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HEMIVARIATIONAL INEQUALITIES SYSTEMS
AND APPLICATIONS

ALEXANDRU KRISTÁLY

Abstract. In this paper we trait hemivariational inequality systems. In certain
case, this problem can be reduced to study a hemivariational inequality. Several
applications are given as Browder and Hartmann-Stampacchia type results and
Nash equilibrium point theorems.
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1. INTRODUCTION

Let Ω be a bounded, open subset of RN with smooth boundary, and let
K1, . . . ,Kn be subsets of H1

0 (Ω) (N,n ≥ 1). First, we consider the problem:
Find (u1, . . . , un) ∈ K1 × · · · ×Kn such that

(1) −4ui + bi(x)ui ∈ −∂ij(x, u1, . . . , un) in Ω, ∀i ∈ {1, . . . , n},

where bi ∈ L∞(Ω, R) and j : Ω×Rn → R is a Carathéodory function such that
j(x, ·) is locally Lipschitz, ∂ij being the partial Clarke generalized gradient in
ith variable, see (3) bellow.

Multiplying by (vi − ui) the relation from (1) (vi ∈ Ki), integrating over Ω
and applying the Green-Gauss formula, we obtain the following problem:

Find (u1, . . . , un) ∈ K1×· · ·×Kn such that for all vi ∈ Ki and i ∈ {1, . . . , n}∫
Ω
∇ui·∇(vi − ui)dx +

∫
Ω

biui(vi − ui)dx

+
∫

Ω
j0
i (x, u1(x), . . . , un(x); vi(x)− ui(x))dx ≥ 0,(HIS1)

where j0
i (x, y1, . . . , yn;hi) is the partial Clarke derivative in ith variable of j,

see (2), assuming that j satisfies some growth conditions, see (ji) below.
Therefore, it seems natural to consider the following general problem:

Let X1, . . . , Xn be Banach spaces and Ti : Xi → Lp(Ω, Rk), for i ∈ {1, . . . , n}
be linear, continuous operators, k ≥ 1, 1 ≤ p < ∞, Ω as above. Let Ki be
subsets of Xi, Ai : K1 × · · · × Kn → X∗

i be given operators, i ∈ {1, . . . , n}
and j : Ω×Rk × · · · × Rk︸ ︷︷ ︸

n

→ R a Carathéodory function such that j(x, ·, . . . , ·)

is locally Lipschitz, ∀x ∈ Ω, and satisfies the following assumptions for all
i ∈ {1, . . . , n}:
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(ji) there exist hi
1 ∈ L

p
p−1 (Ω, R+) and hi

2 ∈ L∞(Ω, R+) such that

|zi| ≤ hi
1(x) + hi

2(x)|y|p−1
Rkn

for almost every x ∈ Ω, every y = (y1, . . . yn) ∈ Rk × · · · × Rk︸ ︷︷ ︸
n

and zi ∈

∂ij(x, y1, . . . yn).
Our main problem is to study the following general hemivariational inequal-

ity system:
Find (u1, . . . , un) ∈ K1×· · ·×Kn such that for all vi ∈ Ki and i ∈ {1, . . . , n}

〈Ai(u1, . . . , un), vi − ui〉(HIS2)

+
∫

Ω
j0
i (x, T1u1(x), . . . , Tiui(x), . . . , Tnun(x);Tivi(x)− Tiui(x))dx ≥ 0.

We say that (u1, . . . , un) ∈ K1 × · · · × Kn is an equilibrium point for the
above system. Let fix the above notations. j0

i (x, y1, . . . , yn;hi) is the partial
Clarke derivative in ith variable (the Clarke derivative of the locally Lips-
chitz mapping j(x, y1, . . . , yi−1, ·, yi+1, . . . , yn) at the point yi ∈ Rk with the
direction hi ∈ Rk), that is

j0
i (x, y1, . . . , yn;hi) = limsupy ′→yi

t→0+

1
t
(j(x, y1, . . . , yi−1, y

′ + thi, yi+1, . . . , yn)

− j(x, y1, . . . , yi−1, y
′, yi+1, . . . , yn)).

(2)

The set ∂ij(x, y1, . . . , yn) is the Clarke partial generalized gradient in the ith
variable of the mapping j(x, y1, . . . , yi−1, ·, yi+1, . . . , yn) at the point yi ∈ Rk,
i.e.

(3) ∂ij(x, y1, . . . , yn)

= {zi ∈ Rk : 〈zi, hi〉 ≤ j0
i (x, y1, . . . , yn;hi), for all hi ∈ Rk}.

If n = 1, the problem (HIS2) reduces to a classical hemivariational inequality,
see [6], [7], [9], where several applications were given; for example the function
u being the temperature in the case of heat conduction problems, pressure and
electric potential in problems of hydraulics and electrostatics.

The motivation to study such systems comes from the above examples. In
fact, in a given mechanical problem several variables can occur in same time,
for example temperature, pressure, etc; the equilibrium of such mechanical
systems depending of these functions.

Moreover, the idea of considering such systems is also motivated by the Nash
equilibrium theory. Kassay, Kolumbán and Páles in [5] introduced the notion
of Nash stationary point, i.e. such point in which a certain kind of derivative
is nonnegative. From our problem (HIS2) we can deduce the existence of
(weak) Nash stationary points and Nash equilibrium points for a certain class
of functions.
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The paper is constructed as follows. In Section 2 we give sufficient conditions
to obtain equilibrium points for (HIS2). In Section 3 we give some applica-
tions: Nash equilibrium type theorem, Browder and Hartman-Stampacchia
type theorems from variational inequalities, deducing also easily the Brouwer
fixed point theorem.

2. EXISTENCE RESULTS FOR (HIS2)

In order to obtain solution for (HIS2), we need some preliminary notions
and results.

Let X, Y be two Banach spaces, K a subset of X and A : K → Y ∗ be an
operator.

Definition 1. A : K → Y ∗ is said to be generalized w∗-demicontinuous
if for any sequence {un} ⊂ K converging to u (in the strong topology), the
sequence {A(un)} converges to A(u) in the w∗-topology of Y ∗.

Remark 1. If X = Y, the generalized w∗-demicontinuity reduces to the
classical w∗-demicontinuity.

Lemma 1. [3] Let X be a Hausdorff topological vector space, K a subset of
X and for each x ∈ K, let S(x) be a closed subset of X, such that

(i) there exists x0 ∈ K such that the set S(x0) is compact;
(ii) S is KKM-mapping, i.e. for each x1, x2, . . . , xn ∈ K,

co{x1, x2, . . . , xn} ⊆
n⋃

i=1

S(xi),

where co stands for the convex hull operator. Then⋂
x∈K

S(x) 6= ∅.

First, we establish a similar result as in [9] for hemivariational inequalities,
which will be used later to obtain solution for our hemivariational inequality
system.

Therefore, let us put ourselves within the framework of [9], i.e. let X be a
Banach space, T : X → Lp(Ω, Rk), be a linear and continuous operator where
1 ≤ p < ∞, k ≥ 1; Ω ⊂ RN being bounded and open. Let K be a subset of X
and A : K → X∗ an operator and j = j(x, y) : Ω×Rk → R be a Carathéodory
function which is locally Lipschitz with respect to the second variable y ∈ Rk,
satisfying the following assumption
(j) there exist h1 ∈ L

p
p−1 (Ω, R+) and h2 ∈ L∞(Ω, R+) such that

|z| ≤ h1(x) + h2(x)|y|p−1
Rk

for a.e. x ∈ Ω, every y ∈ Rk and z ∈ ∂j(x, y).
In the sequel, we give a non-compact variant of [9, Theorem 1], using a

coercivity assumption.
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Theorem 1. Let K be a closed, convex subset of a Banach space X and let
j satisfy the condition (j). If the operator A : K → X∗ is w∗-demicontinuous
and in addition
(HC1) there exist K0 ⊂ K compact and w0 ∈ K0 such that

〈Av,w0 − v〉+
∫

Ω
j0(x, Tv(x);Tw0(x)− Tv(x))dx < 0, ∀v ∈ K \K0,

then there exists u ∈ K such that for every v ∈ K

(P ) 〈Au, v − u〉+
∫

Ω
j0(x, Tu(x);Tv(x)− Tu(x))dx ≥ 0.

Proof. For any v ∈ K, set

S(v) = {u ∈ K : 〈Au, v − u〉+
∫

Ω
j0(x, Tu(x);Tv(x)− Tu(x))dx ≥ 0}.

Clearly, S(v) 6= ∅, ∀v ∈ K, since v ∈ S(v). Moreover, S(v) is closed, see [9,
p. 47]. It’s easy to verify that S is KKM-mapping, using the linearity of T
and the fact that z 7→ j0(x, y; z) is sublinear. Finally, from (HC1) we have
that S(w0) ⊂ K0. Since K0 is compact, it follows that S(w0) is also compact.
From Lemma 1 we obtain that

⋂
v∈K S(v) 6= ∅, which means that (P ) has at

least a solution. �

Remark 2. If K ⊂ X is compact in Theorem 1 the hypothesis (HC1) can
be omitted and we obtain exactly Theorem 1 from [9].

Definition 2. [2, p. 39] Let V be a Banach space, f : V → R be a locally
Lipschitz function. f is said to be regular at v ∈ V if for all h ∈ V the
usual one-sided directional derivative f

′
(v;h) exists and f

′
(v;h) = f0(v;h). f

is regular if it is regular in every point v ∈ V.

Lemma 2. Let j : Ω×Rk × · · · × Rk︸ ︷︷ ︸
n

→ R be a function such that j(x, ·, . . . , ·)

is locally Lipschitz and regular for all x ∈ Ω. Then, for all (y1, . . . , yn) ∈ Rkn

and (h1, . . . , hn) ∈ Rkn we have:
(i) ∂j(x, y1, . . . , yn) ⊆ ∂1j(x, y1, . . . , yn)× · · · × ∂nj(x, y1, . . . , yn);
(ii) j0(x, y1, . . . , yn;h1, . . . , hn) ≤

∑n
i=1 j0

i (x, y1, . . . , yn;hi);
(iii) j0(x, y1, . . . , yi, . . . , yn; 0, . . . , hi, . . . , 0) ≤ j0

i (x, y1, . . . , yn;hi).

Proof. For (i), see [2, Proposition 2.3.15].
(ii) Choose z ∈ ∂j(x, y1, . . . , yn) such that j0(x, y1, . . . , yn;h1, . . . , hn) =

〈z, (h1, . . . , hn)〉 (such a z exists). Due to (i), we have z = (z1, . . . , zn), for
all zi ∈ ∂ij(x, y1, . . . , yn). Therefore, we get j0(x, y1, . . . , yn;h1, . . . , hn) =∑n

i=1〈zi, hi〉 ≤
∑n

i=1 j0
i (x, y1, . . . , yn;hi).
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(iii) Since j(x, ·, . . . , ·) is regular, we have

j0(x,y1, . . . , yi, . . . , yn; 0, . . . , hi, . . . , 0)

= j
′
(x, y1, . . . , yi, . . . , yn; 0, . . . , hi, . . . , 0)

= limt→0+
j (x , y1 , . . . , yi−1 , yi + thi , yi+1 , . . . , yn)− j (x , y1 , . . . , yn)

t

≤ limsupy ′→yi

t→0+

1
t
(j(x, y1, . . . , yi−1, y

′ + thi, yi+1, . . . , yn)

− j(x, y1, . . . , yi−1, y
′, yi+1, . . . , yn))

= j0
i (x, y1, . . . , yn;hi).

�

Now, we give the main result of this paper. Let Xi, Ki, Ti, Ai for i ∈
{1, . . . , n} and j as in the introduction.

Theorem 2. Assume that Ki are closed and convex, Ai are generalized
w∗-demicontinuous and j satisfy (ji) for all i ∈ {1, . . . , n}. In addition, if
j(x, ·, . . . , ·) is regular for all x ∈ Ω and
(HC2) there exist Ki

0 ⊂ Ki compact and w0
i ∈ Ki

0 such that for all
(v1, . . . , vn) ∈ K1 × · · · ×Kn \K1

0 × · · · ×Kn
0

n∑
i=1

[
〈Ai(v1, . . . , vn), w0

i − vi〉 +

+
∫

Ω
j0
i (x, T1v1(x), . . . , Tivi(x), . . . , Tnvn(x);Tiw

0
i (x)− Tivi(x))dx

]
< 0.

Then (HIS2) has at least an equilibrium point.

Proof. We will verify the hypotheses from Theorem 1. Let X := X1× · · · ×
Xn, K := K1 × · · · ×Kn. We define A : K → X∗ ' X∗

1 × · · · ×X∗
n by

〈A(u1, . . . , un), (v1, . . . , vn)〉 =
n∑

i=1

〈Ai(u1, . . . , un), vi〉.

It is easy to see that A is w∗-demicontinuous. Moreover, let

T := (T1, . . . , Tn) : X → Lp(Ω, Rk)× · · · × Lp(Ω, Rk) ' Lp(Ω, Rnk),

where T (u1, . . . , un) = (T1u1, . . . , Tnun), ui ∈ Xi. Clearly, T is well-defined,
continuous and linear. With the above notations, K0 = K1

0 × · · · × Kn
0 and

w0 = (w0
1, . . . , w

0
n) satisfy (HC1) from Theorem 1. In fact, since j(x, ·, . . . , ·)

is regular for all x ∈ Ω and T is linear, from Lemma 2 (ii) and (HC2) we have
for all v = (v1, . . . , vn) ∈ K \K0 that the expression

〈Av,w0−v〉+
∫

Ω
j0(x, Tv(x);Tw0(x)−Tv(x))dx =

n∑
i=1

〈Ai(v1, . . . , vn), w0
i −vi〉
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+
∫

Ω
j0(x, T1v1(x), . . . , Tnvn(x);T1w

0
1(x)−T1v1(x), . . . , Tnw0

n(x)−Tnvn(x))dx

is strictly negative.
Hypothesis (j) follows with the choice h1(x) :=

∑n
i=1 hi

1(x) ∈ L
p

p−1 (Ω, R+)
and h2(x) :=

∑n
i=1 hi

2(x) ∈ L∞(Ω, R+), using Lemma 2 (i) and (ji) for all
i ∈ {1, . . . , n}, with k := kn.

Therefore, there exists u = (u1, . . . , un) ∈ K1 × · · · × Kn such that for all
v = (v1, . . . , vn) ∈ K1 × · · · ×Kn the expression

n∑
i=1

〈Ai(u1, . . . , un), vi − ui〉

+
∫

Ω
j0(x, T1u1(x), . . . , Tnun(x);T1v1(x)−T1u1(x), . . . , Tnvn(x)−Tnun(x))dx

is positive. Let us fix an i ∈ {1, . . . , n} and put vj := uj , j 6= i in the above
inequality. Due to Lemma 2 (iii), we obtain that for all vi ∈ Ki, the expression

〈Ai(u1, . . . , un), vi − ui〉+
∫

Ω
j0
i (x, T1u1(x), . . . , Tnun(x);Tivi(x)− Tiui(x))dx

is positive. Since i ∈ {1, . . . , n} was arbitrary, the proof of the theorem is
complete. �

Due to Remark 2, we have the following

Theorem 3. Assume that Ki are compact and convex, Ai are generalized
w∗-demicontinuous and j satisfy (ji) for all i ∈ {1, . . . , n}. If j(x, ·, . . . , ·) is
regular for all x ∈ Ω, then (HIS2) has at least an equilibrium point.

3. APPLICATIONS

First, we obtain a result from the theory of variational inequality systems.

Theorem 4. Assume that Ki are compact and convex subsets of the Banach
spaces Xi and that Ai : K1×· · ·×Kn → X∗

i are generalized w∗-demicontinuous
for all i ∈ {1, . . . , n}. Then there exists (u1, . . . , un) ∈ K1×· · ·×Kn such that

〈Ai(u1, . . . un), vi − ui〉 ≥ 0, ∀vi ∈ Ki, ∀i ∈ {1, . . . , n}.

Proof. In Theorem 3 we substitute j := 0. �

Remark 3. From the above theorem we obtain Browder and Hartman-
Stampacchia type results, see [1] and [4] respectively, taking n := 1.

Moreover, we can easily deduce the well-known Brouwer’s fixed point the-
orem.

Corollary 1. Let K ⊂ Rn be a convex, compact set and f : K → K be a
continuous function. Then f has at least a fixed point.
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Proof. Let X1 = X2 := Rn, K1 = K2 := K, A1(u, v) = u − f(v) and
A2(u, v) = v − u. Clearly, A1 and A2 are generalized w∗-demicontinuous, due
to the continuity of f. Therefore, from Theorem 4 follows that there exists
(u1, u2) ∈ K ×K such that for every v, w ∈ K

〈u1 − f(u2), v − u1〉 ≥ 0 and 〈u2 − u1, w − u2〉 ≥ 0,

where 〈·, ·〉 is the euclidian inner product. Substituting w := u1 in the second
inequality, we obtain u1 = u2. Putting v := f(u1) in the first inequality, we
obtain f(u1) = u1, i.e. u1 is a fixed point of f. �

Now, we are interested in finding weak Nash stationary and Nash equilib-
rium points. Let X1, . . . , Xn be Banach spaces and Ki ⊂ Xi be nonempty
compact and convex sets for each i ∈ {1, . . . , n}. Let D1, . . . , Dn open, convex
sets such that Ki ⊂ Di, and fi : K1× · · · ×Di× · · · ×Kn → R, i ∈ {1, . . . , n}.

Definition 3. (i) An element (u1, . . . , un) ∈ K1 × · · · ×Kn is called Nash
equilibrium point of functions f1, . . . , fn if for each i ∈ {1, . . . , n}

fi(u1, . . . , vi, . . . , un) ≥ fi(u1, . . . , ui, . . . , un), ∀vi ∈ Ki.

(ii) Assume that the partial derivatives ∂ifi exist on K1×· · ·×Di×· · ·×Kn

for each i ∈ {1, . . . , n}. An element (u1, . . . , un) ∈ K1×· · ·×Kn is called weak
Nash stationary point of functions f1, . . . , fn if for each i ∈ {1, . . . , n}

∂ifi(u1, . . . , un)(vi − ui) ≥ 0, ∀vi ∈ Ki.

Remark 4. The first notion is due to Nash, see [8]; the second one is similar
to the notion introduced by Kassay, Kolumbán and Páles, see [5].

Theorem 5. Let K1, . . . ,Kn be compact, convex subsets in the Banach
spaces X1, . . . , Xn. Let D1, . . . , Dn be open, convex sets such that Ki ⊂ Di and
fi : K1×· · ·×Di×· · ·×Kn → R functions such that the partial derivatives ∂ifi

exist and are continuous on K1×· · ·×Di×· · ·×Kn for each i ∈ {1, . . . , n}. Then
there exists at least one weak Nash stationary point of functions f1, . . . , fn.

Proof. Let Ai := ∂ifi : K1 × · · · ×Kn → X∗
i . By the continuity property of

∂ifi, we have that the operators Ai are generalized w∗-demicontinuous. Now,
we apply Theorem 4. �

Corollary 2. Let Xi, Ki, Di and fi as in Theorem 5. In addition, if for
all fixed uj ∈ Kj (j 6= i),

yi 7→ fi(u1, . . . , yi, . . . , un) (yi ∈ Di)

is convex, then there exists at least one Nash equilibrium point of functions
f1, . . . , fn.
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