CLASSES OF n-STARLIKE FUNCTIONS

AMELIA-ANCA HOLHOŞ

Abstract

In this paper, we define and we investigate several subclasses of n starlike functions. In particular cases we reobtain some results of Yong Chan Kim and Il Bneg Jung [2]. MSC 2000. 30C45. Key words. Univalent, starlike, convex, differential subordinations.

1. INTRODUCTION AND DEFINITIONS

Let U denote the open unit disc $U=\{z ; z \in \mathbb{C},|z|<1\}$, let $H(U)$ denote the class of functions analytic in the unit disc U and let $H_{u}(U)$ denote the class of functions analytic in U which are univalent in U.

Consider the classes of functions

$$
A=\left\{f \in H(U): f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}\right\}
$$

and

$$
S=\left\{f \in H_{u}(U): f(0)=f^{\prime}(0)-1=0\right\}
$$

For $f \in S$ we define $D^{0} f(z)=f(z), D^{\prime} f(z)=D f(z)=z f^{\prime}(z)$ and

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right), \quad n \in \mathbb{N}^{*}=\{1,2,3 \ldots\}
$$

The differential operator D^{n} was introduced by Sǎlǎgean [9].
With the help of the differential operator D^{n} Sălăgean [9] introduced the class

$$
S_{n}^{*}(\alpha)=\left\{f \in S: \operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha ; z \in U\right\}, \quad 0 \leq \alpha<1 ; n \in \mathbb{N}
$$

We note that $S_{n}^{*}(0)=S_{n}^{*}, \quad S_{n+1}^{*}(\alpha) \subset S_{n}^{*}(\alpha), \quad n \in \mathbb{N}, \quad \alpha \in[0,1)$, and this gives

$$
S_{n}^{*}(\alpha) \subset S_{n-1}^{*}(\alpha) \subset \ldots \subset S_{1}^{*}(\alpha) \subset S_{0}^{*}(\alpha)
$$

where $S_{1}^{*}(\alpha)=K(\alpha) \subseteq K(0)=K$ is the class of convex functions and $S_{0}^{*} \subseteq$ $S_{0}^{*}(0)=S^{*}$ is the class of starlike functions.

We recall the concept of subordination. Given $f(z)$ and $g(z) \in H(U)$, $f(z)$ is said to be subordinate to $g(z)$ if there exists a function $h(z) \in H(U)$ with $h(0)=0$ and $|h(z)|<1$ such that $f(z)=g(h(z)), z \in U$. We denote this subordination by: $f(z) \prec g(z)$. In particular, if $g(z) \in H_{u}(\mathbf{U})$, then $f(z) \prec g(z) \Longleftrightarrow f(0)=g(0)$ and $f(\mathbf{U}) \subset g(\mathbf{U})$.

For $-1 \leq B<A \leq 1$ Janowski [1] introduced the class $P[A, B]$ consisting of functions $p \in H_{u}(\mathbf{U})$ with $p(0)=1$ and $p(z) \prec \frac{1+A z}{1+B z}$.

We denote by $S_{n}^{*}[A, B]$ the subclass of S consisting of all fuctions $f(z)$ such that $\frac{D^{n+1} f(z)}{D^{n} f(z)} \in P[A, B]$. We have

$$
\begin{aligned}
& S_{0}^{*}[A, B]=S^{*}[A, B]=\left\{f \in S: \frac{z f^{\prime}(z)}{f(z)} \in P[A, B]\right\} \\
& S_{1}^{*}[A, B]=S_{1}^{*}[A, B]=\left\{f \in S: \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P[A, B]\right\}
\end{aligned}
$$

Note that $S^{*}[-1,1]=S^{*}$ and $K[-1,1]=K$.
Let $\alpha \in \mathbb{R}$. We denote the class of (n, α)-convex functions by $M_{n, \alpha}$, where

$$
M_{n, \alpha}=\left\{f \in S: \operatorname{Re}\left[(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}\right]>0 ; z \in U\right\}
$$

For $n=0$ this class was defined by P.T. Mocanu in [3].
For $-1 \leq B<A \leq 1$ and $z \in \mathbf{U}$ we now define the class

$$
M_{n, \alpha}(A, B)=\left\{f \in S:\left[(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}\right] \prec \frac{1+A z}{1+B z}\right\}
$$

Then $M_{n, \alpha}(-1,1)=M_{n, \alpha}, M_{n, 0}(A, B)=S_{n}^{*}[A, B]$ and $M_{1,0}(A, B)=K[A, B]$.
Definition 1. Let $c \in \mathbb{C}$ such that $\operatorname{Re} c>0$, and let

$$
N=N(c)=\left[|c|\left(1+2 \operatorname{Re} c^{\frac{1}{2}}+\operatorname{Im} c\right] / \operatorname{Re} c\right.
$$

If $h \in H(\mathbf{U}), h(z)=\frac{2 N z}{1-z^{2}}$ and $b=h^{-1}(c)$, then we define the "open door" function $Q_{c}(c f .[7])$ as $Q_{c}(z)=h\left(\frac{z+b}{1+b z}\right), z \in \mathbf{U}$.

2. MAIN RESULTS

Applying the method of integral representations (cf. [3]) for functions in $M_{n, \alpha}(A, B), \alpha>0$, it is not difficult to deduce:

Lemma 1. The function f lies to $M_{n, \alpha}(A, B), \alpha>0$, if and only if there exists a function $g(z) \in S^{*}[A, B]$, such that

$$
D^{n} f(z)=\left[\frac{1}{\alpha} \int_{0}^{z}\{g(t)\}^{\frac{1}{\alpha}} t^{-1} \mathrm{~d} t\right]^{\alpha}
$$

Proof. Setting $g(z)=D^{n} f(z)\left[\frac{D^{n+1} f(z)}{D^{n} f(z)}\right]^{\alpha}$, such that (1) is satisfied, we observe that

$$
\frac{z g^{\prime}(z)}{g(z)}=(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}
$$

Hence $\quad f \in M_{n, \alpha}(A, B) \Longleftrightarrow g \in S^{*}[A, B]$.

Theorem 1. Let $f \in M_{n, \alpha}(A, B), \alpha>0$ and let

$$
\frac{1+A z}{1+B z} \prec \alpha Q_{\frac{q}{\alpha}}(z) .
$$

Then $f \in S_{n}^{*}$.
Proof. Since $f \in M_{n, \alpha}(A, B), \alpha>0$ by using Lemma 1 we deduce that there exists $g \in S^{*}[A, B]$ such that

$$
D^{n} f(z)=\left[\frac{1}{\alpha} \int_{0}^{z}\{g(t)\}^{\frac{1}{\alpha}} t^{-1} \mathrm{~d} t\right]^{\alpha}
$$

By the hypothessis we also have

$$
\frac{1}{\alpha}\left(\frac{z g^{\prime}(z)}{g(z)}\right) \prec \frac{1}{\alpha}\left(\frac{1+A z}{1+B z}\right) \prec Q_{\frac{1}{\alpha}}(z) .
$$

Thus, by a result of Miller and Mocanu ([7], Corollary 3.1) we have

$$
D^{n} f(z)=\left[\frac{1}{\alpha} \int_{0}^{z}\{g(t)\}^{\frac{1}{\alpha}} t^{-1} \mathrm{~d} t\right]^{\alpha} \in S^{*} \Rightarrow f \in S_{n}^{*}
$$

For $n=0$ this result was obtained by Y.C. Kim and I.B. Jung (1997) [2].
Lemma 2. (Mocanu - 1986, [4]) Let $P \in H(\mathbf{U})$ satisfying $P \prec Q_{c}$. If $p \in H(U), p(0)=1 / c$ and $z p^{\prime}(z)+P(z) p(z)=1$, then Re $p(z)>0$ in U.

Making use of Lemma 2 we now prove the next theorem.
Theorem 2. Let $f \in M_{n, \alpha}(A, B), \alpha>0$ and if

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}+\frac{D^{n} f(z)}{D^{n+1} f(z)}-1 \prec Q_{1},
$$

then $f \in S_{n}^{*}[A, B]$.
Proof. If we set $p(z)=\frac{D^{n+1} f(z)}{D^{n} f(z)}$, then $p(z)+\frac{z p^{\prime}(z)}{p(z)}=\frac{D^{n+2} f(z)}{D^{n+1} f(z)}$. Hence

$$
(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}=p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)}
$$

Since $f \in M_{n, \alpha}(A, B)$, we have $p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+A z}{1+B z}$.
Setting $P(z)=p(z)+\frac{1}{p(z)}-1$, we obtain $z p^{\prime}(z)+P(z) p(z)=1$ and $P \prec Q$, by the hypothesis (2). Thus, by Lemma 2 , we have $\operatorname{Re} p(z)>0(z \in \mathbf{U})$. Since $\alpha>0$ we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{\alpha} p(z)\right\}>0,(z \in \mathbf{U}) \tag{4}
\end{equation*}
$$

The function $\frac{1+A z}{1+B z}$, with $-1 \leq B<A \leq 1$, is a convex univalent function in U. Hence, by appealing to a known result of Miller and Mocanu (1981) [5], we conclude from (3) and (4) that:

$$
p(z) \prec \frac{1+A z}{1+B z} \Longleftrightarrow \frac{D^{n+1} f(z)}{D^{n} f(z)} \prec \frac{1+A z}{1+B z} \Longrightarrow f \in S_{n}^{*}[A, B]
$$

and the proof of Theorem 2 is complete.
As an example of Miller and Mocanu ([6], Corollary 3.2) we consider the case when $\alpha>0,-1 \leq B<A \leq 1$. The differential equation

$$
q(z)+\alpha \frac{z q^{\prime}(z)}{q(z)}=\frac{1+A z}{1+B z}
$$

has a univalent solution given by

$$
q(z)= \begin{cases}\frac{z^{\frac{1}{\alpha}}(1+B z)^{\frac{1}{\alpha} \frac{A-B}{B}}}{\frac{1}{\alpha} \int_{0}^{\frac{1}{\alpha}-1}(1+B t)^{\frac{1}{\alpha} \frac{A-B}{B}} \mathrm{~d} t} & \text { if } B \neq 0 \tag{5}\\ \frac{z^{\frac{1}{\alpha}} e^{\frac{A}{\alpha} z}}{\frac{1}{\alpha} \int_{0}^{z} t^{\frac{1}{\alpha}-1} \mathrm{e}^{\frac{A}{\alpha}} \mathrm{~d} t} & \text { if } B=0\end{cases}
$$

If $p(z) \in H(\mathbf{U})$ and satisfies

$$
p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+A z}{1+B z},
$$

then

$$
\begin{equation*}
p(z) \prec q(z) \prec \frac{1+A z}{1+B z} . \tag{6}
\end{equation*}
$$

Hence by the equation (3) and (6), we obtain
Theorem 3. Let $\alpha>0$ and $f \in M_{n, \alpha}(A, B)$. Then

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec q(z) \prec \frac{1+A z}{1+B z},
$$

where $q(z)$ is given by (5).
Theorem 4. $S_{n+1}^{*}(\alpha) \subset M_{n, \alpha}(1-2 \alpha,-1) \quad(0 \leq \alpha<1)$.
Proof. If we define $h_{\alpha}(z)=\frac{1+(1-2 \alpha) z}{1-z}(\alpha<1)$, then we can easily see that

$$
f \in S_{n+1}^{*}(\alpha) \Longleftrightarrow \frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec h_{\alpha}(z)
$$

([9] equation (9)). Hence, by Theorem 1 of [9] we have

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec h_{\alpha}(z) .
$$

Therefore we conclude from ([8], Lemma 2.2) that

$$
(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec h_{\alpha}(z) \Rightarrow f \in M_{n, \alpha}(1-2 \alpha,-1)
$$

For $n=0$ we obtain the result of Y.C. Kim and I.B. Jung [2].

REFERENCES

[1] Janowski, W., Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 297-326.
[2] Kim, Y.C. and Jung, I.B., Subclasses of univalent functions subordinate to convex functions, Internat. J. Math. \& Math. Sci., 20 (1997), 243-248.
[3] Mocanu, P.T., Une propriété de convexité généraliseé dans la théorie de la représentation conforme, Mathematica (Cluj), 11(34) (1969), 43-50.
[4] Mocanu, P.T., Some integral operators and starlike functions, Rev. Roumanie Math. Pures Appl., 21 (1986), 231-235.
[5] Miller, S.S. and Mocanu, P.T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[6] Miller, S.S. and Mocanu, P.T., Univalent solutions of Briot-Bouquet differential equations, J. of Differential Equations, 56 (1985), 297-309.
[7] Miller, S.S. and Mocanu, P.T., Classes of univalent integral operators, J. Math. Anal. Appl., 157 (1991), 147-165.
[8] Noor, K.I., On some univalent integral operators, J. Math. Anal. Appl., 128 (1987), 586-592.
[9] SĂlăgean, G.S., Subclasses of univalent functions, Lecture Notes in Math (SpringerVerlag), 1013 (1983), 362-372.

Received May 19, 2003
Universitatea Ecologică Deva
Romania
E-mail: holhos@toptech.ro

