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ON THE STRUCTURE OF NEAT-INJECTIVE ENVELOPES

R.H. ALIZADE, K.D. AKINCI and A. IMAM

Abstract. We study the neat injective envelope for abelian groups and give
some results about its structure in terms of the basic subgroups.

MSC 2000. 20K99.
Key words. Neat subgroups, exact sequences, injective envelopes.

1. INTRODUCTION

It is well known that every abelian group A can be embedded in a minimal
injective (i.e. divisible) group which is called an injective envelope of A (see
[1]). Similar results were proved for pure-injective envelope [1] and then for
neat-injective envelopes (see [2]). Our main purpose in this paper is to describe
neat-injective envelopes of an abelian group A in terms of the basic subgroups
Bp(A) of p-component Tp(A) of A and A/T (A). We will be considering only
abelian groups and use notations and some well known facts from [1]. P will
denote the set of all prime integers, A E B means that A is an essential
subgroup of B.

2. PRELIMINARIES

A subgroup H of G is said to be a neat subgroup of G, if any equation
px = a with a ∈ H is solvable in H, whenever it is solvable in G for every
prime integer p. Equivalently pH = H ∩ pG for every prime p. A short exact
sequence E : 0 −→ A

α−→ B
β−→ C −→ 0 is said to be neat exact, if Im α

is a neat subgroup of A. The subgroup of Ext(C,A) consisting of all neat
short exact sequences is denoted by Next(C,A). I is called a neat-injective

group if for every neat exact sequence E : 0 −→ A
α−→ B

β−→ C −→ 0 and
homomorphism ξ : A −→ I there exists η : B −→ I such that η ◦ α = ξ,

0 // A
α //

ξ
��

B
β //

η
��~~

~~
~~

~~
C // 0

I

The following Lemma from [5] describes the structure of neat injective
groups.

Lemma 1. I is neat injective if and only if I = D ⊕
∏
p

Tp, where D is

divisible, pTp = 0, and p ranges over all primes.
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The following Lemma, the proof of which is very easy, will be referred in
proving the main results.

Lemma 2. If {Ei : i ∈ I} is a family of short neat-exact sequences

Ei : 0 −→ Ai −→ Bi −→ Ci −→ 0,

then their direct sum⊕
i∈I

Ei : 0 −→
⊕
i∈I

Ai −→
⊕
i∈I

Bi −→
⊕
i∈I

Ci −→ 0

is also neat exact.

The following result is an immediate consequence of Exercise 10, Section 16
in [1].

Lemma 3. Let A be a p-group and B ≤ A. B is an essential subgroup in A
iff A [p] ⊆ B.

A general definition of an X-envelope introduced by Enochs (1981) is given
in [3] as:

Definition 1. Let X be any class of groups. I ∈ X is called an X-envelope
for an abelian group A if there is a homomorphism φ : A −→ I such that the
following hold:

1) For any homomorphism f : A −→ X with X ∈ X, there is a homomor-
phism g : I −→ X such that f = g ◦ φ.

2) If an endomorphism h : I −→ I is such that φ = h ◦ φ, then h is an
automorphism.

Since the direct sum of injective (i.e. divisible) groups is injective and the
sum of essential subgroups of summands is essential in the direct sum therefore
by [4, Corollary 5.1.7], we have the following useful lemma which we will refer
to later.

Lemma 4. If Ii is an injective envelope for the groups Ai for every i ∈ J ,
then

⊕
i∈J Ii is an injective envelope for

⊕
i∈J Ai.

The following definitions and results can easily be derived parallel to the
results given in [1, pp. 170–173] for pure-injective hull. Let G be a neat
subgroup of A, and K(G, A) denote the set of all subgroup H ≤ A, such that
G ∩H = 0 and G + H/H is neat in A/H.

A group is called neat-essential extension of its subgroup G if G is neat in
A, and if K(G, A) consist of 0 only. A group A will be called a maximal neat-
essential extension of G if Ap with A ⊂ Ap is never a neat-essential extension of
G. A maximal neat-essential extension of G is a minimal neat-injective group
containing G as a neat subgroup. A is called a neat-injective envelope of G if
A is a minimal neat-injective group containing a group G as a neat subgroup.

The equivalence of general definition of X-envelopes and the above definition
of neat-injective envelopes is shown in the following proposition.
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Proposition 1. Let X be the set of all neat-injective groups and A be any
group. A group N containing A is a neat-injective envelope for A iff N is an
X-envelope for A.

The proof of the above Proposition is on similar lines as that of [3, Theorem
1.2.11].

We will often use the following Proposition from [2] .

Proposition 2. Let A be a group. The neat-injective group N containing
A as a neat subgroup is minimal if and only if the following two conditions
hold:

1) D(N), where D(N) denotes the maximal divisible subgroup of a group
N , is the divisible hull of the Frattini subgroup F (A) of A;

2) N/A is divisible.

3. MAIN RESULTS

Let A be any group and T be its torsion part. T =
⊕

p∈P Tp, where Tp

is the p-component of T . For each Tp there is a basic subgroup Bp (see [1])
satisfying the following conditions:

1. Bp is a direct sum of groups isomorphic to Z(pn) for some n = 1, 2, . . . ;
2. Bp is a pure subgroup of Tp;
3. Tp/Bp is divisible (therefore isomorphic to a direct sum of Z(p∞).
We shall assume that basic subgroups Bp, factor groups Tp/Bp, and torsion-

free group A/T are given, and describe neat-injective envelopes of any arbi-
trary group A.

We begin with cyclic groups of prime power order. Simple groups Z(p) are
themselves neat-injective.

Lemma 5. A neat-injective envelope of Z(pn) (n 	 1) is isomorphic to
Z(p)⊕ Z(p∞).

Proof. Let i : Z(pn) −→ Z(p∞) be the canonical inclusion and let a homo-
morphism g : Z(pn) −→ Z(p) satisfy g(1) = 1. Define

f : Z(pn) −→ Z(p)⊕ Z(p∞), f(a) = (g(a), i(a)).

Since i is a monomorphism, f is also a monomorphism. If p | f(a), i.e.,
(g(a), i(a)) = p(x, y) for some x ∈ Z(p), y ∈ Z(p∞), then g(a) = px = 0. This
means that a ≡ 0 (mod p), that is p | a in Z(pn). Since Z(pn) is divisible by
every q 6= p, f is a neat monomorphism. We shall apply Proposition 2 to prove
that Z(p) ⊕ Z(p∞) is a neat-injective envelope of f(Z(pn)) or in other words
(Z(p)⊕Z(p∞), f) is a neat-injective envelope of Z(pn). The Frattini subgroup
F (Z(pn)) = 〈p〉 and f(〈p〉) ≤ Z(p∞) so Z(p∞) is an injective envelope of
f(〈p〉) since the rank of Z(p∞) is 1. To show that (Z(p) ⊕ Z(p∞))/f(Z(pn))
is divisible, take any element (x, y) + f(Z(pn). Since g is an epimorphism,
x = g(a) for some a ∈ Z(pn). Then

(x, y) + f(Z(pn) = (0, y − i(a)) + f(a) + f(Z(pn)) = (0, y − i(a)) + f(Z(pn)
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is divisible by every non-zero integer because Z(p∞) is a divisible group. So
by Proposition 2, Z(p)⊕ Z(p∞) is a neat-injective envelope of f(Z(pn). �

Lemma 6. Let p be a prime and B = (
⊕

i∈I Ni)
⊕

j∈J Kj , where each Ni is
isomorphic to Z(pn), for some n � 1, Kj

∼= Z(p) for every j ∈ J, where I and
J are any two disjoint index sets. Then the group M = Z(I∪J)

p ⊕ Z(p∞)(J) is
a neat-injective envelope for B.

Proof. The group Z(p) is a neat-injective envelope of itself and Z(p)⊕Z(p∞)
is a neat-injective envelope for Z(pn). On the other hand, the direct sum of neat
short exact sequences is neat by lemma 2, so we have a neat monomorphism
f : B −→ M such that M/f(B) is a direct sum of divisible groups and
therefore is divisible. It remains only to prove that M is neat-injective. But
this follows from Lemma 1 since pZ(p)(I∪J) = 0 and Z(p∞)(J) is divisible. �

Now let Tp be any p-group. Tp contains a p-basic subgroup Bp (which is
in fact a basic subgroup of Tp), since Tp is a p-group, (see [1, Theorem 32.3])
and Bp is a direct sum of groups isomorphic to Z(pn) where n = 1, 2, . . . , is
as required in the Lemma 8. So we know the structure of the neat-injective
envelope of the basic subgroup Bp. On the other hand Tp/Bp is divisible,
therefore it is a neat-injective envelope for itself.

The following proposition describes the neat-injective envelope of Tp in
terms of those of Bp and Tp/Bp.

Proposition 3. Let Tp be a p-group; M be a neat-injective envelope of the
basic subgroup Bp of Tp and K = Tp/Bp. Then M ⊕ K is a neat-injective
envelope of Tp.

Proof. We have a neat-injective monomorphism f : Bp −→ M, the inclusion
map i : Bp −→ Tp, and the natural epimorphism g : Tp −→ K defined by
g(a) = a + Bp. Since i is a pure (and therefore neat) monomorphism (see [1] ,
Ch. 33) and M is neat-injective, there is a homomorphism h : Tp −→ M such
that hoi = f, i.e., h |Bp= f. Define

e : Tp −→ M ⊕K, e(a) = (h(a), g(a)).

Clearly e is a homomorphism. If e(a) = 0, then g(a) = 0, i.e., a ∈ Bp.
Since f(a) = h(a) = 0 and f is a monomorphism then a = 0. So e is a
monomorphism. To prove that e(Tp) is a neat subgroup of M⊕K it is sufficient
to show that, for every element e(a) ∈ e(Tp) divisible by p, a is divisible by
p in Tp since all groups are p-groups. So let e(a) = p(x, y). Then h(a) = px.
Since K is divisible g(a) = a + Bp = p(a1 + Bp) for some a1 ∈ A. Then
a−pa1 = b ∈ Bp and f(b) = h(b) = h(a)−hp(a1) = p(x−h(a1)). Since f(Bp)
is neat in I, b = pb1 for some b1 ∈ Bp. Therefore a = p(a1 + b), that is a is
divisible by p in A. To apply Proposition 6, we have to prove that:

1. The maximal divisible subgroup D(M ⊕K) is a divisible envelope of the
Frattini subgroup F (e(Tp)) of e(Tp)
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2. (M ⊕K)/e(Tp) is divisible.
For the first we use the following argument:
Since M ∼= Z(p)(Q) and K ∼= Z(p∞)(S), for some index sets Q and S(see

Lemma 6) p(M ⊕K) is divisible, therefore

F (e(Tp)) = pe(Tp) ⊂ p(M ⊕K) ⊆ D(M ⊕K).

To show that pe(Tp) is essential in D(M ⊕ K), let (m, k) ∈ D(M ⊕ K) [p] .
Since K is divisible, k = pk′ for some k′ ∈ K. Since g is an epimorphism,
k′ = g(a) for some a ∈ Tp. Now h(pa) = ph(a) ∈ pM ⊆ D(M), therefore
m− h(pa) ∈ D(M). Since M is a neat-injective envelope for Bp, m− h(pa) ∈
f(pBp), that is, m− h(pa) = f(pb) for some b ∈ Bp. So

(m, k) = (m− h(pa) + h(pa), pk′)

= (h(pb + pa), g(pa))

= e(pb + pa) ∈ pe(Tp)

(note that g(pb) = 0). So by Lemma 3, F (e(Tp) is essential in D(M ⊕K).
For the second part let us consider the diagram

0

��

0

��

0

��
0 // Bp

i //

f

��

Tp
g //

e

��

K //

1K

��

0

0 // M
j //

t
��

M ⊕K
p //

s
��

K //

��

0

0 // M/f(Bp) //

��

(M ⊕K)/e(Tp) //

��

0 //

��

0

0 0 0
where j is an inclusion map, p : M ⊕K −→ K is a projection, and t : M −→
M/f(Bp) and s : M ⊕ K −→ (M ⊕ K)/e(Tp) are natural epimorphisms.
Clearly all columns and first two rows are exact. By the 3 × 3 Lemma that
last row is also exact, therefore (M⊕K)/e(Tp) ∼= M/f(Bp) is divisible since M
is a neat-injective envelope for B. Thus (M ⊕K) is a neat-injective envelope
for Tp by Proposition 2. �

Using the representation of any torsion group T as a direct sum of its p-
components we can describe the neat injective envelope of T.

Proposition 4. Let T be a torsion group and for each prime p, Mp ⊕Dp

be a neat-injective envelope for the p-component Tp of T with pMp = 0 and
divisible Dp. Then M = (

∏
p∈P Mp)⊕ (

⊕
p∈P Dp) is a neat-injective envelope

for T .
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Proof. Since Dp is an injective envelope for F (Tp) for each prime p,
⊕

p∈P Dp

is an injective envelope for F (T ) = F (
⊕

p∈P Tp) =
⊕

p∈P F (Tp) by lemma 4.
Since Tp is a neat subgroup of Mp⊕Dp, we have T =

⊕
Tp is a neat subgroup

of K = (
⊕

Mp)⊕ (
⊕

Dp) by Lemma 2. By the properties of neat subgroups,⊕
Mp is a neat subgroup of

∏
Mp, so K is a neat-subgroup of M. Therefore T

is a neat subgroup of M.
∏

Mp is neat-injective as a product of neat-injective
groups, therefore M is neat-injective. Since M/K ∼= (M/T )/(K/T ) and K/T
is divisible, M/T ∼= K/T ⊕ M/K, so M/T is divisible if M/K is divisible.
Clearly M/K ∼=

∏
Mp/

⊕
Mp and it is well-known (and easy to prove) that∏

Mp/
⊕

Mp is divisible, therefore M/K is also divisible. By Proposition 2,
M is a neat-injective envelope for T. �

Now we shall try to describe neat-injective envelopes for torsion-free groups.

Theorem 1. Let S be a torsion-free group, D be an injective envelope of
the Frattini subgroup F (S) of S and for every prime p, αp be the rank of the
p-basic subgroup Bp of S. Then the neat-injective envelope of S is isomorphic
to E = D ⊕ (

∏
p Z(p)(Ip), with |Ip| = αp.

Proof. Since D is injective, the inclusion map F (S) −→ D can be extended
to a homomorphism f : S −→ D. By [1, A), p. 144], S = Bp + pS, therefore

S/pS = (Bp + pS)/pS ∼= Bp/(Bp ∩ pS) = Bp/pBp.

Since S is torsion free, Bp is free and therefore Bp/pBp
∼= Z(p)(Ip). This gives

us an epimorphism gp : S −→ Z(p)(Ip) which is the composition of the natural
epimorphism S −→ S/pS and the isomorphism given above. Let us consider
the homomorphism

h : S −→ E, h(a) = (f(a), g2(a), g3(a), g5(a) . . . )

for every a ∈ S. If h(a) = 0 then gp(a) = 0 for every prime p that is, a ∈ pS
for every p and so a ∈ F (S). On the other hand f(a) = 0 and f |F (S) is a
monomorphism, therefore a = 0. So h is a monomorphism. If h(a) is divisible
by some prime p then gp(a) = 0, therefore a ∈ pS, that is a is divisible by p in
S. So h is a neat monomorphism. Clearly

∏
Z(p)(Ip) is a reduced group so D

is the maximal divisible subgroup of E, so the first condition of Proposition 2
is satisfied. Let x = (d, b2, b3, b5, . . . , bp, . . . ) + h(S) be any element of E/h(S)
and p be any prime. Then d = pd′ and bq = pb′q for some d′ ∈ D and b′q ∈ Z(Ip)

q

for all q 6= p. Therefore

x = (d, b2, b3, b5, . . . , 0, . . . ) + (0, . . . , 0, bp, 0, . . . ) + h(S)

= p(d′, b′2, . . . , 0, . . . ) + h(S).

So E/h(S) is divisible. By Proposition 2, E together with the monomorphism
h is a neat-injective envelope for S. �
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Knowing the neat-injective envelopes of torsion and torsion-free groups, we
are now able to describe neat-injective envelopes of arbitrary group.

Theorem 2. Let A be any group, T be its torsion part, S = A/T , I be a
neat-injective envelope for T , M =

∏
p∈P S/pS, and D be an injective envelope

for F (A)/F (T ). Then a neat-injective envelope for A is isomorphic to J =
I ⊕D ⊕M.

Proof. Since T is a pure subgroup and therefore a neat subgroup and I
is a neat-injective group, we have a homomorphism f : A −→ I whose re-
striction on T is an inclusion map. Since D is divisible, we have a homo-
morphism g : A −→ D whose restriction on F (A) is the composition of
natural homomorphism σ : F (A) −→ F (A)/F (T ) and the inclusion map
F (A)/F (T ) −→ D. Also we have a homomorphism h : A −→ M defined
by h(a) = (. . . , (a + T ) + pS, . . . ). Now define

u : A −→ J, u(a) = (f(a), g(a), h(a)).

Clearly u is a homomorphism and J is neat-injective.
If u(a) = 0, then h(a) = 0, therefore a + T ∈ pS for every p ∈ P. So for

each p ∈ P , a + T = p(a′ + T ) for some a′ ∈ A. Then t = a − pa′ ∈ T and
since 0 = f(a) = f(t)− pf(a′) from the neatness of T in I we conclude t = pt′

for some t′ ∈ T. Then a = p(a′ + t′) ∈ pA. Since this holds for every p ∈ P ,
a ∈ F (A). Now g(a) = 0, therefore a ∈ F (T ) ⊂ T. Since f |T is an inclusion
map, the equality f(a) = 0 implies that a = 0. So u is a monomorphism.

Let u(a) be divisible by some p ∈ P. Then (a+T )+pS = pS, i.e., a+T ∈ pS
and therefore t = a− pa′ ∈ T for some a′ ∈ A as above. Since f(a) is divisible
by p, f(t) = f(a)− pf(a′) is divisible by p. Therefore t is divisible by p since
T is neat in I. Then a = t + pa′ is divisible by p in A. So u(A) is neat in J.
u(F (A)) ≤ F (J) = D(J).

To prove that u(F (A)) E D(J), let (x, y, 0) ∈ D(J). If y = 0 and x 6= 0 then
〈x〉∩F (T ) 6= 0, therefore 〈(x, 0, 0)〉∩u(F (A)) 6= 0. Let y 6= 0. Since g(F (A)) E
D there exists 0 6= ny ∈ g(F (A)), i.e., ny = g(a) for some a ∈ F (A). Clearly
h(a) = 0, f(a) ∈ F (I) = D(I). Since x ∈ D(I), we have nx − f(a) ∈ D(I).
If nx − f(a) = 0, then 0 6= n(x, y, 0) = u(a) ∈ u(A). If nx − f(a) 6= 0 then
0 6= m(nx− f(a)) = t ∈ T since T E I. Now

u(ma + t) = (mf(a) + mnx−mf(a),mny, 0) = mn(x, y) ∈ u(A).

If mn(x, y) = 0, then g(ma) = mny = 0, therefore ma ∈ F (T ). But then a ∈
F (T ) and ny = g(a) = 0, contradiction, so mn(x, y) 6= 0. Thus u(F (A)) E D.

To prove that J/u(A) is divisible, let (x, y, z) ∈ J and p ∈ P. We can
construct an element z′ ∈ M, divisible by p such that z − z′ = h(a) for some
a ∈ A. Since I/T is divisible, there is an element t ∈ T such that x− f(a)− t
is divisible by p. Then (x, y, z) − u(a + t) = (x − f(a) − t, y − g(a + t), z′) is
divisible by p, therefore (x, y, z)+u(A) is divisible by p in J/u(A), i.e., J/u(A)
is divisible. So by Proposition 2, J is a neat-injective envelope for u(A). �



122 R.H. Alizade, K.D. Akinci and A. Imam 8

REFERENCES

[1] Fuchs, L., Infinite abelian groups I, II, Cambridge Univ. Press, 1970, 1973.
[2] Onishi, M., On minimal neat-injective groups containing a given group as a neat sub-

group, Comment Math. Univ. St. Pauli., 33 (1984), 203–207.
[3] Xu, J., Flat covers of modules, Springer-Verlag, Berlin, 1996.
[4] Kasch F., Modules and Rings, Academic Press, 1982.
[5] Harrison, D.K., Irwin, J.M., Peercy, C.L. and Walker, E.A., High extension of

abelian group, Acta Math. Acad. Sci. Hungar., 14 (1963), 319–330.

Received July 10, 2001 Izmir Institute of Technology
Faculty of Sciences

Izmir, Turkey
E-mail: rafailalizade@iyte.edu.tr

E-mail: Karen.akinci@deu.edu.tr

Pakistan Marine Academy
Karachi, Pakistan

E-mail: iarchad@hotmail.com


