NEW CRITERIA FOR MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS

M.K. AOUF, F.M. AL-OBOUDI and M.M. HAIDAN

Abstract. Let $K_{n}(\alpha)$ be the class of functions of the form

$$
f(z)=\frac{a_{-1}}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-1} \neq 0\right)
$$

which are regular in the punctured disc $\mathrm{U}^{*}=\{z: 0<|z|<1\}$ and satisfy

$$
\operatorname{Re}\left\{-z^{2}\left(D^{n} f(z)\right)^{\prime}\right\}>\alpha, 0 \leq \alpha<1,|z|<1
$$

and $n \in \mathbb{N}_{0}=\{0,1,2, \cdots\}$, where

$$
D^{n} f(z)=\frac{a_{-1}}{z}+\sum_{k=2}^{\infty} k^{n} a_{k-2} z^{k-2}
$$

It is proved that $K_{n+1}(\alpha) \subset K_{n}(\alpha)$. Since $K_{0}(\alpha)$ is the class of meromorphically close-to-convex functions, all functions in $K_{n}(\alpha)$ are meromorphically close-toconvex.
MSC 2000. 30C45.
Key words. Regular, close-to-convex, meromorphic function.

1. INTRODUCTION

Let \sum denote the class of functions of the form:

$$
\begin{equation*}
f(z)=\frac{a_{-1}}{z}+\sum_{k=0}^{\infty} a_{k} z^{k}, \quad\left(a_{-1} \neq 0\right) \tag{1.1}
\end{equation*}
$$

which are regular in the punctured disc $U^{*}=\{z: 0<|z|<1\}$. Define

$$
\begin{aligned}
D^{0} f(z) & =f(z), \\
D^{1} f(z) & =\frac{a_{-1}}{z}+2 a_{0}+3 a_{1} z+4 a_{2} z^{2}+\ldots \\
& =\frac{\left(z^{2} f(z)\right)^{\prime}}{z}, \\
D^{2} f(z) & =D^{1}\left(D^{1} f(z)\right),
\end{aligned}
$$

and for $n=1,2,3, \ldots$

$$
\begin{equation*}
D^{n} f(z)=D^{1}\left(D^{n-1} f(z)\right)=\frac{a_{-1}}{z}+\sum_{k=2}^{\infty} k^{n} a_{k-2} z^{k-2} \tag{1.2}
\end{equation*}
$$

Let $K_{n}(\alpha)$ denote the class of functions $f(z)$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{-z^{2}\left(D^{n} f(z)\right)^{\prime}\right\}>\alpha \tag{1.3}
\end{equation*}
$$

$0 \leq \alpha<1,|z|<1, n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$ and $D^{n} f(z)$ is defined by (1.2).
In this paper we shall show that

$$
\begin{equation*}
K_{n+1}(\alpha) \subset K_{n}(\alpha), \quad 0 \leq \alpha<1, \quad n \in \mathbb{N}_{0} \tag{1.4}
\end{equation*}
$$

Since $K_{0}(\alpha)$ is the class of functions $f(z) \in \sum$ which satisfy $\operatorname{Re}\left\{-z^{2} f^{\prime}(z)\right\}>$ α for $|z|<1$, it follows from (1.4) that all functions in $K_{n}(\alpha)$ are meromorphically close-to-convex. Further we consider the integrals of functions in $K_{n}(\alpha)$.

In [3] Uralegaddi and Somanatha obtain a new criterion for meromorphic starlike functions via the basic inclusion relationship $B_{n+1}(\alpha) \subset B_{n}(\alpha), 0 \leq$ $\alpha<1$ and $n \in \mathbb{N}_{0}$, where $B_{n}(\alpha)$ is the class of functions $f(z) \in \sum$ satisfying

$$
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-2\right\}<-\alpha
$$

$0 \leq \alpha<1, n \in \mathbb{N}_{0}$ and $|z|<1$.

2. PROPERTIES OF THE CLASS $K_{N}(\alpha)$

In proving our main results (Theorem 1 and Theorem 2 below), we shall need the following lemma due to Jack [2].

Lemma 1. Let $w(z)$ be non-constant regular in $U=\{z:|z|<1\}, w(0)=0$. If $w(z)$ attains its maximum value on the circle $|z|=r<1$ at z_{o}, we have $w^{\prime}\left(z_{o}\right)=k w\left(z_{o}\right)$, where k is a real number, $k \geq 1$.

Theorem 1. $K_{n+1}(\alpha) \subset K_{n}(\alpha)$ for each $n \in N_{o}$.
Proof. Let $f(z) \in K_{n+1}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{-z^{2}\left(D^{n+1} f(z)\right)^{\prime}\right\}>\alpha, \quad|z|<1 \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{-z^{2}\left(D^{n} f(z)\right)^{\prime}\right\}>\alpha \tag{2.2}
\end{equation*}
$$

Define a regular function $w(z)$ in the unit $\operatorname{disc} U=\{z:|z|<1\}$ by

$$
\begin{equation*}
-z^{2}\left(D^{n} f(z)\right)^{\prime}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{2.3}
\end{equation*}
$$

Differentiating (2.3) we obtain

$$
\begin{equation*}
z^{2}\left(D^{n} f(z)\right)^{\prime \prime}+2 z\left(D^{n} f(z)\right)^{\prime}=\frac{2(1-\alpha) w^{\prime}(z)}{(1+w(z))^{2}} \tag{2.4}
\end{equation*}
$$

One can easily verify the identity

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=D^{n+1} f(z)-2 D^{n} f(z) \tag{2.5}
\end{equation*}
$$

Differentiating (2.5) we obtain

$$
\begin{equation*}
z^{2}\left(D^{n} f(z)\right)^{\prime \prime}=z\left(D^{n+1} f(z)\right)^{\prime}-3 z\left(D^{n} f(z)\right)^{\prime} \tag{2.6}
\end{equation*}
$$

Using (2.6), (2.4) may be written as

$$
\begin{equation*}
-z^{2}\left(D^{n+1} f(z)\right)^{\prime}=-z^{2}\left(D^{n} f(z)\right)^{\prime}-\frac{2(1-\alpha) z w^{\prime}(z)}{(1+w(z))^{2}} \tag{2.7}
\end{equation*}
$$

We claim that $|w(z)|<1$ in U. For otherwise (by Jack's lemma 1) there exists a point z_{o} in U such that

$$
\begin{equation*}
z_{o} w^{\prime}\left(z_{o}\right)=k w\left(z_{o}\right) \tag{2.8}
\end{equation*}
$$

where $\left|w\left(z_{o}\right)\right|=1$ and $k \geq 1$. From (2.7) and (2.8), we obtain

$$
-z_{o}^{2}\left(D^{n+1} f\left(z_{o}\right)\right)^{\prime}=\frac{1+(2 \alpha-1) w\left(z_{o}\right)}{1+w\left(z_{o}\right)}-\frac{2(1-\alpha) k w\left(z_{o}\right)}{\left(1+w\left(z_{o}\right)\right)^{2}}
$$

Thus

$$
\operatorname{Re}\left\{-z_{o}^{2}\left(D^{n+1} f\left(z_{o}\right)\right)^{\prime}\right\}=\alpha-2(1-\alpha) k \operatorname{Re} \frac{w\left(z_{o}\right)}{\left(1+w\left(z_{o}\right)\right)^{2}} \leq \alpha
$$

which contradicts (2.1). Hence $|w(z)|<1$ in U and from (2.3) it follows that $f(z) \in K_{n}(\alpha)$.

Theorem 2. Let $f(z) \in K_{n}(\alpha)$ and $\operatorname{Re} c>0$. Then

$$
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) \mathrm{d} t \in K_{n}(\alpha)
$$

Proof. From the hypothesis we have

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime}+(c+1) D^{n} F(z)=c D^{n} f(z) \tag{2.9}
\end{equation*}
$$

Differentiating (2.9) we obtain

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime \prime}+(c+2)\left(D^{n} F(z)\right)^{\prime}=c\left(D^{n} f(z)\right)^{\prime} \tag{2.10}
\end{equation*}
$$

Define $w(z)$ in U by

$$
\begin{equation*}
-z^{2}\left(D^{n} F(z)\right)^{\prime}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{2.11}
\end{equation*}
$$

Clearly $w(z)$ is regular and $w(0)=0$. Differentiating (2.11) we obtain

$$
\begin{equation*}
z^{2}\left(D^{n} F(z)\right)^{\prime \prime}+2 z\left(D^{n} F(z)\right)^{\prime}=\frac{2(1-\alpha) z w^{\prime}(z)}{c(1+w(z))^{2}} \tag{2.12}
\end{equation*}
$$

Using (2.12), (2.10) may be written as

$$
\begin{equation*}
-z^{2}\left(D^{n} f(z)\right)^{\prime}=-z^{2}\left(D^{n} F(z)\right)^{\prime}-\frac{2(1-\alpha) z w^{\prime}(z)}{c(1+w(z))^{2}} \tag{2.13}
\end{equation*}
$$

The remaining part of the proof is similar to that of Theorem 1.

Theorem 3. Let $f(z) \in \sum$ and satisfy the condition $\operatorname{Re}\left\{-z^{2}\left(D^{n} f(z)\right)^{\prime}\right\}>$ $\alpha-\frac{1-\alpha}{2 c}$ where c is any real number greater than zero. Then

$$
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) \mathrm{d} t \in K_{n}(\alpha) .
$$

Proof. The proof is similar to the proof of Theorem 2.
Taking $n=\alpha=0$ and $c=1$, we get
Corollary 1. If $\operatorname{Re}\left\{-z^{2} f^{\prime}(z)\right\}>-\frac{1}{2}$ for $|z|<1$, then $\operatorname{Re}\left\{-z^{2} F^{\prime}(z)\right\}>$ 0 for $|z|<1$, where

$$
F(z)=\frac{1}{z^{2}} \int_{0}^{z} t f(t) \mathrm{d} t .
$$

Theorem 4. Let $F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} \xi^{c} f(\xi) \mathrm{d} \xi, \operatorname{Re}(c)=t>0$ and $F(z) \in$ $K_{n}(\alpha)$. Then $\operatorname{Re}\left\{-z^{2}\left(D^{n} f(z)\right)^{\prime}\right\}>\alpha$ for $|z|<R_{c}$, where $R_{c}=\frac{\sqrt{1+t^{2}}-1}{t}$. The estimate is sharp when c is real for the function $f(z)$ for which

$$
-z^{2}\left(D^{n} f(z)\right)^{\prime}=\alpha+(1-\alpha) \frac{1-z}{1+z}
$$

Proof. The proof is similar to the proof of [1, Theorem 4].

REFERENCES

[1] Ganigi, M.D. and Uralegaddi, B.A., Subclasses of meromorphic close-to-convex functions, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N-S.), 33 (81) (1989), 105-109.
[2] Jack, I.S., Functions starlike and convex of order α, J. London Math. Soc., 2 (1971), 469-474.
[3] Uralegaddi, B.A. and Somanatha, C., New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.

Received July 7, 2003

> Mathematics Department Girls College of Education Jeddah, Saudi Arabia
> E-mail: fma34@yahoo.com
> E-mail: majbh2001@yahoo.com

