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SYMMETRIC LIFTINGS OF QUANTUM LINEAR SPACES

S. DĂSCĂLESCU

Abstract. We determine all liftings of quantum linear spaces over the group
Hopf algebra of an abelian group that are symmetric as coalgebras. In particular
we discuss classes of pointed Hopf algebras that appear in several classification
theorems.
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1. INTRODUCTION AND PRELIMINARIES

A large class of pointed Hopf algebras with non-zero integrals was defined
in [2] by starting with the group Hopf algebra of an abelian group, then taking
Ore extensions by adjoining skew-primitive elements, and finally by factoring
a certain Hopf ideal. The same class is obtained with a different approach
in [1], where these Hopf algebras are constructed as the liftings of quantum
linear spaces over the group algebra of an abelian group. Let us recall the
Hopf algebras obtained by these constructions.

We work over a fixed field k. Let C be an abelian group, t, n1, . . . , nt

positive integers, c1, . . . , ct ∈ C, and χ1, . . . χt ∈ C∗, where C∗ is the character
group of C. We also consider a1, . . . , at ∈ k, and bij ∈ k for any 1 ≤ i < j ≤ t.
Assume that the following conditions are satisfied.
• qi = χi(ci) is a primitive ni-th root of unity for any i.
• χi(cj) = χj(ci)−1 for any i 6= j.
• If ai = 1, then χni

i = 1.
• If cni

i = 1, then ai = 0.
• bij = −χi(cj)bji for any i, j.
• If bij 6= 0, then χiχj = 1.
• If cicj = 1, then bij = 0.
If we denote by n = (n1, . . . , nt), c = (c1, . . . , ct), χ = (χ1, . . . , χt), a =

(a1, . . . , at), and b = (bij)1≤i<j≤t, then define H = H(C,n, c, χ,a,b) to be
the Hopf algebra generated by the commuting grouplike elements g ∈ C, and
the (1, cj)-primitives xj , 1 ≤ j ≤ t, subject to the relations

xjg = χj(g)gxj , x
nj

j = aj(c
nj

j − 1),

xixj = χi(cj)xjxi + bji(cjci − 1),
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for 1 ≤ j < i ≤ t. The coalgebra structure is given by

∆(g) = g ⊗ g, ε(g) = 1, for g ∈ C,

∆(xj) = cj ⊗ xj + xi ⊗ 1, for 1 ≤ j ≤ t.

If p = (p1, . . . , pt) is a t-tuple of integers, we denote by cp = cp1
1 . . . cpt

t . If
all pi’s are non-negative, we also denote xp = xp1

1 . . . xpt
t , with the convention

that x0
i = 1. We also consider the t-tuples 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

If d = (d1, . . . , dt) and p = (p1, . . . , pt) are t-tuples of integers, we say that
d ≤ p if and only if di ≤ pi for any i, and in this case we define p − d =
(p1 − d1, . . . , pt − dt).

The set
{gxp|g ∈ C, 0 ≤ p ≤ n− 1}

is a basis for H.
The quantum binomial formula (see for example [7, Section 5.6]) shows that

for any non-negative integer n we have

(1) ∆(xn
j ) =

∑
0≤d≤n

(
n

d

)
qj

cd
jx

n−d
j ⊗ xd

j ,

where
(
n
d

)
qj

is a quantum binomial coefficient. This implies that the comulti-
plication on a general basis element is given by

(2) ∆(gxp) =
∑

0≤d≤p

αp,dgcdxp−d ⊗ gxd,

where the scalars αp,d are nonzero products of qj-binomial coefficients and
powers of χj(ci). Note that αp,p = αp,0 = 1.

The aim of this paper is to study which of the Hopf algebras

H(C,n, c, χ,a,b)

are symmetric as coalgebras. Symmetric coalgebras were introduced and stud-
ied in [6] as a special class of co-Frobenius coalgebras. In the finite dimensional
case, symmetric coalgebras are just duals of symmetric algebras. In the in-
finite dimensional case some completely new aspects show up. A coalgebra
C is called symmetric if there exists an injective morphism α : C → C∗ of
(C∗, C∗)-bimodules. Equivalent characterizations, involving trace-like linear
functionals and non-degenerate symmetric associative bilinear forms are given
in [6, Theorem 3.3]. In [6, Theorem 7.1] it is proved that a Hopf algebra H
is symmetric as a coalgebra if and only if it is unimodular, i.e. the spaces of
left and right integrals on H coincide, and there exists an invertible element u
in the dual algebra H∗ such that S2(h) =

∑
u(h1)u−1(h3)h2 for any h ∈ H,

where S is the antipode of H. This last condition is equivalent to the fact
that the dual linear map (S2)∗ is an inner automorphism of the algebra H∗.
The main aim of this paper is to prove the following.
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Theorem 1. Let H = H(C,n, c, χ,a,b). The following assertions are
equivalent.

(1) H is symmetric as a coalgebra.
(2) cn−1 = 1 and there exists a map u : C → k∗ such that u(gci) = qiu(g)

for any 1 ≤ i ≤ t and g ∈ C.
(3) cn−1 = 1 and for any d ∈ Zt such that cd = 1, we must have qd = 1.

We prove the theorem in Section 1. In Section 2 we consider several remark-
able examples of such Hopf algebras and perform explicitly the computations
indicated by the theorem. For notations and definitions concerning Hopf al-
gebras we refer to [7].

2. PROOF OF THE THEOREM

The left and right integrals on H were computed explicitly in [2].
For g ∈ C, and 0 ≤ p ≤ n − 1, let Eg,p ∈ H∗ be the map taking gxp to 1

and all other basis elements to 0. Then a left integral on H is E(cn−1)−1,n−1,
and a right integral on H is E1,n−1, where there is no danger of confusion if
we also denote the identity element in C by 1. Therefore H is unimodular if
and only if cn−1 = 1.

If we apply two times Equation (2) we find that

(I ⊗∆)∆(gxp) =
∑

0≤d≤p

∑
0≤e≤d

αp,dαd,egcdxp−d ⊗ gcexd−e ⊗ gxe.

We have that S(xi) = −c−1
i xi, so then S2(xi) = qixi. Since S2 is an algebra

morphism, this shows that S2(gxp) = qpxp. Therefore, if for some invertible
element u ∈ H∗ we have S2(h) =

∑
u(h1)u−1(h3)h2 for any h ∈ H, then∑

0≤d≤p

∑
0≤e≤d

αp,dαd,eu(gcdxp−d)u−1(gxe)gcexd−e = qpgxp

for any g and p. Since gcexd−e = gxp if and only if d = p and e = 0, we see
that

u(gcp)u−1(g) = qp,

u(gcdxp−d)u−1(gxe) = 0 for (d, e) 6= (p,0).
Note that in the first equation we used the fact that αp,p = αp,0 = 1, and in
the second equation we used αp,d 6= 0 for any p, d.

Clearly u(g) 6= 0 for any g, and u−1(g) = u(g)−1. This implies that u(gcp) =
qpu(g). For e = 0 and d < p the second equation writes u(gcdxp−d) = 0,
showing that u(gxd) = 0 for any 0 < d. Thus we have showed that an element
u ∈ H∗ is invertible and satisfies S2(h) =

∑
u(h1)u−1(h3)h2 for any h ∈ H if

and only if u(g) 6= 0 for any g ∈ C, u(gxd) = 0 for any g ∈ C, 0 < d ≤ n− 1,
and u(gcp) = qpu(g) for any g ∈ C, 0 ≤ p. This last condition is equivalent
to u(gci) = qiu(g) for any g ∈ C and 1 ≤ i ≤ t, showing that (1) ⇔ (2) (note
that for (2) we consider the restriction of u to C).
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To see that (2) ⇔ (3) we note that for defining a map u : C → k∗ such
that u(gci) = qi for any g ∈ C and 1 ≤ i ≤ t, or equivalently u(gcp) = qpu(g)
for any g ∈ C, p ∈ Zt, it is enough to define it on each N -coset, where N is
the subgroup of C generated by c1, . . . , ct. Moreover, to define such a u on a
particular N -coset Ng, we set u(gcp) = qpu(g) for any p ∈ Zt. To make sure
that the definition is correct we must check that whenever cp = ce, we must
also have qp = qe, and this is clearly equivalent to the condition from (3). �

Corollary 2. If the Hopf algebra H = H(C,n, c, χ,a,b) is symmetric as
a coalgebra, then q1q2 . . . qt = 1.

Proof. We have that qn−1 = 1 since H is unimodular, and qn = 1 since the
order of qi is ni for any 1 ≤ i ≤ t. It follows that q1q2 . . . qt = q1 = 1. �

3. EXAMPLES

In this section we assume that the basic field k is algebraically closed of
characteristic zero. We investigate several examples of Hopf algebras of the
form H = H(C,n, c, χ,a,b). As we mentioned in the introduction, such a
Hopf algebra H is pointed, with coradical the group Hopf algebra kC. If we
consider the associated graded Hopf algebra gr H, with respect to the coradical
filtration, then there exists a split Hopf algebra projection of gr H to kC, and
the space R of coinvariants of gr H with respect to the induced coaction of
kC on gr H is called the diagram of H. This diagram R is a very interesting
object, since it is a braided Hopf algebra, i.e. a Hopf algebra in the braided
category of Yetter-Drinfeld modules over kC, and gr H can be reconstructed
from R by a bosonization process, i.e. by a certain biproduct of R and kC.
Moreover, properties of H can be derived from those of gr H, in particular
presentation of gr H by generators and relations can be lifted to H. In fact for
our Hopf algebras H(C,n, c, χ,a,b), the diagram is a quantum linear space
generated by x1, . . . , xt. If t = 1, R is called a quantum line, if t = 2, it is
called a quantum plane.

3.1. Liftings of quantum lines. If H = H(C,n, c, χ,a,b) is a lifting of a
quantum line, i.e. if t = 1, then H can not be symmetric as a coalgebra.
Indeed, this follows immediately from Corollary 2, since q1 = q1 6= 1 in this
case. In fact it is known that these liftings can not be unimodular, so they are
not symmetric either. In particular Taft Hopf algebras are not symmetric as
coalgebras. More general, any pointed Hopf algebra with abelian coradical of
prime index can not be symmetric as a coalgebra (see [1] for the proof of the
fact that any such Hopf algebra is a lifting of a quantum line).

3.2. Hopf algebras of dimension 2m with small coradical. The classifi-
cation of Hopf algebras of dimension 2m with coradical kC2 was done in [8]
and with a different method in [3]. It is known that there exists a unique
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isomorphism type E(m− 1) of such a Hopf algebra. For m ≥ 2, E(m− 1) is
presented by generators c, x1, . . . , xm−1 subject to relations

c2 = 1, x2
i = 0, xic = −cxi, xjxi = −xixj ,

∆(c) = c⊗ c, ∆(xi) = c⊗ xi + xi ⊗ 1, ε(c) = 1, ε(xi) = 0,

for any i, j, i 6= j. Thus E(m − 1) = H(C2,2, c = (c, . . . , c), (χ, . . . , χ),0,0),
where 2 = (2, . . . , 2), the character χ is defined by χ(c) = −1, and both a and
b consist only of zeros. We have that q = (−1, . . . ,−1). First of all, E(m−1)
is unimodular if and only if c1 = 1, i.e. cm−1 = 1, which happens if and only if
m is odd. In this case, if cd = 1, then d1 + . . . + dm−1 is even, so then qd = 1.
Therefore E(m− 1) is symmetric as a coalgebra if and only if m is odd.

3.3. Pointed Hopf algebras of dimension p3. The classification of pointed
Hopf algebras of dimension p3, where p is a prime number, was done indepen-
dently in [1], [3], [9]. We discuss which of these Hopf algebras are symmetric
as coalgebras. If such a Hopf algebra is a group Hopf algebra, then it is
cosemisimple, so then it is symmetric as a coalgebra. The rest of the class of
pointed Hopf algebras of dimension p3 consists of liftings of quantum lines (the
case where the coradical has index p), and liftings of some quantum planes.
Therefore the only candidates for being symmetric are these liftings of quan-
tum planes. These are divided in two classes that are described as follows. If
λ is a primitive p-th root of 1 and 1 ≤ i ≤ p − 1 an integer, we denote by
H(λ, i) the Hopf algebra with generators c, x, y defined by

cp = 1, xp = yp = 0, xc = λcx, yc = λ−icy, yx = λ−ixy,

∆(c) = c⊗ c, ∆(x) = c⊗ x + x⊗ 1, ∆(y) = ci ⊗ y + y ⊗ 1.

For p > 2, we also denote by Hδ(λ) the Hopf algebra with generators c, x, y
defined by

cp = 1, xp = yp = 0, xc = λcx, yc = λ−1cy, yx = λ−1xy + c2 − 1,

∆(c) = c⊗ c, ∆(x) = c⊗ x + x⊗ 1, ∆(y) = c⊗ y + y ⊗ 1.

It is easy to see that all these Hopf algebras are of the form H(C,n, c, χ,a,b).
It is known that any Hopf algebra of dimension p3 with coradical kCp is
isomorphic either to some H(λ, i) or to some Hδ(λ).

Proposition 3. The Hopf algebra H(λ, i) is symmetric as a coalgebra if
and only if i = p − 1. The Hopf algebra Hδ(λ) can not be symmetric as a
coalgebra.

Proof. Let H = H(λ, i). We have c = (c, ci), q = (λ, λ−i2), and n = (p, p).
Thus H is unimodular if and only if cp−1(ci)p−1 = c(p−1)(i+1) = 1, and this
happens if and only if i = p − 1. For i = p − 1, if d = (d1, d2) and cd = 1,
then cd1−d2 = 1, so p divides d1 − d2, and then qd = λd1−d2 = 1, and by the
Theorem we see that H is symmetric.
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For p 6= 2 and H = Hδ(λ), we have c = (c, c), q = (λ, λ−1), and n = (p, p).
Then cn−1 = c2(p−1) 6= 1, since p 6= 2. �

We conclude that there exists precisely one isomorphism type of non-semi-
simple pointed Hopf algebra of dimension p3 which is symmetric as a coalgebra,
namely H(λ, p− 1).

3.4. Pointed Hopf algebras of dimension 16. The classification of pointed
Hopf algebras of dimension 16 was done in [5]. There exist 43 isomorphism
classes of such Hopf algebras, which we group in the following classes: 14 group
Hopf algebras, corresponding to the 14 groups of order 16, one Hopf algebra
with coradical kC2, namely E(3) (see Subsection 3.2), 15 liftings of quantum
lines, and 13 liftings of quantum planes. Except the group Hopf algebras, the
only candidates to be symmetric are the liftings of quantum planes. By using
the criteria for unimodularity, it is easy to discard 6 of them. The other ones
are as follows.

First take c be a generator of C4, and c∗ be a generator of C∗
4 . Then c∗(c)

is a primitive fourth root of unity. We have the following Hopf algebras of
dimension 16 with coradical kC4.
• H(C4, (2, 2), (c2, c2), (c∗, c∗),0,0). Then cn−1 = c2c2 = 1, so this is uni-

modular. We have q = (−1,−1), and then if cd = 1, we have c2d1+2d2 = 1.
Hence d1 + d2 is even, and then qd = (−1)d1+d2 = 1. Thus this Hopf algebra
is symmetric.
• H(C4, (2, 2), (c, c3), ((c∗)2, (c∗)2), (0, 1),0), H(C4, (2, 2), (c, c3), ((c∗)2,

(c∗)2), 0,0) and H(C4, (2, 2), (c, c3), ((c∗)2, (c∗)2), (1, 1),0) are non-isomorphic
Hopf algebras which are isomorphic as coalgebras. For any of these Hopf
algebras we have cn−1 = cc3 = 1, so they are unimodular. We have q =
(−1,−1), and then if cd = 1, we have cd1+3d2 = 1. Hence d1 + 3d2 is a
multiple of 4, therefore d1 + d2 is even, and we have qd = (−1)d1+d2 = 1, and
these Hopf algebras are symmetric.
• H(C4, (2, 2), (c2, c2), (c∗, (c∗)3),0,0). We have cn−1 = c2c2 = 1, so it is

unimodular. Also q = (−1,−1), and then if cd = 1, we have c2(d1+d2) = 1, i.e.
d1 + d2 is even, so qd = 1. Therefore this is also symmetric.

The following Hopf algebras have coradical k(C2 × C2).
• H(C2, (2, 2), (c, c), (c∗, c∗),0,0). Here c denotes the generator of C2, and

c∗ is the generator of C∗
2 . Thus q = (−1,−1). We have that cn−1 = cc = 1.

Also, if cd = 1, then d1 + d2 is even, therefore qd = 1. Thus this is also
symmetric.
• H(C2 × C2, (2, 2), (c, c), (c∗, c∗d∗),0,0), where c, d denote generators of

C2×C2, and c∗, d∗ are generators of (C2×C2)∗ such that c∗(c) = −1, c∗(d) =
1, d∗(c) = 1 and d∗(d) = −1. In particular q = (−1,−1). We have that
qn−1 = cc = 1. If cd = 1, then d1 + d2 is even, so then qd = 1, and this is
also symmetric.
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We conclude that there exist 7 isomorphism types of non-semisimple pointed
Hopf algebras of dimension 16 that are symmetric as coalgebras.
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