where αi denotes the number of irreducible characters
of G of degree pi.

A direct proof of inequalities (6) and (7) can be given by a simple mimic
of the proof of Proposition 3.2 taking as starting relations (8) and (9) respec-
tively. This idea of proving the two inequalities is not new; it turns out that
G. Pazderski used it to prove the next result concerning their equality case,
actually the correspondent of Proposition 4.4:
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Theorem 5.2. With the above notations, suppose k(G) = pe + (p2 − 1)m.
Then

α0 = p2,

αi = p2 − 1, for i = 1, n− 1,
αn = pe − 1.

Remark 5.3. a) For a groupG of order pp, (7) gives k(G) > 1
2(p3−p2+p+1).

L.G. Kovács and C.R. Leedham-Green ([6]) have constructed, for every odd
prime p a group of order pp having exactly 1

2(p3−p2 +p+1) conjugacy classes.
The estimation (7) is, therefore, smooth in this case.

b) Obviously, for nonabelian groups of order p3 we have equality in (7). For
groups of order p4 the inequality (6) gives k(G) > 2p2 − 1. Let G a group
of order p4 with |G′| = p2. From (8) it follows that G has only characters of
degree 1 and p. (8) can be then written α0 + α1p

2 = p4, with α0 = p2, thus
α1 = p2 − 1. It follows that k(G) = 2p2 − 1, so the estimation (6) is smooth
in this case.

c) Let K(r) be the minimum of the degrees of conjugacy classes for groups
of order r and k(r) the estimation from Theorem 5.1. Using the computer
program GAP we can compare K(r) and k(r) for some powers of primes:

r 25 26 27 35 36 55

K(r) 11 13 14 19 41 53
k(r) 8 11 11 19 25 53

d) From the table above we see that, for the groups of order 35 and 55 the
inequality (7) is smooth, reaching the equality. It’s likely for this inequality
to be exact for groups of order p5, p odd prime.

e) Further descriptions of the equality case are due to G. Pazderski and can
be found in [4, Theorem 26.5]; he has also proved that the bound is sharp for
only finitely many exponents n.

6. FINITE P -GROUPS WITH AN ABELIAN SUBGROUP OF INDEX P

A well known result [5, Theorem 26.9] gives the characters of finite p-groups
having an abelian subgroup of index p. We present this result in a slightly
different way, in order to emphasize the number of conjugacy classes. Using
then the inequalities (6) and (7) we will obtain very strong inequalities for
such groups.

The following lemma turns out to be very useful:

Lemma 6.1. G be a nonabelian p-group having an abelian subgroup H of
index p. Then there exists K C G such that K ⊆ H ∩G′ ∩Z(G) and |K| = p.

Proof. We have 1 6= G′ C G thus G′ ∩ Z(G) 6= 1. Let K be a subgroup of
order p of G′ ∩ Z(G). But then KH is an abelian subgroup of G; since H is
maximal, it follows that KH = H, so K 6 H. �
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Theorem 6.2. Let G be a group of order pn having an abelian subgroup H
of index p. Let K be as in the lemma. Then

(10) k(G) = k(G/H) + pn−2 − pn−3.

Proof. The irreducible characters of G/K lift to give exactly the charac-
ters of G that contain K in their kernel. The sum of the squares of their
degrees is therefore |G/K| = pn−1. We will construct another pn−2 − pn−3

irreducible characters of G, each of degree p; we will have then constructed all
the irreducible characters of G since

(11) pn−1 + (pn−2 − pn−3)p2 = pn = |G|.
Let χ be a character of degree p of G. If χ is a sum of linear characters, then
G′ 6 Kerχ, thus K 6 Kerχ. Therefore if χ(1) = p and K 
 Kerχ, then χ is
irreducible. Now let Φ be the set of linear characters of H which do not have
K in their kernel (that is, the lifts of the linear characters of G/K). Then
|Φ| = pn−1 − pn−2. Let ψ ∈ Φ. Since K 6 Z(G) we have

(ψ ↑G)(k) = pψ(k), for all k ∈ K.
We can conclude that ψ ↑G has degree p and can not contain K in its kernel,

therefore is irreducible.
Suppose now that ψ1 is a linear character of H such that ψ ↑G= ψ1 ↑G.

The Frobenius Reciprocity Theorem gives

1 = 〈ψ ↑G, ψ1 ↑G〉G = 〈(ψ ↑G) ↓H , ψ1〉H .
Since (ψ ↑G) ↓H has degree p, there are at most p elements ψ1 of Φ such

that ψ1 ↑G= ψ ↑G. It follows that the set {ψ ↑G | ψ ∈ Φ} gives at least
|Φ|/p = pn−2 − pn−3 irreducible characters of G with degree p which do not
have K in their kernel. But relation (11) assures us that this number is also
the maximum, and the conclusion follows. �

Since in the above hypothesis G/K is a p-group, using the inequalities (6)
and (7) we obtain the following estimations.

Proposition 6.3. Let G be a group of order pn having an abelian subgroup
of index p. Then

a) k(G) > pn−2 − pn−3 + (m− 1)(p2 − 1) + p, if n = 2m;
b) k(G) > pn−2 − pn−3 +m(p2 − 1) + 1, if n = 2m+ 1.

The equality (10) provides an upper bound for k(G).

Proposition 6.4. Let G be a group of order pn having an abelian subgroup
of index p. Then k(G) 6 pn−1 + pn−2 − pn−3, with equality if and only if
|G′| = p.

Proof. In view of (10), the maximum of k(G) is reached when G/K is
abelian, or, equivalently, G′ ⊆ K. But K ⊆ G′ ∩ Z(G) and |K| = p, thus
G′ ⊆ Z(G) and |G′| = p. But the last equality implies the first one, and the
conclusion follows. �
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Remark 6.5. a) The above inequalities are smooth (there is a group G for
which the equality holds) if and only if the inequalities (6) and (7) used on
G/K are smooth. We conclude, based on the remarks in the previous section,
that the following estimations for groups G having abelian subgroups of index
p are smooth:

k(G) > pp−1 − pp−2 + 1
2(p3 − p2 + p+ 1), for |G| = pp+1;

k(G) > 34 − 33 + 19 = 73 for |G| = 36;
k(G) > 54 − 53 + 53 = 553 for |G| = 56.

b) The values of k(G) for groups of order p3 and p4 are known. We can
also calculate them using the above inequalities. Clearly, a group of order p3

contains an abelian subgroup of order p2. Let G be a group of order p4 and
|Z(G)| = p2. We can find a subgroup H of G of order p3 such that Z(G) 6 H.
But then, if H is not abelian, H/Z(H) is cyclic of order p, a contradiction.
If |Z(G)| = p, taking into account the class equation (1), there is an element
x of G with |xG| = p. Then H = CG(x) is of index p. Moreover, Z(G) and
〈x〉 are distinct subgroups of H, thus |Z(H)| > p2. As above, we conclude
that H is abelian. Consequently, using Propositions 6.3 and 6.4 we obtain
k(G) = p2 + p− 1 for |G| = p3 and 2p2 − 1 6 k(G) 6 p3 + p2 − p for |G| = p4;
in view of relation (10), these are the only values that k(G) can take in this
case.

7. GROUPS G WITH |Z(G)| = |G′| = P

This class of groups is a generalization of extraspecial groups [1, page 108].
A group G is called extraspecial if Φ(G) = Z(G) = G′ and they all are of order
p. We go back to Lemma 4.1, and we will prove that under our hypothesis,
the equality is reached in (3) by putting H = Z(G). Moreover, we will be able
to calculate the exact number of conjugacy classes for such groups.

Firstly, observe that |G′| = |Z(G)| = p implies G′ = Z(G); using (3) we get
k(G) > k(G/G′) + |Z(G)| − 1 = pn−1 + p − 1, since G/G′ is abelian. On the
other hand, G has p conjugacy classes of size 1 and another pn − p elements
arranged in conjugacy classes of size greater or equal to p, thus at most another
(pn− p)/p = pn−1− 1 conjugacy classes. Therefore, k(G) 6 pn−1 + p− 1, thus
G satisfies the equality in (3) with H = Z(G).

In conclusion, we have the following result.

Proposition 7.1. Let G be a group of order pn with the property |Z(G)| =
|G′| = p. The following statements are true:

a) k(G) = pn−1 + p− 1;
b) the nontrivial conjugacy classes of G are exactly the cosets xZ(G), x ∈

G \ Z(G).

Remark 7.2. We have proved that the special subgroups of a group G
satisfy the equality in (3). Clearly, Z(G) is not a special subgroup of G. It
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follows that the special subgroups of G do not cover, in general, the set of
subgroups of G that give equality in (3).

We use now the results obtained in the previous section. If G contains an
abelian subgroup of index p, then it follows from Propositions 6.4 and 7.1 that
k(G) = pn−1 + p − 1 = pn−1 + pn−2 − pn−3, which implies n = 3. Therefore
we obtain:

Proposition 7.3. Let G be a group of order pn with the property |G′| =
|Z(G)| = p. Then the following statements are equivalent:

(i) G contains an abelian subgroup of index p;
(ii) n = 3.

8. AN APPLICATION: THE NUMBER OF COMMUTING PAIRS

One of our early motivations for this paper was a problem concerning the
number of commuting pairs of elements of a group G.

We define the following two numbers associated to the finite group G.
N(G) = |{(a, b) ∈ G×G | ab = ba}|,
N ′(G) = |{{a, b} | a, b ∈ G \ {1}, a 6= b, ab = ba}|.

The connection between these numbers and k(G) is given in the next propo-
sition.

Proposition 8.1. For any finite group G we have:
a) N ′(G) = N(G)−3|G|

2 + 1;
b) N(G) = k(G)|G|.

Proof. a) We have

{(a, b) ∈ G×G | ab = ba} = {(a, b) ∈ G×G | ab = ba, a 6= b}∪{(a, a) | a ∈ G},
hence

|{{a, b} ∈ G×G | ab = ba, a 6= b}| = N(G)− |G|
2

.

Further on, {{a, b} ∈ G×G | ab = ba, a 6= b} = {{1, a} | a ∈ G\{1}}∪{{a, b} |
a 6= b 6= 1 6= a}, thus N ′(G) = |{{a, b} | a 6= b 6= 1 6= a}| = N(G)−|G|

2 − (|G| −
1) = N(G)−3|G|

2 + 1.
b) We have {(a, b) ∈ G×G | ab = ba} =

⋃
a∈G{(a, b) | ab = ba}, thus

N(G) =
∑
a∈G

|{b | ab = ba}| =
∑
a∈G

|CG(a)|.

We group the elements of G in conjugacy classes to obtain

N(G) =
∑
a∈R

|aG||CG(a)| = k(G)|G|,

where R is a complete set of representatives for the conjugacy classes of G. �
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9. OTHER CLASSES OF GROUPS

Any attempt to obtain estimations for k(G), where G is a finite group not
necessarily p-group, based on the results obtained so far, implies the use of
Sylow subgroups of G. In general though, going from a subgroup to the whole
group does not imply the growth of the number of conjugacy classes. For
instance, the group PSL(2, 7) has order 168 = 24 · 7, 6 conjugacy classes and
it obviously contains an abelian subgroup of order 7.

However, the previous section allows such a passing, based not on k(G),
but on k(G)|G|, which, in concordance with its meaning (the number of pairs
which commute) grows from subgroup to group. By and large, the method is
as follows. If Pp is a Sylow p-subgroup of G, then

k(G)|G| >
∑
p||G|

k(Pp)|Pp|,

and an inequality for k(G) follows. Observe that, in order for this inequality
to be efficient, we need conditions on |G|, like, for instance, to have few prime
factors in its decomposition or one of them to be greater then the product of
the others. In what follows we illustrate the method for groups of order pnq.

Proposition 9.1. Let G be a group of order pnq, p, q primes, p > q. Then

k(G) >
[n
2

]
(p+ 1) + q − 2.

Proof. As we saw in the previous section, k(G)|G| =
∑

x∈G |CG(x)|. Let P
be a Sylow p-subgroup (actually, the only one) of G and Q a Sylow q-subgroup
of G. Then

k(G)|G| =
∑
x∈P

|CG(x)|+
∑
x∈Q

|CG(x)|+
∑

x∈G−(P∪Q)

|CG(x)| − pnq

>
∑
x∈P

|CP (x)|+
∑
x∈Q

|CQ(x)|+
∑

x∈G−(P∪Q)

|CG(x)| − pnq.

Since |CG(x)| > q, we get

k(G)pnq > k(P )|P |+ k(Q)|Q|+ (pnq − pn − q)q − pnq

and further,

k(G) >
k(P )
q

+
q − q2

pn
+ q − 2.

Using the inequality (7) for P we obtain

k(P ) >
[n
2

]
(p2 − 1) +

1
q

+
q − q2

pn
+ q − 2 >

[n
2

]
(p+ 1) + q − 2.

�
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