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Abstract. We introduce two novel families of meromorphic multivalent func-
tions, by using linear operator and study some properties (inclusion properties,
basic properties) of these families. We also determine the neighborhood of these
subclasses.
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1. INTRODUCTION AND DEFINITIONS

Let us denote by Σp the class of functions f(z) of the form

(1) f(z) = z−p +
∞∑

n=1

anzn−p(n ≥ p, p ∈ N = {1, 2, 3, . . .})

which are analytic and p-valent in the annulus U∗ = {z : 0 < |z| < 1, z ∈ C} =
U\ {0}.

We define the Hadamard product of the functions f(z) ∈ Σp given by (1)
and g ∈ Σp given

g(z) = z−p +
∞∑

n=1

bnzn−p (p ∈ N)

as

(f ∗ g)(z) = z−p +
∞∑

n=1

anbnzn−p.

For real or complex numbers a and c (c 6= 0,−1,−2, . . .), we define the function
ϕp(a, c; z) by

(2) ϕp(a, c; z) = z−p +
∞∑

n=1

(a)n

(c)n
zn−p,

where (x)n denotes the Pochhammer symbol defined by

(x)n =
{

x(x + 1)(x + 2) · · · (x + n− 1), n = 1, 2, 3, . . .
1, n = 0

We define the linear operator Lp(a, c) on Σp by the convolution

(3) Lp(a, c)f(z) = ϕp(a, c; z) ∗ f(z).
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From (3) and (2), we can write

(4) z(Lp(a, c)f(z))′ = aLp(a + 1, c)f(z)− (a + p)Lp(a, c)f(z).

Let f and F be two analytic functions in the unit disk U , we say that f
is subordinate to F if there exists an analytic function w(z) with w(0) = 0
and |w(z)| < 1(z ∈ U) such that f = F (w(z)). We denote by f ≺ F this
subordination.

Let Ha,c(p;A,B, b, µ) denote the class of functions of the form (1) which
satisfies the condition

(5) p− 1
b

{
z(Lp(a, c)f(z))′

Lp(a, c)f(z)
+ p

}
≺ p− µp + pµ

1 + Az

1 + Bz
,

where 0 < µ ≤ 1, a ∈ R, c ∈ R\{0,−1,−2,−3, · · · },−1 ≤ B < A ≤ 1, p ∈ N, b
non-zero complex number.

Definition. Let Nδ(f) denotes the δ-neighborhood of the function f ∈ Σp

of the form (1), that is

Nδ(f) = {h ∈ Σp : h(z) = z−p +
∞∑

n=1

bnzn−p

and
∞∑

n=1

(
n(1 + |B|) + pµ|b|(A−B)

pµ|b|(A−B)

)
(a)n

(c)n
|an − bn| ≤ δ,

where
a > 0, c > 0,−1 ≤ B < A ≤ 1, δ ≥ 0}.

We denote by H+
a,c(p;A,B, b, µ) the class of functions f(z) ∈ Ha,c(p;A,B, b, µ),

and f(z) of the form

(6) f(z) = z−p +
∞∑

n=p

|an|zn (p ∈ N).

Let N+
δ (f) denotes the δ-neighborhood of the function f ∈ Σp of the form (6),

by

N+
δ (f) = {g ∈ Σp : g(z) = z−p +

∞∑
n=1

|bn|zn},

and
∞∑

n=p

(
µp(1−A)|b|+ n(1−B)

pµ|b|(A−B)

)
(a)n+p

(c)n+p
||an| − |bn|| ≤ δ,

where a > 0, c > 0, −1 ≤ β < A < 1, 0 < µ ≤ 1, δ ≥ 0, b non-zero complex
number.

We can re-write the condition (5) as

(7)
∣∣∣∣ z(Lp(a, c)f(z))′ + pLp(a, c)f(z)
Bz(Lp(a, c)f(z))′ + [Bp(1− µb) + Aµb]Lp(a, c)f(z)

∣∣∣∣ < 1.
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We note that the definition of linear operator L(a, c) was motivated by
Carlson, Shaffer [1] in space of univalent functions (see also [7]).

Also we note that the concept of δ-neighborhoods Nδ(f) of analytic func-
tions f(z) was introduced by Ruscheweyh [6] and [2], but for meromorphic
p-valent function studied by Liu and Srivastava [4]. In the present paper, we
derive the generalization of the result by [4].

Remark 1. (1) When we consider b = 1 and µ = 1, Ha,c(p;A,B, b, µ)
reduces to the class Ha,c(p;A,B), which was studied by [4],

(2) When we consider a = 1, c = 1, b = 1, and µ = 1, we get the class
H+

1,1(p;A,B), which was investigated earlier by Mogra [5].

Lemma 1. (Jack [3]). Let the function w(z) (non-constant) be analytic in
U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1
at a point z0 ∈ U , then z0w

′(z0) = λw(z0), when λ is a real number and λ ≥ 1.

2. SOME BASIC PROPERTIES OF THE CLASSES H+
A,C(P ;A,B, B, µ)

AND HA,C(P ;A,B, B, µ)

In this section we consider a > 0, c > 0, A+B ≤ 0, where (−1 ≤ B < A ≤
1).

We start to derive the necessary and sufficient condition of the function in
the class H+

a,c(p;A,B, b, µ).

Theorem 1. Let a function f(z) defined by (6) be in Σp. Then the function
f(z) belongs to the class H+

a,c(p;A,B, b, µ) if and only if

(8)
∞∑

n=p

[n(1−B) + p(1−B − µ|b|(A−B))]
(a)n+p

(c)n+p
|an| ≤ pµ|b|(A−B).

The result is sharp for the function f(z) given by

(9) f(z) = z−p +
(

pµ|b|(A−B)
n(1−B) + p(1−B − µ|b|(A−B))

)
·
(c)k+p

(a)k+p
zk

(k = p, p + 1, p + 2, · · · , n ∈ N).

Proof. Assuming that the inequality (8) holds true then, from (8), we find
that ∣∣∣∣ z(Lp(a, c)f(z))′ + pLp(a, c)f(z)

Bz(Lp(a, c)f(z))′ + [Bp(1− µb) + Apµb]Lp(a, c)f(z)

∣∣∣∣
≤

∑∞
n=p(n + p) (a)n+p

(c)n+p
|an|

pµ|b|(A−B) +
∑∞

n=p[B(n + p) + pµ|b|(A−B)] (a)n+p

(c)n+p
|an|

< 1

(z ∈ U, z ∈ C, |z| = 1).

Hence, by the Maximum Modulus Theorem we have f(z) ∈ H+
a,c(p;A,B, b, µ).
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Conversely, suppose that f(z) is in the class H+
a,c(p;A,B, b, µ) with f(z) of

the form (6), then we find, from (7), that∣∣∣∣ z(Lp(a, c)f(z))′ + pLp(a, c)f(z)
Bz(Lp(a, c)f(z))′ + [Bp(1− µb) + Apµb]Lp(a, c)f(z)

∣∣∣∣ =∣∣∣∣∣∣
∑∞

n=p
(a)n+p

(c)n+p
[n + p]|an|zn+p

pµ|b|(A−B) +
∑∞

n=p[B(n + p) + pµb(A−B)] (a)n+p

(c)n+p
|an|zn+p

∣∣∣∣∣∣ < 1.

If we choose z to be real and z → 1−, we get
∞∑

n=p

(a)n+p

(c)n+p
(n+p)|an| ≤ pµ|b|(A−B)+

∞∑
n=p

[B(n+p)+pµ|b|(A−B)]
(a)n+p

(c)n+p
|an|

which is precisely the assertion (8) of Theorem 1.
Finally, we note that the assertion (8) of Theorem 1 is sharp, the extremal

function being given by (9). This completes the proof of Theorem 1. �

Next, we derive the sufficient condition of function in the class

Ha,c(p;A,B, b, µ)

in the next theorem also we omit the proof as in same line of proof of Theo-
rem 1.

Theorem 2. Let f ∈ Σp be given by (1). Then the sufficient condition for
f(z) be in the class Ha,c(p;A,B, b, µ), that satisfies the condition

∞∑
n=1

[n(1−B)− pµ|b|(A−B)]
(a)n

(c)n
≤ pµ|b|(A−B)

Theorem 3. If f(z) ∈ H+
a,c(p;A,B, b, µ), then

|f (m)(z)| ≤
{

(p + m− 1)!
(p− 1)!

− (c)2p

(a)2p

(
µ|b|(A−B)

2(1−B)− µ(|b|(A−B)

)
p!

(p−m)!
r2p

}
r−p−m,

(10)

|f (m)(z)| ≥
{

(p + m− 1)!
(p− 1)!

+
(c)2p

(a)2p

(
µ|b|(A−B)

2(1−B)− µ(|b|(A−B)

)
p!

(p−m)!
r2p

}
r−p−m

(11)

(0 < |z| = r < 1, a > c > 0,m ∈ N0, p > m, 0 < µ ≤ 1,−1 ≤ B < A ≤ 1, b
complex number.)
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The result is sharp for the function f(z) given by

(12) f(z) = z−p +
(

µ|b|(A−B)
2(1−B)− µ|b|(A−B)

)
(c)2p

(a)2p
zp (p ∈ N).

Proof. Suppose that f(z) ∈ H+
a,c(p;A,B, b, µ), then we find, from (8), that

(a)2p

(c)2p
· p[2(1−B)− µ|b|(A−B)]

p!

∞∑
n=p

n!|an|

≤
∞∑

n=p

[n(1−B) + p(1−B − µ|b|(A−B))]
(a)n+p

(c)n+p
|an| ≤ pµ|b|(A−B).

We conclude that

(13)
∞∑

n=p

n!|an| ≤
(

µ|b|(A−B)
2(1−B)− µ|b|(A−B)

)
(c)2p

(a)2p
p!.

If we differentiate both sides of (6) m times with respect to z, we get

f (m)(z) = (−1)m (p + m− 1)!
(p− 1)!

z−p−m +
∞∑

n=p

n!
(n−m)!

|an|zn−m

(m ∈ N0, p ∈ N, p > m)

= (−1)m (p + m− 1)!
(p− 1)!

z−p−m +
∞∑

n=p

n!ϕ(n)|an|zn−m,(14)

where, for convenience,

ϕ(n) =
1

(n−m)!
(p ∈ N,m ∈ N0, n ≥ p, m < p).

Clearly, the function ϕ(n) is decreasing in n, and we have

(15) 0 < ϕ(n) ≤ ϕ(p) =
1

(p−m)!
Making use of (13), (14) and (15), we get (10) and (11).

In order to complete the proof of Theorem 3, it is easily observed the equal-
ities in (10) and (11) are satisfied by the function f(z) given by (12). �

Theorem 4. Let the function f(z) defined by (6) be in the class

H+
a,c(p;A,B, b, µ).

Then
(i) f is meromorphically p-valent starlike of order δ(0 ≤ δ < p) in the disk

|z| < r1, where

r1 = r1(p;A,B, b, µ; δ)

= inf
n≥p

(
(a)n+p

(c)n+p
· n(1−B) + (1−B − µ|b|(A−B))

µ|b|(A−B)
· (p− δ)

n + δ

) 1
n+p

.(16)
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(ii) f is meromorphically p-valent convex of order δ(0 ≤ δ < p) in the disk
|z| < r2, where

r2 = r2(p;A,B, b, µ; δ)

= inf
n≥p

(
(a)n+p

(c)n+p
· p(p− δ)(n(1−B) + (1−B − µ|b|(A−B))

n(n + δ)µ|b|(A−B)

) 1
n+p

.

Proof. (i) Making use of the definition (6), it is not difficult to observe that

(17)
∣∣∣∣ zf ′(z) + pf(z)
zf ′(z) + (2δ − p)f(z)

∣∣∣∣ ≤
∑∞

n=p(n + p)|an||z|n+p

2(p− δ)−
∑∞

n=p(n + p + 2δ)|an||z|n+p
≤ 1

(|z| < r1; 0 ≤ δ < 1).
This last inequality (17) holds true if

∞∑
n=p

(
n + δ

p− δ

)
|an||z|n+p ≤ 1.

In view of (8), the last inequality is true if(
n + δ

p− δ

)
|z|n+p ≤

(
n(1−B) + p(1−B − µ|b|(A−B))

µ|b|(A−B)

)
(a)n+p

(c)n+p

(n ≥ p, p ∈ N)

which, when solved for |z|, yields (16).
(ii) Making use of the definition (6), it is easy to observe that

(18)∣∣∣∣ zf ′′(z) + (1 + p)f ′(z)
zf ′′(z) + (1− p + 2δ)f ′(z)

∣∣∣∣ ≤
∑∞

n=p n(n + p)|an||z|n+p

2p(p− δ)−
∑∞

n=p n(n− p + 2δ)|an||z|n+p
≤ 1

(z < r2, 0 ≤ δ < 1).
The last inequality (18) holds true if

(19)
∞∑

n=p

(
n(n + δ)
p(p− δ)

)
|an| · |z|n+p ≤ 1.

According to Theorem 3, the inequality (19) is true if(
n(n + δ)
p(p− δ)

)
|z|n+p ≤

(
n(1−B) + p(1−B − µ|b|(A−B)

µ|b|(A−B))

)
· (a)n+p

(c)n+p

(n ≥ p, p ∈ N)

or if

(20) |z| ≤
(

(a)n+p

(c)n+p
· n(1−B) + p(1−B − µ|b|(A−B))

µ|b|(A−B)
p(p− δ)
n(n + δ)

) 1
n+p

.

The theorem follows easily from (20). �
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3. INCLUSION PROPERTIES OF THE CLASS HA,C(P ;A,B, B, µ)

In this section we make use of the Jack’s Lemma to prove the theorems in
this section.

Theorem 5. Let a ≥ pµ|b|(A−B)
1+B , then we have

Ha+1,c(p;A,B, b, µ) ⊂ Ha,c(p;A,B, b, µ),

where −1 ≤ B < A ≤ 1, 0 < µ ≤ 1, a ∈ R, c ∈ R \ {0,−1,−2, . . .}, p ∈ N, b a
(non-zero) complex number.

Proof. Suppose f ∈ Ha+1,c(p;A,B, b, µ), and

(21)
z(Lp(a, c)f(z))′

Lp(a, c)f(z)
= −p

(
1− µ|b|+ µ|b| · 1 + Aw(z)

1 + Bw(z)

)
for some either analytic or meromorphic function w(z) in U , with w(0) = 0.

From (21) and (4) we get

(22)
aLp(a + 1, c)f(z)
Lp(a, c)f(z)

=
a + [aB − pµ|b|(A−B)]w(z)

1 + Bw(z)

differentiating logarithmically both sides of (22) we get

z(Lp(a + 1, c)f(z))′

Lp(a + 1, c)f(z)
=

z(Lp(a, c)f(z))′

Lp(a, c)f(z)
+

(aB − pµ|b|(A−B))zw′(z)
a + [aB − pµ|b|(A−B)]w(z)

− Bz′w(z)
1 + Bw(z)

= −p

[
1 + (B + µ|b|(A−B))w(z)

1 + Bw(z)

]
− pµ|b|(A−B)zw′(z)

(1 + Bw(z))[a + (aB − pµ|b|(A−B))w(z)]
.(23)

Suppose that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1, (w(z0) 6= −1),

then Jack’s Lemma gives us that

z0w
′(z0) = kw(z0), (k ≥ 1).

Now setting w(z0) = eiθ(θ 6= π) in (23) we get∣∣∣∣ z0(Lp(a, c)f(z0))′ + pLp(a, c)f(z0)
Bz0(Lp(a, c)f(z0))′ + [Bp(1− µb) + Apµb]Lp(a, c)f(z0)

∣∣∣∣2 − 1

=
∣∣∣∣−p(a + k) + [aB − pµb(A−B)]eiθ

a + [aB − kB − pµb(A−B)]eiθ

∣∣∣∣2 − 1

≥
∣∣∣∣(a + k) + [aB − pµb(A−B)]eiθ

a + [aB − k − pµb(A−B)]eiθ

∣∣∣∣2 − 1

But we have contradiction with the condition of the theorem.
Therefore we have |w(z)| < 1, and by (21) we get f ∈ Ha,c(p;A,B, b, µ).
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This completes the proof. �

Theorem 6. Let the function f(z) defined by (1) be in the class

Ha,c(p;A,B, b, µ).

Then the function g(z) defined by

(24) Lp(a, c)g(z) =
(

λ− pα

zλ

) ∫ z

0
tλ−1[Lp(a, c)f(t)]αdt]1/α

(where α > 0, λ > pα ·
(

1+[B+µ|b|(A−B)]
1+B

)
> 0, p ∈ N) is also in same class

Ha,c(p;A,B, b, µ).

Proof. Let f ∈ Ha,c(p;A,B, b, µ), and

(25)
z(Lp(a, c)g(z))′

Lp(a, c)g(z)
= −p

(
1− µ|b|+ µ|b| · 1 + Aw(z)

1 + Bw(z)

)
for some either analytic or meromorphic function w(z) in U , with w(0) = 0.

From (6), we have

(26) [Lp(a, c)g(z)]α =
λ− pα

zλ

∫ z

0
tλ−1[Lp(a, c)f(t)]αdt.

Differentiating logarithmically both sides of (26), and after some computation,
we get

(27)
z(Lp(a, c)g(z))′

Lp(a, c)g(z)
= −λ

α
+

λ− pα

α

[
Lp(a, c)f(z)
Lp(a, c)g(z)

]α

then from (25) and (27), we have

λ(Lp(a, c)f(z))α + (αp− λ)(Lp(a, c)f(z))α

(Lp(a, c)g(z))α

= αp

[
1 + (B + µ|b|(A−B))w(z)

1 + Bw(z)

]
.

Differentiating both sides of last equality, and from (25) and (27), we get

z(Lp(a, c)f(z))′

Lp(a, c)f(z)
=

p(1 + [B + µ|b|(A−B)]w(z))
αp(1 + [B + µ|b|(A−B)]w(z)− λ(1 + Bw(z))

×[
λ− αp

{
(1 + [B + µ|b|(A−B)]w(z) + Bzw′(z)

1 + Bw(z)

}
+

[B + µ|b|(A−B)]zw′(z)
1 + [B + µ|b|(A−B)]w(z)

]
.(28)

Suppose that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1, (w(z0) 6= −1),
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then by Jack’s Lemma z0w
′(z0) = kw(z0), (k ≥ 1). Now letting w(z0) =

eiθ(θ 6= π), in (28), we get∣∣∣∣ z0(Lp(a, c)f(z0))′ + pLp(a, c)f(z0)
Bz0(Lp(a, c)f(z0))′ + [Bp(1− µb) + pAµb]Lp(a, c)f(z0)

∣∣∣∣2 − 1

=
∣∣∣∣ λ + k − αp + [Bλ− αp(B + µb(A−B))]eiθ

λ− αp + [Bλ−Bk − αp[B + µb(A−B)]eiθ

∣∣∣∣2 − 1

(29) =
q(θ)

|λ− αp + (Bλ−Bk − αp(B + µ|b|(A−B)eiθ|2
,

where

q(θ) = k2(1−B2) + 2k[(1 + B2)λ− αp(1 + B(B + µ|b|(A−B)))]
+2k[2Bλ− αp(2B + µ|b|(A−B)) cos θ,

where 0 ≤ θ < 2π, −1 ≤ B < A ≤ 1, k ≥ 1, 0 < µ ≤ 1, b a complex number,
by hypothesis we have λ ≥ pα1+[B+µ|b|(A−B)]

1+B > pα1−[B+µ|b|(A−B)]
1−B . Therefore

(30) q(θ) ≥ 0 and q(π) ≥ 0.

Hence, from (30), we obtain

(31) q(θ) ≥ 0 (0 ≤ θ < 2π).

In view of (31) and (29), we get contradiction with the condition of the
theorem that f ∈ Ha,c(p, A,B, b, µ). Therefore we have |w(z)| < 1, and by
(21) we get g(z) ∈ Ha,c(p;A,B, b, µ). This completes the proof. �

4. NEIGHBORHOOD OF THE CLASSES HA,C(P ;A,B, B, µ)
AND H+

A,C(P ;A,B, B, µ)

We start to prove the neighborhood of the class Ha,c(p;A,B, b, µ).

Theorem 7. Let the function f(z) defined by (1) be in Ha,c(p;A,B, b, µ).
For all ε in C with |ε| < δ, let

f(z) + εz−p

1 + ε
∈ Ha,c(p;A,B, b, µ),

then
Nδ(f) ⊂ Ha,c(p;A,B, b, µ) (δ > 0).

Proof. Let g ∈ Ha,c(p;A,B, b, µ), then from (1.7), we can write, for (γ ∈
C, |γ| = 1), that

(32)
[

z(Lp(a, c)g(z))′ + pLp(a, c)g(z)
Bz(Lp(a, c)g(z))′ + [Bp(1− µ|b|) + Apµ|b|]Lp(a, c)g(z)

]
6= γ.

Let

h(z) = z−p +
∞∑

n=1

cnzn−p.
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In view of (32), we can write

(33) h(z) = z−p +
∞∑

n=1

(
n(1− γB)− pγµ|b|(A−B)

γpµ|b|(A−B)

)
(a)nzn−p

(c)n
.

From (33), we obtain

|cn| =
∣∣∣∣(n(1− γB)− pγµ|b|(A−B)

γpµ|b|(A−B)

)
(a)n

(c)n

∣∣∣∣ ≤ µ|b|p(A−B) + n(1 + |B|)
pµ|b|(A−B)

where n ≥ p, p ∈ N.
Now we can write (32) as

(34)
(g ∗ h)(z)

z−p
6= 0 (z ∈ U).

By the condition of the theorem, (34) reduced to

1
z−p

· (f ∗ h)(z) + εz−p

1 + ε
6= 0, or

∣∣∣∣(f ∗ g)(z)
z−p

∣∣∣∣ ≥ δ.

Let

g(z) = z−p +
∞∑

n=1

bnzn−p ∈ Nδ(f),

then ∣∣∣∣(g ∗ h)
z−p

∣∣∣∣ =
∣∣∣∣f ∗ h

z−p
+

(g − f) ∗ h

z−p

∣∣∣∣ ≥ δ −
∣∣∣∣(g − f) ∗ h

z−p

∣∣∣∣ .

But we have∣∣∣∣(g − f) ∗ h

z−p

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

(an − bn)cnzn

∣∣∣∣∣
≤ |z|

∞∑
n=1

(
pµ|b|(A−B) + n(1 + |B|)

pµ|b|(A−B)

)
(a)n

(c)n
|an − bn| ≤ δ (z ∈ U, δ > 0).

From (34) and (32), we get g ∈ Ha,c(p;A,B, b, µ), so Nδ ⊂ Ha,c(p;A,B, b, µ).
This completes the proof. �

Theorem 8. Let f(z) be defined by (1), and let the partial sums S1(z) and
Sk(z) are defined by S1(z) = z−p and

Sk(z) = z−p +
k−1∑
n=1

anzn−p (k ∈ N, k > 1).

Also suppose that

(35)
∞∑

n=1

(
pµ|b|(A−B) + n(1 + |B|)

pµ|b|(A−B)

)
(a)n

(c)n
≤ 1.
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If a > 0 and c > 0, then f(z) ∈ Ha,c(p;A,B, b, µ), and if a > c > 0, then

(36) R

(
f(z)
Sk(z)

)
> 1− 1

dk
(z ∈ U, k ∈ N),

and

(37) R

(
Sk(z)
f(z)

)
>

dk

1 + dk
(z ∈ U, k ∈ N).

Each of (36) and (37) is the best possible for kn ∈ N.

Proof. By applying Theorem 7 and from (35), we get

N1(z−p) ∈ Ha,c(p;A,B, b, µ) (a > 0, c > 0, p ∈ N),

where z−p ∈ Ha,c(p;A,B, b, µ) (from (7)). Thus f ∈ Ha,c(p;A,B, b, µ).
Now, from (35), we find that

(38)
k−1∑
n=1

|an|+ dk

∞∑
n=k

|an| ≤
∞∑

n=1

dn|an| ≤ 1 (as dn+1 > dn > 1).

Setting

h1(z) = dk

{
f(z)
Sk(z)

−
(

1− 1
dn

)}
= dk

{
z−p +

∑∞
n=k anzn−p

z−p +
∑k−1

n=1 anzn−p
− 1 +

1
dk

}
=

dk
∑∞

n=k anzn

1 +
∑k−1

n=1 anzn
+ 1,

from (38), we get∣∣∣∣h1(z)− 1
h1(z) + 1

∣∣∣∣ =
dk

∑∞
n=k anzn

2 + 2
∑k−1

n=1 anzn + dk
∑∞

n=k anzn

≤
dk

∑∞
n=k |an|

2− 2
∑k−1

n=1 |an| − dk
∑∞

n=k |an|
≤

dk
∑∞

n=1 |an|
1−

∑k−1
n=1 |an|

≤ 1.

This proves (36).
To prove that the bound in (36) is the best possible for each k ∈ N, set

f(z) = z−p − zk−p

dk
. Then

(39)
f(z)
Sk(z)

= 1− zk

dk
.

When z → 1, (39) reduces to (1 − 1/dk), which proves the assertion of the
theorem.

Now, in the same way we can prove (37), by setting

g(z) = (1 + dk)
(

Sk(z)
f(z)

− dk

1 + dk

)
.

This completes the proof. �
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Theorem 9. Let the function f(z) defined by (6) be in the class

H+
a,c(p;A,B, b, µ),

and A + B ≤ 0, then

N+
δ (f) ⊂ H+

a,c(p;A,B, b, µ),

where δ := 2p
a+2p .

The result is sharp.

Proof. We can prove this theorem in the same way as Theorem 7, with

h(z) = z−p +
∞∑

n=p

cnzn

= z−p +
∞∑

n=p

[
(n + p)(1− γB)− γpµ|b|(A−B))

µ|b|pγ(B −A)
(a)n+p

(c)n+p
zn

]
,

and for A + B ≤ 0 and f ∈ H+
a,c(p;A,B, b, µ), we have∣∣∣∣(f ∗ h)(z)
z−p

∣∣∣∣ ≥ 2p

a + 2p
= δ.

Next, to prove the sharpness, let f(z) and g(z) given by

f(z) = z−p +
(

µ|b|(A−B)
2− 2B − µ|b|(A−B)

)
(c)2p

(a + 1)2p
zp ∈ H+

a,c(p;A,B, b, µ)

and g(z) =

z−p +
[

µ|b|(A−B)
2− 2B − µ|b|(A−B)

· (c)2p

(a + 1)2p
+

µ|b|δ′(A−B)
2− 2B − µ|b|(A−B)

· (c)2p

(a)2p

]
zp,

where
(
δ′ > δ = 2p

a+2p

)
, we get g(z) ∈ N+

δ (f) but g(z) 6∈ H+
a,c(p;A,B, b, µ).

�
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