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Preface

The notion ”fixed point structure” (which we gave in 1986 for singlevalued

operators and in 1993 for multivalued operators) is a generalization of some

notions such as:

• ”topological space with the fixed point property” (L.E.J. Brouwer, J.

Schauder, A. Tychonoff, B. Knaster, K. Kuratowski, S. Mazurkiewicz, V.L.

Klee, E.H. Connel, E. Fadell, H. Schirmer, S. Kakutani, S. Eilenberg, D. Mont-

gomery, H.F. Bohnenblust, S. Karlin, K. Fan, I.L. Glicksberg, R.F. Brown, J.

Dugundji, A. Granas,...);

• ”metric space with fixed point property w.r.t. contractions” (S. Banach,

R. Caccioppoli, C. Bessaga, P.R. Meyers, E.H. Connel, T.K. Hu, L. Janos, V.I.

Opoitsev, P. Amato, L. Leader, W.A. Kirk, S. Park, I.A. Rus, M.C. Anisiu,

V. Anisiu, J. Jachymski,...);

• ”Menger space with the fixed point property w.r.t. probabilistic contrac-

tions” (V.M. Sehgal, A.T. Bharucha-Reid, O. Hadžić, T.L. Hicks, H. Sher-

wood, Gh. Constantin, V.I. Istrăţescu, E. Pap, V. Radu, R.M. Tardiff, B.

Schweizer, D. Miheţ,...);

• ”Banach space with the fixed point property w.r.t. nonexpansive op-

erators” (F.E. Browder, D. Göhde, W. Kirk, L.A. Karlovitz, T.C. Lim, M.

Edelstein, B. Maurey, J.B. Baillon, R.E. Bruck, K. Goebel, M.A. Khamsi, S.

Reich, B. Sims, W. Takahashi, T. Dominguez Benavides, R. Espinola, J. Elton,

P.K. Lim, E. Odell, S. Szarek, D.S. Jaggi, G. Kassay,...);

• ”ordered set with the fixed point property” (B. Knaster, A. Tarski, G.

Birkhoff, S. Ginsburg, L.E. Ward, A.C. Davis, S. Abian, A.B. Brown, A. Abian,

I. Rival, A. Pelczar, H. Amann, H. Cohen, D. Duffus, Z. Shmuely,...);
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• ”operator with the fixed point property on family of sets” (G.S. Jones,

F.S. De Blasi,...);

• ”object with the fixed point property” (F.W. Lawvere, J. Lambek,

I.A. Rus, M. Wand, J. Soto-Andrade, F.J. Varela, M. Barr, C. Wells, A.

Baranga,...).

The fixed point structure theory offers a solution for the following problem:

If we have a fixed point theorem T and an operator f which does not satisfy

the conditions of T , in which conditions the operator f has an invariant subset

Y such that the restriction of f to Y , f |Y satisfies the conditions of T .

In the terms of the fixed point structures this problem take the following

form:

Let (X,S(X),M) be a fixed point structure on a set X. Let A be a subset

of X and f : A→ A an operator. In which conditions there exists Y ⊂ A such

that:

(a) Y ∈ S(X); (b) f(Y ) ⊂ Y ; (c) f |Y ∈M(Y ).

From the definition of the fixed point structure it follows that if such an

Y exists, then the operator f has at least a fixed point.

The aim of this monograph is to present the basic notions, results and

today open problems of the fixed point structure theory.

In the construction of the fixed point structure theory we learned much

from discussion with C. Avramescu, V. Berinde, A. Petruşel, R. Precup, V.

Radu, A. Buică, A. Muntean and M.A. Şerban. So, we would like to thank all

of them.

Cluj-Napoca Ioan A. Rus

May, 2006
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Chapter 1

Sets, operators and fixed

points

1.1 Sets and operators

Let X be a set. We denote

P(X) := {Y |Y ⊂ X} and P (X) := {Y ∈ P(X)|Y 6= ∅}.
Let X and Y be two sets. Then we denote by M(X,Y ) the set of all

operators f : X → Y . If Y = X, then M(X) := M(X,X). By M0(X,Y ) we

denote the set of all multivalued operators T : X ⊸ Y , i.e., T : X → P(Y ).

Let (X, τ) be a topological space. Then we shall use the following notations:

Pcl(X) := {Y ∈ P (X)|Y = Y }, the set of all nonempty closed subset of

X;

Pop := {Y ∈ P (X)|Y an open subset of X};
Pcp(X) := {Y ∈ P (X)|Y is compact};
Pcn(X) := {Y ∈ P (X)|Y is connex }.
In the case of a real linear space (X,+,R),

Pcv(X) := {Y ∈ P (X)|Y is convex},

15



16 Chapter 1

Pst(X) := {Y ∈ P (X)|Y is starshaped},
and in the case of a metric space (X, d),

Pb(X) := {Y ∈ P (X)|diameter of Y, δ(Y ) < +∞}.

1.2 Fixed and periodic points

Let X be a set, f : X → X a singlevalued operator and T : X ⊸ X a

multivalued operator. We shall use the following notations:

Ff := {x ∈ X|f(x) = x}, the fixed point set of f ,

FT := {x ∈ X|x ∈ T (x)}, the fixed point set of T ,

(SF )T := {x ∈ X|T (x) = {x}}, the strict fixed point set of T ,

Pf :=
⋃

n∈N∗

Ffn , the periodic point set of f ,

PT :=
⋃

n∈N∗

FTn , the periodic point set of T ,

(SP )T :=
⋃

n∈N∗

(SF )Tn , the strict periodic point set of T .

Let (X,≤) be a partially ordered set and f : X → X an operator. Then:

(UF )f := {x ∈ X|x ≥ f(x)}, the set of all upper fixed point of f ,

(LF )f := {x ∈ X|x ≤ f(x)}, the set of all lower fixed point of f .

1.3 Retractible operators

LetX be a set and Y ⊂ X a subset ofX. Then by definition a set retraction

of X onto Y is an operator ρ : X → Y such that the restriction of ρ to Y is

the identity operator, ρ|Y = 1Y . In general:

If (X,≤) is a partially ordered set and Y ⊂ X, then by definition, ρ : X →
Y is an ordered set retraction if ρ is a set retraction and is increasing.

If (X, τ) is a topological space, Y ⊂ X, then ρ : X → Y is a topological

retraction, if ρ is a set retraction and is continuous.
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More general, if X is a structured set and Y ⊂ X, then ρ is a retraction

w.r.t. that structure if ρ is a set retraction and ρ is a morphism w.r.t. that

structure.

If ρ : X → Y is a retraction then Y is called a retract of X.

Definition 1.3.1. (R.F. Brown [13]). Let X be a set, Y ⊂ X and ρ : X →
Y a retraction. Then by definition an operator f : Y → X is retractible w.r.t.

ρ if Ff = Fρ◦f .

Example 1.3.1. Let (X,+,R, ‖·‖) be a Banach space and B(0; 1) := {x ∈
X| ‖x‖ ≤ 1}. Then the operator ρ : X → B(0; 1), defined by

ρ(x) :=





x if ‖x‖ ≤ 1,
1

‖x‖x if ‖x‖ ≥ 1

is a topological retraction of X onto B(0; 1).

We name this retraction, the radial retraction.

Let f : B(0; 1) → X be an operator. If f satisfies the following condition

x ∈ X, ‖x‖ = 1, λ ∈ R∗
+, f(x) = λx imply λ ≤ 1,

then f is a retractible operator w.r.t. the radial retraction ρ. The above con-

dition is called the Leray-Schauder boundary condition.

Example 1.3.2. Let (X,≤) be a partially ordered set with the least ele-

ment, 0. Let Y ∈ P (X) be such that:

(i) 0 ∈ Y ,

(ii) (Y,≤) is conditionally complete, i.e., A ∈ Pb(Y ) ⇒ ∃ supA and inf A.

Let ρ : X → Y be defined by

ρ(x) :=





x if x ∈ Y,

supY ([0, x] ∩ Y ) if x ∈ X \ Y.

The operator ρ is an ordered set retraction of X onto Y .
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If an operator f : Y → X is such that

f(x) ∈ X \ Y implies supY ([0, f(x)] ∩ Y ) 6= x,

then f is retractible w.r.t. ρ.

Example 1.3.3. (I.A. Rus [64]). Let (X,→) be an L-space. An operator

A : X → X is weakly Picard if the sequence (An(x))n∈N converges for all

x ∈ X and the limit (which may depend on x) is a fixed point of A. For a

weakly Picard operator A we consider the operator A∞ : X → X defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

It is clear that A∞(X) = FA. So, the operator A∞ : X → FA is a set

retraction of X to FA.

Example 1.3.4. (R.F. Brown [69]). Let (X, ‖ · ‖) be a Banach space,

0 < r < R and

Yr,R := {x ∈ X|r ≤ ‖x‖ ≤ R}.

The operator ρ : X \ {0} → Yr,R defined by

ρ(x) :=





r

‖x‖x if 0 < ‖x‖ ≤ r,

x if r ≤ x ≤ R,

R

‖x‖x if ‖x‖ ≥ R.

is a topological retraction.

An operator f : Yr,R → X \ {0} is retractible w.r.t. ρ if:

(i) ‖x‖ = r ⇒ f(x) 6= λx, ∀ λ ∈]0, 1[
(ii) ‖x‖ = R ⇒ f(x) 6= λx, ∀ λ > 1.
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1.4 Closure operators

Definition 1.4.1. Let X be a set. An operator η : P(X) → P(X) is a

closure operator if

(i) Y ⊂ η(Y ), ∀ Y ∈ P(X);

(ii) Y, Z ∈ P(X), Y ⊂ Z ⇒ η(Y ) ⊂ η(Z);

(iii) η ◦ η = η.

Example 1.4.1. Let (X,+, R) be a real linear space. The following oper-

ators are closure operators:

η : P(X) → P(X), η(Y ) := linear hull of Y ;

η : P(X) → P(X), η(Y ) := affine hull of Y ;

η : P(X) → P(X), η(Y ) := coY := convex hull of Y .

Example 1.4.2. Let (X, τ) be a topological space. Then, η : P(X) →
P(X), η(Y ) = Y is a closure operator.

Example 1.4.3. Let (X,+, R, τ) be a linear topological space. Then, η :

P(X) → P(X), η(Y ) := coY := (coY ) is a closure operator.

The main property of a closure operator is the following:

Lemma 1.4.1. If η : P(X) → P(X) is a closure operator, then

Yi ∈ Fη, i ∈ I ⇒
⋂

i∈I

Yi ∈ Fη.

1.5 Fractal operators

Let X be a nonempty set and T : X → P (X) a multivalued operator. We

consider the following singlevalued operator generated by T ,

T̂ : P (X) → P (X), Y 7→ T (Y ) :=
⋃

y∈Y

T (y).

The operator T̂ is called the fractal operator corresponding to T .
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Example 1.5.1. (see [4] or [65], pp. 107-110). Let X be a nonempty set

and f1, . . . , fm : X → X. The multivalued operator Tf : X → P (X) defined

by

Tf (x) := {f1(x), . . . , fm(x)},

is called the Barnsley-Hutchinson operator generated by the operators

f1, . . . , fm. The fractal operator T̂f is a basic tool in the fractal theory. For

example if (X, d) is a complete metric space and f1, . . . , fm : X → X are α-

contractions then the restriction of T̂f to Pcp(X) is an operator from Pcp(X)

to Pcp(X) which is an α-contraction w.r.t. Pompeiu-Hausdorff metric. In this

case the unique fixed point of T̂f , in Pcp(X), is called fractal or attractor.

1.6 Invariant subsets

Let X be a nonempty set and f : X → X an operator. A subset Y ⊂ X

is an invariant subset for f if f(Y ) ⊂ Y . We denote by I(f) the family of all

nonempty invariant subsets of f . We have

Lemma 1.6.1. (I.A. Rus (1986), see [65], p. 4). Let X be a nonempty set,

η : P(X) → P(X) a closure operator, Y ∈ Fη and f : Y → Y . Let A ∈ P (Y ).

Then there exists A0 ⊂ Y such that:

(i) A ⊂ A0;

(ii) A0 ∈ Fη;

(iii) A0 ∈ I(f);

(iv) η(f(A0) ∪A) = A0.

Proof. Let B := {B ⊂ Y |B satisfies the conditions (i), (ii) and (iii)}. From
Lemma 1.4.1 we have that, ∩B ∈ B.

This implies that ∩B is the least element of the partially ordered set (B,⊂).

Let us prove that A0 := ∩B.
We have η(f(A0) ∪ A) ∈ B and η(f(A0) ∪ A) ⊂ A0. These imply that
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η(f(A0) ∪A) = A0.

Let X be a nonempty set and T : X ⊸ X a multivalued operator. A subset

Y ⊂ X is an invariant subset of T if T (Y ) ⊂ Y . We denote by I(T ) the family

of all invariant nonempty subset of T . We have

Lemma 1.6.2. (I.A. Rus (1993); see [65] p. 5). Let X be a nonempty set,

η : P(X) → P(X) be a closure operator, Y ∈ Fη and T : Y → P (Y ) a

multivalued operator. Let A ∈ P (Y ). Then there exists A0 ⊂ Y such that

(i) A ⊂ A0;

(ii) A0 ∈ Fη;

(iii) A0 ∈ I(T );

(iv) η(T (A0) ∪A) = A0.

The proof of this lemma is similar with that of Lemma 1.6.1.

Remark 1.6.1. Let T : X → P (X) be a multivalued operator. In the

terms of the fractal operator T̂ we have:

Y ∈ I(T ) ⇔ Y ∈ (UF )
T̂
,

Y = T (Y ) ⇔ Y ∈ F
T̂
,

Y ⊂ T (Y ) ⇔ Y ∈ (LF )
T̂
.

Remark 1.6.2. There exist another type of results on invariant subsets.

For example we have

Lemma 1.6.3. (M. Martelli (1973)). Let X be a compact topological space

and T : X → P (X) a multivalued operator. Then there exists a nonempty

closed subset Y ⊂ X such that Y = T (Y ). If T is u.s.c. with closed values,

then Y = T (Y ).

Lemma 1.6.4. (S. Leader (1982)). Let X be a compact metric space and

A : X → X be a continuous operator. Then
⋂

n∈N

An(X) is a fixed set for A.

Example 1.6.1. Let (X, τ) be a topological space, Y ∈ Pcl(X) and f :

Y → Y an operator. Let x ∈ Y . Then there exists A0 ⊂ Y such that:
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(i) x ∈ A0;

(ii) A0 = A0;

(iii) A0 ∈ I(f);

(iv) f(A0) ∪ {x} = A0.

Indeed, we take in Lemma 1.6.1, η(B) = B and A = {x}.
Example 1.6.2. Let (X,+, R, τ) be a vectorial topological space, Y ∈

Pcl,cv(X) and f : Y → Y an operator. Let x ∈ Y . Then there exists A0 ⊂ Y

such that:

(i) x ∈ A0;

(ii) coA0 = A0;

(iii) A0 ∈ I(f);

(iv) co(f(A0) ∪ {x}) = A0.

Indeed, we take in Lemma 1.6.1, η(B) = coB and A = {x}.

1.7 Fixed point theory in categories

By a category C we understand a class of objects, ObC, together with the

following:

(i) For each ordered pair of objects, (A,B), A,B ∈ ObC, a set Hom(A,B)

is given. The element of Hom(A,B) are called morphism from A to B. The

object A is called the source and B is called the target of f ∈ Hom(A,B). For

f ∈ Hom(A,B) also, we use the notations, f : A→ B or A
f→ B.

(ii) For each ordered triplet of objects, (A,B,C), an operator from

Hom(A,B) × Hom(B,C) to Hom(A,C) is given. We name this operator,

the composition operator. If f ∈ Hom(A,B) and g ∈ Hom(B,C), then we

denote the value of this operator with g ◦ f . We suppose that the composition

operator is associative.

(iii) For each object B a morphism 1B ∈ Hom(B,B) is given and 1B is
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such that if A
f→ B and B

g→ C, then 1B ◦ f = f and g ◦ 1B = g.

(iv) If (A,B) 6= (C,D), then Hom(A,B) ∩Hom(C,D) = ∅.
Example 1.7.1. The category Set. The class of objects is the class

of all sets. If A,B ∈ ObSet, then Hom(A,B) := M(A,B). The composition

morphism is the composition of operator and the identity morphism is the

identity operator.

Example 1.7.2. The category Poset. The class of objects is the class

of all partially ordered sets and Mor(A,B) := {f : A→ B|f is increasing}.
Example 1.7.3. The category Top. The class of objects is the class of

all topological space and Mor(A,B) := C(A,B).

Example 1.7.4. The category SELF-OP. The objects of this category

are the self-operators. Let f : A → A and g : B → B be two objects. A

morphism from f to g is an operator h : A → B such that h ◦ f = g ◦ h.
The class of self-operators and morphism between them forms a category: the

category SELF-OP.

Definition 1.7.1. Let C be a category and A ∈ ObC. A morphism f ∈
Hom(A,A) has the f.p.p. iff there exist B ∈ ObC and g ∈ Hom(B,A) such

that f ◦ g = g.

Definition 1.7.2. By the fixed subobject, Ff , of a morphism f ∈
Hom(A,A) we understand Ff := Ker(f, 1A). A category in which for each

morphism with f.p.p. there exists Ff is by definition a category with fixed

subobjects.

Definition 1.7.3. Let C be a category. An object A ∈ ObC has the f.p.p.

if each morphism f ∈ Hom(A,A) has the f.p.p.

We have

Lemma 1.7.1. Let C be a category and A and B ∈ ObC. We suppose that:

(i) the object A has the f.p.p.

(ii) there exists an isomorphism ϕ ∈ Hom(A,B).
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Then B is an object with the f.p.p.

Proof. By definition ϕ is an isomorphism if there exists ψ : B → A such

that

ϕ ◦ ψ = 1B and ψ ◦ ϕ = 1A.

Let f : B → B. Then ψ ◦ f ◦ϕ ∈ Hom(A,A). From the condition (i) there

exists g ∈ Hom(C,A) such that ψ◦f◦ϕ◦g = g. Hence we have f◦(ϕ◦g) = ϕ◦g.
So, f has the f.p.p.
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Cluj-Napoca, 1971.

For the basic results in General topology see Yu. Borisovich, N. Bliznyakov,

Ya. Izrailevich and T. Fomenko [12], N. Bourbaki [15], A. Brown and C. Pearcy

[18], J. Dugundji [29].

For the basic results in Functional analysis see N. Bourbaki [16], L. Collatz

[23], K. Deimling [27], R.E. Edwards [30], L.V. Kantorovich, B.Z. Vulikh and

A.G. Pinsker [42], M.A. Krasnoselskii and P. Zabreiko [45], L. Lusternik and

S. Sobolev [48], D. Pascali and S. Sburlan [53]. See also,
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Fixed point structures

2.1 Definitions and examples

Definition 2.1.1. A triple (X,S(X),M) is a fixed point structure (briefly,

f.p.s.) if

(i) X is a nonempty set, S(X) ⊂ P (X), S(X) 6= ∅;
(ii) M : P (X) ⊸

⋃

Y ∈P (X)

M(Y ), Y ⊸ M(Y ) ⊂ M(Y ), is a multivalued

operator such that if Z ⊂ Y , Z 6= ∅, then M(Z) ⊃ {f |Z | f ∈ M(Y ), Z ∈
I(f)};

(iii) Every Y ∈ S(X) has the fixed point property (f.p.p.) with respect to

M(Y ).

Definition 2.1.2. A triple (X,S(X),M) which satisfies (i) and (iii) in

Definition 2.1.1 and the condition

(ii’) M : P (X) ⊸

⋃

Y ∈P (X)

M(Y ), Y ⊸ M(Y ) ⊂ M(Y ) is a multivalued

operator;

is called a large fixed point structure (l.f.p.s.).

For a better understanding of the above definitions we suggest to the reader

29
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to see pages 2 and 3 in [36].

Example 2.1.1. The trivial f.p.s. X is a nonempty set, S(X) :=

{{x}| x ∈ X} and M(Y ) := M(Y ).

Example 2.1.2. The Tarski’s f.p.s. (X,≤) is a complete lattice,

S(X) := {Y ∈ P (X)| (Y,≤) is a complete lattice} and M(Y ) := {f : Y →
Y | f is increasing}.

Condition (iii) follows from Tarski’s fixed point theorem.

Example 2.1.3. The f.p.s. of progressive operators. (X,≤) is a par-

tially ordered set, S(X) := {Y ∈ P (X)| (Y,≤) has a maximal element} and

M(Y ) := {f : Y → Y | x ≤ f(x), ∀ x ∈ Y }.
Example 2.1.4. The f.p.s. of contractions. (X, d) is a complete metric

space, S(X) := Pcl(X) and M(Y ) := {f : Y → Y | f is a contraction}.
Example 2.1.5. The f.p.s. of Brouwer-Schauder-Tychonoff. X is

a locally convex linear topological space, S(X) := Pcp,cv(X) and M(Y ) :=

C(Y, Y ).

Example 2.1.6. The f.p.s. of Schauder. X is a Banach space, S(X) :=

Pb,cl,cv(X) and M(Y ) := {f : Y → Y | f is completely continuous}.
Example 2.1.7. The f.p.s. of Dotson. X is a Banach space, S(X) :=

Pcp,st(X) and M(Y ) := {f : Y → Y | f is nonexpansive}.
Example 2.1.8. The l.f.p.s. of Girolo. X is a Banach space, S(X) :=

Pcp,cv(X) and M(Y ) := {f : Y → Y | f is connective}.
Example 2.1.9. The f.p.s. of Browder-Ghöde-Kirk. X is a uniformly

convex Banach space, S(X) := Pb,cl,cv(X) and M(Y ) := {f : Y → Y | f is

nonexpansive}.
Example 2.1.10. The f.p.s. of Nemytzki-Edelstein. (X, d) is a metric

space, S(X) := Pcp(X) andM(Y ) := {f : Y → Y | f is a contractive operator}.
Example 2.1.11. The fixed point structure of Tychonoff. X is a

Banach space, S(X) := Pwcp,cv(X) and M(Y ) := {f : Y → Y | f is weakly
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continuous operator}.

Example 2.1.12. The fixed point structure of Arino-Gautier-

Penot. X is a metrizable locally convex topological vector space, S(X) :=

Pwcp,cv(X) and M(Y ) := {f : Y → Y | f is weakly sequentially continuous}.
It is clear that for any fixed point theorem we have an example of a f.p.s.

or of a l.f.p.s.

2.2 Fixed point structures on P (X) generated by

fixed point structures on X

The following problem is a tool to generate fixed point structures on P (X)

from some fixed point structures on X:

Let (X, {X},M) be a f.p.s. and S(X) ⊂ P (X) such that

A ∈ S(X), f1, . . . , fm ∈M(X), m ∈ N∗ imply f1(A)∪· · ·∪fm(A) ∈ S(X).

Let M̃(S(X)) := {T̂f | f1, . . . , fm ∈M(X), m ∈ N∗}.
The problem is in what conditions the triple (S(X), {S(X)}, M̃) is a f.p.s.?

Example 2.2.1. Let (X, d) be a complete metric space and

(X, {X},M) the fixed point structure of contractions. Then the triple

(Pcp(X), {Pcp(X)}, M̃) is a f.p.s.

Indeed, (Pcp(X), Hd) is a complete metric space and by a theorem of

Nadler, the operator T̂f : Pcp(X) → Pcp(X) is a contraction, if f1, . . . , fm

are contractions.

Example 2.2.2. Let (X, {x},M) be the trivial f.p.s. Let S(X) ⊂ P (X).

Then the triple (P (X), {S(X)}, M̃) isn’t, in general, a f.p.s. For example if

X = R, S(X) := Pb(R), f : R → R, f(x) = x+ 1, then F
T̂f

= ∅.
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2.3 Maximal fixed point structures

Let (X,S(X),M) be a f.p.s. and S1(X) ⊂ P (X) such that S1(X) ⊃ S(X).

Definition 2.3.1. (I.A. Rus (1996)). The f.p.s. (X,S(X),M) is maximal

in S1(X) if we have

S(X) = {A ∈ S1(X)| f ∈M(A) ⇒ Ff 6= ∅}.

Example 2.3.1. The trivial f.p.s. is maximal in P (X).

Example 2.3.2. The Tarski f.p.s. isn’t maximal in P (X) but is maximal

in S1(X) := {Y ∈ P (X)| (Y,≤) is a lattice}. This follows from a theorem of

Davis (1955).

Example 2.3.3. The f.p.s. of contractions isn’t maximal in P (X). It is

clear that the f.p.s. of contractions is maximal in P (X) if

(Y ∈ P (X), f ∈M(Y ) ⇒ Ff 6= ∅) ⇒ Y ∈ Pcl(X).

We have

Theorem 2.3.1. (M.C. Anisiu and V. Anisiu (1997), E.H. Connel (1959)).

There exists a complete space and a nonclosed subset with f.p.p. with respect

to contractions.

Theorem 2.3.2. (M.C. Anisiu and V. Anisiu (1997)). Let X be a Banach

space and Y ∈ P (X) a convex set with IntY 6= ∅. If each contraction f : Y →
Y has a fixed point, then Y is closed.

Example 2.3.4. The f.p.s. of Brouwer-Schauder-Tychonoff isn’t, in gen-

eral, maximal in P (X), but if X is a Banach space then it is maximal in

Pb,cl,cv(X).

This follows from the following theorem of V. Klee (1955):

A closed bounded convex subset of a Banach space has the topological

f.p.p. iff it is compact.
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In what follow we present some properties of the maximal fixed point

structures.

Let C be a class of structured sets (the class of sets, the class of partially

ordered sets, the class of L-spaces, the class of metric spaces,...). By S we

denote an operator which attaches to each X ∈ C a nonempty set S(X) ⊂
P (X). Let M be an operator which attaches to each pair (A,B), A ∈ P (X),

B ∈ P (Y ), X,Y ∈ C, a subset M(A,B) ⊂ M(A,B).

From the definition of the maximal fixed point structures, we have

Lemma 2.3.1. Let X ∈ C and (X,S(X),M) be a maximal fixed point

structures on C. Let A ∈ S(X) and B a nonempty subset of A. If there exists

a set retraction ρ ∈ M(A,B), of A onto B such that f ∈ M(B) implies

f ◦ ρ ∈M(A), then B ∈ S(X).

Proof. Let f ∈M(B). Then f ◦ ρ ∈M(A), i.e.,

A
ρ→ B

f→ B
⊂→ A.

But A ∈ S(X). By definition of a f.p.s. we have that there exists x∗ ∈ A

such that f(ρ(x∗)) = x∗. Since x∗ ∈ B, we have f(x∗) = x∗. By the maximality

of (X,S(X),M) it follows that B ∈ S(X).

Lemma 2.3.2. Let X,Y ∈ C and (X,S(X),M) and (Y, S(Y ),M) be two

fixed point structures on C. Let A ∈ S(X) and B ∈ P (Y ).

We suppose that:

(i) (Y, S(Y ),M) is a maximal f.p.s. in P (Y );

(ii) there exists a bijection ϕ ∈ M(A,B) such that ϕ−1 ◦ f ◦ ϕ ∈ M(A),

for all f ∈M(B).

Then, B ∈ S(Y ).

Proof. Let f ∈ M(B). From (ii) it follows that Fϕ−1◦f◦ϕ 6= ∅. If x∗ ∈
Fϕ−1◦f◦ϕ, then ϕ(x

∗) ∈ Ff . By the maximality of (Y, S(Y ),M) we have that

B ∈ S(Y ).
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Remark 2.3.1. The above two results generalize some results given in A.

Granas and J. Dugundji [36] (pp.2-3).

Remark 2.3.2. To establish if a given f.p.s. is maximal or not, this is an

open problem. For example in some concrete structured sets the problem take

the following form:

• Characterize the ordered sets with fixed point property with respect to

increasing operators.

• Characterize the topological space with f.p.p. with respect to continuous

operators.

• Characterize the metric space with f.p.p. with respect to continuous

operators.

• Characterize the metric space with f.p.p. with respect to contractions.

• Characterize the Banach spaces X with the following property:

Y ∈ Pb,cl,cv(X), f : Y → Y nonexpansive ⇒ Ff 6= ∅.

• Characterize the Banach spaces X with the following property:

Y ∈ Pwcp,cv(X), f : Y → Y nonexpansive ⇒ Ff 6= ∅.

For example we have the following result for the metric space with f.p.p.

with respect to contractions.

Let (X, d) be a metric space. We consider the ordered metric space of

fractals, (Pcp(X), Hd,⊂). We denote:

• CT (X,X) := {f : X → X| f a contraction}.

• For f ∈ CT (X,X) we denote by f̂ : Pcp(X) → Pcp(X) the corresponding

fractal operator.
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• For f : X → X we denote by d(f) := inf{d(x, f(x))}, the minimal

displacement of f (K. Goebel (1973)).

We also need the following notions:

Definition 2.3.2. (F.S. De Blasi and J. Myjak (1989)). Let (X, d) be a

metric space an f : X → X and operator. The fixed point problem for f is

well posed iff

(a) Ff = {x∗};
(b) if xn ∈ X, n ∈ N and d(xn, f(xn)) → 0 as n→ ∞, then d(xn, x

∗) → 0

as n→ ∞.

Definition 2.3.3. A metric space (X, d) has the fixed point property iff

f ∈ CT (X,X) ⇒ Ff 6= ∅.

Definition 2.3.4. A metric space (X, d) is complete w.r.t. a family of

operator M(X,X) iff

f ∈M(X,X), (fn(x))n∈N is fundamental ⇒ (fn(x))n∈N converges.

We have

Theorem 2.3.3. Let (X, d) be a metric space. Then the following state-

ments are equivalent:

(i) (X, d) is with f.p.p.

(ii) f ∈ CT (X,X) ⇒ f is Picard operator.

(iii) (X, d) is complete w.r.t. CT (X,X).

(iv) ∀ f ∈ CT (X,X) ∃ x∗f ∈ X : d(f) = d(x∗f , f(x
∗
f )).

(v) ∀ f ∈ CT (X,X) the fixed point problem is well posed.

(vi) ∀ f ∈ CT (X,X) ∃ x0 ∈ X such that

⋂

n∈N

{x ∈ X| d(x, f(x)) ≤ Ln
fd(x0, f(x0))} 6= ∅.

(vii) F
f̂
6= ∅, ∀ f ∈ CT (X,X).



36 Chapter 2

(viii) (UF )
f̂
6= ∅, ∀ f ∈ CT (X,X).

(ix) (LF )
f̂
6= ∅, ∀ f ∈ CT (X,X).

(x) ∀ f ∈ CT (X,X) ∃ x ∈ X such that (fn(x))n∈N converges.

(xi) ∀ f ∈ CT (X,X) ∃ x ∈ X such that some subsequence of (fn(x))n∈N

converges.

(xii) ∀ f ∈ CT (X,X) ∃ A ∈ Pcp(X) such that (f̂n(A))n∈N converges.

(xiii) ∀ f ∈ CT (X,X) ∃ A ∈ Pcp(X) such that some subsequence of

(f̂n(A))n∈N converges.
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• V. Glăvan and V. Guţu, Attractors and fixed points of weakly contracting

relations, Fixed Point Theory, 5(2004), 265-284.

• M. Yamaguti, M. Hata and J. Kigami, Mathematics of Fractals, AMS,

Providence, 1997.
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Chapter 3

Functionals with the

intersection property

3.1 Diameter functional

Let (X, d) be a metric space. The diameter functional δ : Pb(X) → R+ is

defined by δ(Y ) := sup{d(x, y)| x, y ∈ Y }.
If x ∈ X and Y ∈ P (X), then we denote

D(x, Y ) := inf{d(x, y)| y ∈ Y }.

We have

Lemma 3.1.1. The functional δ has the following properties:

(i) δ(Y ) = 0 ⇔ Y = {y};
(ii) Y1, Y2 ∈ Pb(X), Y1 ⊂ Y2 ⇒ δ(Y1) ≤ δ(Y2);

(iii) δ(Vr(Y )) ≤ δ(Y ) + 2r, ∀ Y ∈ Pb(X), ∀ r > 0;

(iv) δ(Y ) = δ(Y ), ∀ Y ∈ Pb(X).

Proof. (iii) Let ε > 0 and x, y ∈ Vr(Y ). From the definition of Vr(Y ),

41
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Vr(Y ) := {x ∈ X| D(x, Y ) < r}, there exist u, v ∈ Y such that

d(x, u) < r + ε, d(x, v) < r + ε.

From these we have

d(x, y) ≤ d(x, u) + d(u, v) + d(v, x) ≤ δ(Y ) + 2r + 2ε

for all x, y ∈ Y .

Hence

δ(Vr(Y )) ≤ δ(Y ) + 2r + 2ε, ∀ ε > 0.

So, we have (iii).

(iv) From Y ⊂ Y , δ(Y ) ≤ δ(Y ).

From Y ⊂ Vr(Y ), ∀ r > 0 we have δ(Y ) ≤ δ(Y ).

Lemma 3.1.2. Let X be a real linear normed space. Then

(i) δ(Y1 + Y2) ≤ δ(Y1) + σ(Y2), ∀ Y1, Y2 ∈ Pb(X);

(ii) δ(λY ) = |λ|δ(Y ), ∀ Pb(X), ∀ λ ∈ R;

(iii) δ(coY ) = δ(Y ), ∀ Y ∈ Pb(X).

Proof. (iii) Let us prove that δ(coY ) ≤ δ(Y ). Let x, y ∈ coY . Then there

exist xi, yj ∈ Y , λi, µj ∈ R+, such that

x =
n∑

i=1

λixi, y =
m∑

j=1

µjyj ,

n∑

i=1

λi = 1,
m∑

j=1

µj = 1.

From these relations we have

‖x− y‖ =

∥∥∥∥∥∥

n∑

i=1

λixi −
m∑

j=1

µjyj

∥∥∥∥∥∥

=

∥∥∥∥∥∥




m∑

j=1

µj




n∑

i=1

λixi −
(

n∑

i=1

λi

)
m∑

j=1

µjyj

∥∥∥∥∥∥

≤
m∑

j=1

n∑

i=1

λiµj‖xi − yj‖ ≤




m∑

j=1

n∑

i=1

λiµj


 δ(Y ) = δ(Y ).
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Lemma 3.1.3. (Cantor’s intersection lemma). Let (X, d) be a complete

metric space and Yn ∈ Pb,cl(X), Yn+1 ⊂ Yn, n ∈ N such that δ(Yn) → 0 as

n→ ∞.

Then,
⋂

n∈N

Yn = {x∗}.

Proof. First we remark that card
⋂

n∈N

Yn ≤ 1. Let xn ∈ Yn. Then

d(xn, xm) ≤ max(δ(Yn), δ(Ym)) → 0 as n,m→ ∞.

Since (X, d) is a complete metric space it follows that (xn)n∈N is convergent.

Let x∗ be its limit. Let k ∈ N. Then xn ∈ Yk for all n ≥ k. So, x∗ ∈ Yk, ∀ k ∈ N,

and
⋂

n∈N

Yn = {x∗}.

Remark 3.1.1.
⋂

n∈N

Yn = {x∗} ⇔
⋂

n∈N

Yn 6= ∅ and δ

(
⋂

n∈N

Yn

)
= 0.

3.2 The Kuratowski measure of noncompactness

Let (X, d) be a metric space. The Kuratowski measure of noncompactness

is defined as follows

αK : Pb(X) → R+, αK(Y ) := inf

{
ε > 0|Y =

n⋃

i=1

Yi, δ(Yi) ≤ ε, n ∈ N∗

}
.

We have

Lemma 3.2.1. Let (X, d) be a metric space and αK the Kuratowski mea-

sure of noncompactness of X. Then

(i) αK(Y ) ≤ δ(Y ), ∀ Y ∈ Pb(X);

(ii) Y1, Y2 ∈ Pb(X), Y1 ⊂ Y2 ⇒ αK(Y1) ≤ αK(Y2);

(iii) αK(Y1 ∪ Y2) = max(αK(Y1), αK(Y2)), Y1, Y2 ∈ Pb(X);

(iv) αK(Vr(Y )) ≤ αK(Y ) + 2r, ∀ Y ∈ Pb(X), ∀ r > 0;
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(v) αK(Y ) = αK(Y ), ∀ Y ∈ Pb(X).

Proof. (iv) Let η > 0. Then there exists Yi ⊂ Y such that Y =
n⋃

i=1

Yi and

δ(Yi) ≤ αK(Y ) + η. On the other hand Vr(Y ) =
n⋃

i=1

Vr(Yi) and δ(Vr(Yi)) ≤

α(A) + 2r + η. So, αK(Vr(Y )) ≤ αK(Y ) + 2r + η, ∀ η > 0.

(v) We remark that Y ⊂ Vr(Y ), αr > 0. The proof follows from (iv).

Lemma 3.2.2. Let (X, d) a complete metric space. Then

αK(Y ) = 0 ⇔ Y is compact.

Proof. The proof follows from the following well known result (see, for

example, A. Brown and C. Pearcy [18], pp.198-199):

Lemma 3.2.3. Let (X, d) be a metric space and Y ⊂ X. The following

conditions are equivalent:

(a) For every ε > 0 there exists a finite ε-net for Y ;

(b) For every ε > 0 there exists a finite covering of Y consisting of sets of

diameter less than ε;

(c) For every ε > 0 there exists a finite partition of Y into sets of diameter

less than ε;

(d) For every ε > 0 there exists a finite ε-net in Y .

By definition a subset Y ⊂ X is totally bounded if it has any one of the

properties (a)-(b).

Let (X, d) be a complete metric space and Y ⊂ X a closed subset of X.

Then Y is compact if and only if it is totally bounded.

Lemma 3.2.4. Let X be a real linear normed space and αK the Kuratowski

measure of noncompactness of X. Then

(i) αK(Y1 + Y2) ≤ αK(Y1) + αK(Y2), ∀ Y1, Y2 ∈ Pb(X);

(ii) αK(λY ) = |λ|αK(Y ), ∀ λ ∈ R, ∀ Y ∈ Pb(X);

(iii) αK(coY ) = αK(Y ), ∀ Y ∈ Pb(X).
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Proof. (iii) Let us prove that αK(coY ) ≤ αK(Y ). For this we shall prove

the following

r > αK(Y ) ⇒ αK(coY ) ≤ r.

From the definition of αK , Y can be written as a finite union, Y =
n⋃

i=1

Yi,

where δ(Yi) ≤ r, i = 1,m. We have

Y ⊂
n⋃

i=1

coYi and δ(coYi) ≤ r.

He (see R. Cristescu, Analiză funcţională, 1978, pp.21-22),

coY ⊂
⋃

λ∈σ

n∑

i=1

λicoYi

where σ ⊂ Rn is the standard simplex, i.e.,

σ :=

{
λ ∈ Rn| λi ≥ 0,

n∑

i=1

λi = 1

}
.

But σ is a compact set. So, for each ε > 0 there exist λ1, . . . , λm ∈ σ such

that for all λ ∈ σ, there exists λi such that

‖λ− λi‖Rn ≤ ε

δ

(
0,

n⋃

i=1

coYi

) .

From this we have that

coY ⊂
m⋃

j=1

n∑

i=1

λ
j
i coYi + εB(0; 1).

This implies

αK(coY ) ≤ max
i=1,n

αK(coYi) + ε ≤ r + ε, i.e.,

αK(coY ) ≤ r + ε, ∀ ε > 0.
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So, αK(coY ) ≤ r.

Lemma 3.2.5. (Kuratowski’s intersection lemma). Let (X, d) be a com-

plete metric space and Yn ∈ Pb,cl(X), Yn+1 ⊂ Yn, n ∈ N, be such that

αK(Yn) → 0 as n→ ∞. Then

Y∞ :=
⋂

n∈N

Yn 6= ∅ and αK(Y∞) = 0,

i.e., Y∞ is a compact set.

Proof. It is clear that Y∞ is a closed set and αK(Y∞) = 0. Let us prove

that Y∞ 6= ∅.
Let xn ∈ Yn, n ∈ N. Let Xn := {xn, xn+1, . . . }. We have Xn+1 = Xn ∪

{xn+1}. Hence

αK(X0) = αK(X1) = · · · = αK(Xn) → 0 as n→ ∞.

It follows that αK(X0) = 0. This implies that X0 is precompact and there

exists a convergent subsequence (xnk
)n∈N of (xn)n∈N.

Let x∗ := lim
k→∞

xnk
. We have that x∗ ∈ Y∞.

3.3 The Hausdorff measure of noncompactness

Let (X, d) be a metric space. The Hausdorff measure of noncompactness

of X, αH : Pb(X) → R+ is defined by αH := inf{ε > 0| Y can be covered by

finitely many balls of radius ≤ ε}.
The Hausdorff measure of noncompactness has all the properties of αK

presented in Lemma 3.2.1, 3.2.2 and 3.2.4.

From the definition of αK and of αH we have

Lemma 3.3.1. Let (X, d) be a metric space and αK and αH the Kuratowski

and Hausdorff measures of noncompactness of X. Then

αH ≤ αK ≤ 2αH .
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Lemma 3.3.2. (R.D. Nussbaum (1969), M. Furi and A. Vignoli (1970))

Let X be a Banach space. Then

(a) αK(B(0; 1)) = αH(B(0; 1)) = 0 if dimX < +∞;

(b) αK(B(0; 1)) = 2 and αH(B(0; 1)) = 1, if X is infinite dimensional.

Proof. (b) Since δ(B(0; 1)) = 2, hence αK(B(0; 1)) ≤ 2. Let us suppose

that αK(B(0; 1)) < 2. Then there exists B1, . . . , Bm ∈ Pcl(X) such that,

B(0; 1) ⊂
m⋃

k=1

Bk and δ(Bk) < 2. Let we consider a section of B(0; 1) with

a n-dimensional subspace Xm ⊂ X. Let Ak := Bk ∩ Xn. Now, we have a

contradiction with the following theorem of antipodes of Borsuk-Lusternik-

Schnirelman (see [6] p.23 or [58] p.87):

If B(0; 1) is the unit sphere in an m-dimensional Banach space and

A1, . . . , Am is a cover of ∂B(0; 1) by closed subsets, then at least one of the

sets A1, . . . , Am, contains a pair of antipodes points.

Let us prove that αH(B(0; 1)) = 1. Suppose that αH(B(0; 1)) < 1. Let

r := αH(B(0; 1)) and ε > 0 be such that r + ε < 1. By the definition of αH ,

there exist x1, . . . , xm ∈ X such that

B(0; 1) ⊂
m⋃

k=1

N(xk, r + ε) =
m⋃

k=1

(xk + (r + ε)B(0; 1)).

We have

r ≤ r(r + ε).

This implies that αH(B(0; 1)) = 0 which is in contradiction with dimX =

+∞.

Lemma 3.3.3. Let X be a Banach space, Ω ⊂ Rn a compact subset and

Y ⊂ C(Ω, X) a bounded and equicontinuous subset. Then

αK(Y ) = sup
t∈Ω

αK({x(t)| x ∈ Y }),

with respect to the Chebyshev norm on C(Ω, X).
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Proof. First we shall prove that

µ > αK(Y ) ⇒ αK({x(t)| x ∈ Y } ≤ µ, ∀ t ∈ Ω).

If µ > αK(Y ), then there exist Y1, . . . , Ym, Yk ⊂ Y , k = 1,m such that

δ(Yk) ≤ µ and Y ⊂
m⋃

k=1

Yk.

Now we remark that

δ({x(t)|x ∈ YK}) = sup
x,y∈YK

{‖x(t)− y(t)‖} ≤ δ(YK) ≤ µ.

Let now to prove the converse inequality.

Ω a compact subset and Y equicontinuous imply that, given ε > 0 there

exist t1, . . . , tm ∈ Ω such that

{x(t)| x ∈ Y } ⊂
m⋃

k=1

({x(ti)| x ∈ Y }+B(0; ε))

for any t ∈ Ω.

If µ > sup
t∈Ω

(αK({x(t)| x ∈ Y }) then there exist Y1, . . . , Yp such that

m⋃

k=1

{x(tk)| x ∈ Y } ⊂
p⋃

j=1

Yj and δ(Yj) ≤ µ.

So, we have

αK(Y ) ≤ µ+ 2ε, ∀ ε > 0, i.e., αK(Y ) ≤ µ.

Remark 3.3.1. The measure αH has not all the properties of αK . For

example the following definitions are not equivalent.

Let (X, d) be a metric space.

Definition 3.3.1. The Hausdorff measure of noncompactness of X is the

following functional αH : Pb(X) → R+, where for A ∈ Pb(X),

αH(A) := inf

{
ε > 0| ∃ xi ∈ X, 0 < ri ≤ ε : A ⊂

m⋃

i=1

B(xi, ri)

}
.
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Definition 3.3.2. The Hausdorff measure of noncompactness of X is the

following functional αiH : Pb(X) → R+, where for A ∈ Pb(X),

αiH(A) := inf

{
ε > 0| ∃ xi ∈ A, 0 < ri ≤ ε : A ⊂

m⋃

i=1

B(xi, ri)

}
.

Example 3.3.1. (M. Furi and A. Vignoli (1970)). Let X be a Hilbert

space. Let A be an infinite ortogonal system of X. Then αH(A) = 1 and

αiH(A) =
√
2.

3.4 The De Blasi measure of weak noncompactness

Let X be a Banach space and Y ⊂ X a subset of X. We denote

Y
w
- the weak closure of Y ;

Pwcl(X) := {Y ⊂ X| Y is weakly closed};
Pwcp(X) := {Y ⊂ X| Y is weakly compact}.
The De Blasi measure of weak noncompactness is defined as follows

ωD : Pb(X) → R+, ωD(Y ) := inf{ε > 0| ∃ C ∈ Pwcp(X)

such that Y ⊂ C + εB(0; 1)}.

We have

Lemma 3.4.1. The functional ωD has the following properties:

(i) Y1 ⊂ Y2 ⇒ ωD(Y1) ≤ ωD(Y2);

(ii) ωD(Y1 ∪ Y2) = max(ωD(Y1), ωD(Y2)), Y1, Y2 ∈ Pb(X);

(iii) ωD(Y ) = ωD(Y
w
), Y ∈ Pb(X);

(iv) ωD(coY ) = ωD(Y ), Y ∈ Pb(X);

(v) ωD(Y1 + Y2) ≤ ωD(Y1) + ωD(Y2), Y1, Y2 ∈ Pb(X);

(vi) ωD(λY ) = |λ|ωD(Y ), λ > 0, Y ∈ Pb(X);

(vii) ω(Y ) = 0 ⇔ Y
w ∈ Pwcp(X).
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Lemma 3.4.2. (De Blasi’s intersection lemma). Let X be a Banach space

and Yn ∈ Pwcl,b(X), Yn+1 ⊂ Yn, n ∈ N, be such that

ωD(Yn) → 0 as n→ ∞.

Then

Y∞ :=
⋂

n∈N

Yn 6= ∅ and ωD(Y∞) = 0.

Proof. It is clear that Y∞ is a weakly closed set and ωD(Y∞) = 0. Let us

prove that Y∞ 6= ∅.
Let xn ∈ Yn, n ∈ N. Let Xn := {xn, xn+1, . . . }. We have Xn+1 = Xn ∪

{xn+1}. Hence

ωD(X0) = ωD(X1) = · · · = ωD(Xn) → 0 as n→ ∞.

It follows that ωD(X0) = 0. This implies that there exists a weakly con-

vergent subsequence (xnk
)k∈N.

Let x∗ be the limit. We have that x∗ ∈ Y∞.

3.5 Functional with the intersection property

The above considerations give rise to

Definition 3.5.1. (I.A. Rus [60]-[62]). Let X be a nonempty set, Z ⊂
P (X), Z 6= ∅. A functional θ : Z → R+ has the intersection property if

Yn ∈ Z, Yn+1 ⊂ Yn, n ∈ N and θ(Yn) → 0 as n→ ∞ imply that

Y∞ :=
⋂

n∈N

Yn 6= ∅, Y∞ ∈ Z and θ(Y∞) = 0.

Example 3.5.1. Let (X, d) be a complete metric space. Then the func-

tionals δ, αK and αH have the intersection property. In this case Z = Pb,cl(X).
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Example 3.5.2. Let X be a Banach space. A functional αDP : Pb(X) →
R+ is called Daneš-Pasicki measure of noncompactness if

(i) αDP (Y ) = 0 ⇒ Y ∈ Pcp(X), ∀ Y ∈ Pb(X);

(ii) Y1, Y2 ∈ X, Y1 ⊂ Y2 ⇒ αDP (Y1) ≤ αDP (Y2);

(iii) αDP (Y ∪ {x}) = αDP (Y ), ∀ Y ∈ Pb(X), ∀ x ∈ X.

If αDP is a Daneš-Pasicki measure of noncompactness then, αDP :

Pb,cl(X) → R+ is a functional with the intersection property. See the proof of

Lemma 3.2.5.

Example 3.5.3. Let (X, d) be a metric space. An operator W : X ×
X× [0, 1] → X is said to be a convex structure on X (W. Takahashi (1970)) if

d(z,W (x, y, λ)) ≤ λd(z, x)+(1−λ)d(z, y) for all x, y, z ∈ X and λ ∈ [0, 1]. The

triple (X, d,W ) is called a convex metric space. A convex metric space is said to

have property (c) if every bounded decreasing net of nonempty, closed and con-

vex subsets has nonempty intersection. The Eisenfeld-Lakshmikantham mea-

sure of nonconvexity is the following functional

βEL : Pb(X) → R+, βEL(Y ) := Hd(Y, coY ).

We have

Lemma 3.5.1. Let (X, d,W ) be a convex metric space with the property

(c). Then the functional βEL : Pb,cl(X) → R+ is a functional with intersection

property.

Proof. Let Yn ∈ Pb,cl(X), Yn+1 ⊂ Yn, n ∈ N be such that βEL(Yn) → 0 as

n → ∞. But βEL(Yn) = H(Yn, coYn) = H(Yn, coYn) and coYn
Hd→

⋂

m∈N

coYm 6=

∅. These imply Yn
Hd→

⋂

m∈N

coYm =
⋂

m∈N

Ym.

Example 3.5.4. Let θ : Z → R+ a functional with the intersection prop-

erty and Z1 ⊂ Z, Z1 6= ∅. Then θ|Z1
: Z1 → R+ has the intersection property.

Example 3.5.5. Let θ1, θ2 : Z → R+ be two functionals with the intersec-

tion property, and λ1, λ2 ∈ R+, (λ1, λ2) 6= 0. Then the functional λ1θ1 + λ2θ2
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has the intersection property.

Example 3.4.6. If the functionals θ1, θ2 have the intersection property,

then θ := max(θ1, θ2) has the intersection property.

3.6 Compatible pair with a f.p.s.

Definition 3.6.1. Let (X,S(X),M) be a f.p.s., θ : Z → R+ (S(X) ⊂ Z ⊂
P (X)) and η : P(X) → P(X). The pair (θ, η) is compatible with (X,S(X),M)

if

(i) η is a closure operator, S(X) ⊂ η(Z) ⊂ Z and θ(η(Y )) = θ(Y ), ∀ Y ∈
Z;

(ii) Fη ∩ Zθ ⊂ S(X).

Example 3.6.1. Let (X,S(X),M) be the fixed point structure of

Nemytzki-Edelstein, i.e., (X, d) is a complete metric space, S(X) := Pcp(X)

and M(Y ) := {f : Y → Y | f is contractive}. Let Z = Pb(X), θ = αK and

η(Y ) = Y . Then the pair (θ, η) is compatible with (X,S(X),M).

Example 3.6.2. X is a Banach space, S(X) := Pcp,cv(X), M(Y ) :=

C(Y, Y ), Z = Pb(X), θ = αK and η(Y ) = coY . Then the pair (θ, η) is com-

patible with (X,S(X),M).

3.7 An abstract measure of noncompactness

The Daneš-Pasiki measure of noncompatness (see Example 3.4.2) is an

abstract measure of noncompactness. In what follow we give other examples

of abstract measure of noncompactness.

Definition 3.7.1. Let X be a Banach space. A functional α : Pb(X) →
R+ is called a measure of noncompactness on X iff α satisfies the following

conditions:
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(i) α(A) = 0 implies A ∈ Pcp(X);

(ii) α(A) = α(A), ∀ A ∈ Pb(X);

(iii) A ⊂ B ⇒ α(A) ≤ α(B), ∀ A,B ∈ Pb(X);

(iv) α(coA) = α(A), ∀ A ∈ Pb(X);

(v) α|Pb,cl(X) is a functional with the intersection property.

Example 3.7.1. α = δ satisfies (i)-(v). We remark that δ isn’t a Daneš-

Pasicki measure of noncompactness.

Example 3.7.2. αK and αH satisfy (i)-(v).

Definition 3.7.2. Let X be a Banach space. A functional ω : Pb(X) → R+

is called a measure of weak noncompactness on X iff it satisfies the following

conditions:

(i) ω(A) = 0 implies A
w ∈ Pwcp(X);

(ii) ω(A) = ω(A
w
), ∀ A ∈ Pb(X);

(iii) A ⊂ B implies ω(A) ≤ ω(B), ∀ A,B ∈ Pb(X);

(iv) ω(coA) = ω(A), ∀ A ∈ Pb(X);

(v) ω|Pb,wcl(X) is a functional with the intersection property.

Example 3.7.3. ω = ωD (see §3.4) satisfies (i)-(v).
Definition 3.7.3. Let (X, d) be a metric space. A functional α : Pb(X) →

R+ is called a measure of noncompactness on the metric space X iff α satisfies

the conditions (i), (ii), (iii) and (v) in Definition 3.7.1.

Remark 3.7.1. Let X be a Banach space and α : Pb(X) → R+ a func-

tional. The following axioms appear in different definitions of some abstract

measure of noncompactness:

(i) α(A) = 0 implies A ∈ Pcp(X);

(ii) α(A) = 0 iff A ∈ Pcp(X);

(iii) A ⊂ B implies α(A) ≤ α(B);

(iv) A ∈ Pb(X), x ∈ X imply α(A ∪ {x}) = α(A);

(v) A ∈ Pb(X), B ∈ Pcp(X) imply α(A ∪B) = α(A);
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(vi) A ∈ Pb(X), B ∈ Pb(X) imply α(A ∪B) = max(α(A), α(B));

(vii) α|Pb,cl
(X) is a functional with the intersection property;

(viii) α(coA) = α(A), ∀ A ∈ Pb(X);

(ix) α(A+B) ≤ α(A) + α(B), ∀ A,B ∈ Pb(X);

(x) α(A) = α(A), ∀ A ∈ Pb(X);

(xi) α(λA) = |λ|α(A), ∀ A ∈ Pb(X) and ∀ λ ∈ R.

3.8 An abstract measure of nonconvexity

Definition 3.8.1. A triple (X, τ, C) is a convex topological space if

(i) (X, τ) is a Hausdorff topological space;

(ii) (X, C) is a convex space, i.e., C ⊂ P(X) with the following properties:

(a) X, ∅ ∈ C;
(b) Ai ∈ C, i ∈ I ⇒

⋂

i∈I

Ai ∈ C;

(c) {x} ∈ C, ∀ x ∈ X;

(d) {x, y} ∈ C ⇒ x = y.

(iii) C is a subbase for τ .

By definition the elements of C are called convex sets.

Definition 3.8.2. Let (X, τ, C) be a convex topological space and Z ⊂
P (X), Z 6= ∅. A functional β : Z → R+ is a large measure of nonconvexity if

β(A) = 0 implies that A ∈ Pcv(X).

Definition 3.8.3. Let (X, d,W ) be a convex metric space. A functional β :

Pb(X) → R+ is a measure of nonconvexity if is a large measure of nonconvexity

and satisfies the following conditions:

(i) β(A) = β(A);

(ii) β : (Pb,cl(X), Hd) → R+ is continuous.

Example 3.8.1. Let (X, ‖·‖) be a Banach space, τ = τ‖·‖ and C = Pcv(X).

Then βEL and δ are measures of nonconvexity on X.
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Example 3.8.2. The functional βEL defined on a convex metric space,

(X, d,W ), is a measure of nonconexity.

Example 3.8.3. Let (X, d,W ) be a convex metric space and β1, β2 two

measures of nonconvexity on X. Then β := max(β1, β2) is a measure of non-

convexity.

3.9 Operators with the intersection property

Let (A,→, L) be an ordered L-space with the least element, 0.

Definition 3.9.1. Let X be a nonempty set, Z ⊂ P (X), Z 6= ∅. An

operator θ : Z → A has the intersection property if Yn ∈ Z, Yn+1 ⊂ Yn, n ∈ N

and θ(Yn) → 0 as n→ ∞ implies that

Y∞ :=
⋂

n∈N

Yn 6= ∅, Y∞ ∈ Z and θ(Y∞) = 0.

Example 3.9.1. Let X be a locally convex space and (pi)i∈I a family

of seminorms which generates the topology on X. Let Z := Pb,cl(X) and

A := M(I,R+). We define the operator θ : Z → M(I,R+), θ(A) := with the

function i 7→ αi
K(A), where αi

K is the Kuratowski measure of noncompactness

w.r.t. the seminorm pi. This operator has the intersection property.

Remark 3.9.1. One of the basic problems of the f.p.s. theory is to con-

struct examples of operators with the intersection property. For each such

example we have at least a fixed point theorem.
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Chapter 4

(θ, ϕ)-contractions and

θ-condensing operators

4.1 Comparison functions

Let ϕ : R+ → R+ be a function. Consider relative to ϕ the following

conditions:

(iϕ) ϕ is increasing.

(iiϕ) ϕ(t) < t, ∀ t > 0.

(iiiϕ) ϕ(0) = 0.

(ivϕ) ϕ
n(t) → 0 as n→ ∞, ∀ t ∈ R+.

(vϕ) t− ϕ(t) → ∞ as t→ ∞.

(viϕ)
∑

n∈N

ϕn(t) < +∞.

Relative to the above conditions we have

Lemma 4.1.1. The conditions (iϕ) and (iiϕ) imply (iiiϕ).

Proof. From (iϕ), ϕ(0) ≤ ϕ(t), ∀ t > 0. From (iiϕ), ϕ(0) ≤ ϕ(t) < t, ∀ t >
0. So, ϕ(0) = 0.

Lemma 4.1.2. The condition (iϕ) and (ivϕ) imply (iiϕ).

61
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Proof. Let t0 ∈ R∗
+ such that ϕ(t0) ≥ t0. From (iϕ) we have ϕn(t0) ≥

t0, ∀ n ∈ N, and from (ivϕ) it follows that t0 = 0.

Definition 4.1.1. A function ϕ : R+ → R+ is a comparison function if ϕ

satisfies the conditions (iϕ) and (ivϕ).

Definition 4.1.2. A comparison function ϕ : R+ → R+ is a strict com-

parison function if it satisfies (vϕ).

Definition 4.1.3. A comparison function ϕ : R+ → R+ is a good compar-

ison function if it satisfies (viϕ).

Example 4.1.1. Let λ ∈ [0, 1[. Then ϕ : R+ → R+, ϕ(t) := λt, is a strict

and good comparison function.

Example 4.1.2. ϕ : R+ → R+, ϕ(t) :=
t

1 + t
is a strict comparison

function, but isn’t a good comparison function.

Example 4.1.3. The function ϕ : R+ → R+, ϕ(t) :=
1

2
t for t ∈ [0, 1] and

ϕ(t) := t− 1

2
for t > 1, is a comparison function.

Example 4.1.4. If ϕ : R+ → R+ is a comparison function, then each

iterate ϕk, k ≥ 1, is a comparison function.

For more considerations on comparison functions see I.A. Rus [63] and V.

Berinde [9].

4.2 (θ, ϕ)-contractions and θ-condensing operators.

Definitions and examples

Let X be a nonempty set, Z ⊂ P (X), Z 6= ∅ and θ : Z → R+ a functional.

Definition 4.2.1. An operator f : X → X is a strong (θ, ϕ)-contraction

if

(i) ϕ is a comparison function;

(ii) A ∈ Z ⇒ f(A) ∈ Z;

(iii) θ(f(A)) ≤ ϕ(θ(A)), ∀ A ∈ Z.
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Definition 4.2.2. An operator f : X → X is a (θ, ϕ)-contraction if satis-

fies the conditions (i) and (ii) in Definition 4.2.1 and the condition:

(iii’) θ(f(A)) ≤ ϕ(θ(A)), ∀ A ∈ Z ∩ I(f).
Definition 4.2.3. An operator f : X → X is strong θ-condensing if

(i) A ∈ Z ⇒ f(A) ∈ Z;

(ii) A ∈ Z, θ(A) 6= 0 ⇒ θ(f(A)) < θ(A).

Definition 4.2.4. An operator f : X → X is θ-condensing if

(i) A ∈ Z ⇒ f(A) ∈ Z;

(ii) A ∈ Z ∩ I(f), θ(A) 6= 0 ⇒ θ(f(A)) < θ(A).

Example 4.2.1. Let (X, d) be a metric space, Z := Pb(X) and θ = δ.

Then an operator f : X → X is a strong (δ, ϕ)-contraction if and only if f is

a ϕ-contraction, i.e.,

d(f(x), f(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X.

Indeed, let f be a ϕ-contraction. Then

d(f(x), f(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X.

Let A ∈ Pb(X), and x, y ∈ A. Then

d(f(x), f(y)) ≤ ϕ(d(x, y)) ≤ ϕ(δ(A)).

So,

δ(f(A)) ≤ ϕ(δ(A)), ∀ A ∈ Pb(X).

Let f : X → X be a strong (δ, ϕ)-contraction.

Let A := {x, y}, x, y ∈ X. Then

δ(f(A)) = d(f(x), f(y)) ≤ ϕ(δ(A)) = ϕ(d(x, y)).

Example 4.2.2. Let (X, d) be a metric space and f : X → X a Ćirić-

Reich-Rus operator, i.e., there exist a, b ∈ R+, a+ 2b < 1, such that

d(f(x), f(y)) ≤ ad(x, y) + b[d(x, f(x)) + d(y, f(y))], ∀ x, y ∈ X.
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Then f is a (δ, ϕ)-contraction, where ϕ(t) := (a+ 2b)t, t ∈ R+.

Indeed, let A ∈ Pb(X) ∩ I(f). Let x, y ∈ A. Then

d(f(x), f(y)) ≤ (a+ 2b)δ(A), ∀ x, y ∈ A.

So,

δ(f(A)) ≤ (a+ 2b)δ(A).

Example 4.2.3. Let (X, d) be a metric space and f : X → X a compact

operator, i.e., A ∈ Pb(X) implies that f(A) ∈ Pcp(X). Then f is a strong

(αK , 0)-contraction.

Indeed, let A ∈ Pb(X). We have

αK(f(A)) = αK(f(A)) = 0 ≤ 0αK(A).

Example 4.2.4. Let (X, d) be a metric space and f : X → X a ϕ-

contraction. Then f is a strong (αK , ϕ)-contraction.

Indeed, let A ∈ Pb(X) and A =
n⋃

i=1

Ai. Then f(A) =
n⋃

i=1

f(Ai) and

δ(f(Ai)) ≤ ϕ(δ(Ai)), i = 1, n.

Now the proof follows from the definition of αK .

Example 4.2.5. Let X be a Banach space, f : X → X a compact operator

and g : X → X a ϕ-contraction. Then the operator h := f + g is a strong

(αK , ϕ)-contraction.

Indeed, for A ∈ Pb(X) we have

αK(h(A)) = αK((f + g)(A)) ≤ αK(f(A) + g(A))

≤ αK(f(A)) + αK(g(A)) = αK(g(A)) ≤ ϕ(αK(A)).

Example 4.2.6. This is an example for the Example 4.2.5. Consider the

Banach space (C[a, b], ‖·‖C). LetK ∈ C([a, b]×[a, b]×R) andH ∈ C([a, b]×R)

such that there exists ϕ : R+ → R+ such that

|H(t, η1)−H(t, η2)| ≤ ϕ(|η1 − η2|), ∀ t ∈ [a, b], η1, η2 ∈ R.
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We suppose that (b − a)ϕ is a comparison function. Then the operator

h : C[a, b] → C[a, b], defined by

h(x)(t) :=

∫ t

a

K(t, s, x(s))ds+H(t, x(t)), t ∈ [a, b],

is a strong (αK , (b− a)ϕ)-contraction.

Indeed, the operator f : C[a, b] → C[a, b] defined by

f(x)(t) :=

∫ t

a

K(t, s, x(s))ds

is compact and the operator g : C[a, b] → C[a, b] defined by

g(x)(t) := H(t, x(t))

is a (b− a)ϕ-contraction.

Example 4.2.7. LetX be a Banach space and αK the Kuratowski measure

of noncompactness of X. Let Ω ⊂ X and l ∈ R+. An operator f : Ω → X is

strong (αK , l)-Lipschitz if

αK(f(A)) ≤ lαK(A), ∀ A ∈ Pb(Ω).

Let Ω ⊂ X be an open subset and f : Ω → X be such that

(i) f is differentiable;

(ii) f is strong (αK , l)-Lipschitz.

Then the differential of f at x, ∂f(x) : X → X is strong (αK , l)-Lipschitz

for all x ∈ X.

Proof. From the definition of Fréchet differential, we have ∀ ε > 0, ∃ δ(ε)
and ω(x, h) such that

∂f(x)(h) = f(x+ h)− f(x) + ω(x, h), ∀ h ∈ X, ‖h‖ ≤ δ(ε)

and ‖ω(x, h)‖ ≤ ε‖h‖.
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Let A ∈ Pb(X). Then

αK(∂f(x)(A)) ≤ αK(f(x+A)) + αK(ω(x,A))

≤ lαK(A) + εδ(0, A), ∀ ε > 0.

So,

αK(∂f(x)(A)) ≤ lαK(A), ∀ A ∈ Pb(X).

Example 4.2.8. The radial retraction ρ on a Banach space X to B(0; 1)

(see Example 1.3.1) is strong αK-nonexpansive. It is known that ρ is l(X)-

Lipschitz with 1 ≤ l(X) ≤ 2 (see D.G. Defigueiredo and L.A. Karlovitz (1967),

Chp.1). Now we prove that ρ is strong (αK , 1)-Lipschitz, i.e., ρ is strong αK-

nonexpansive. First we remark that

ρ(A) ⊂ co(A ∪ {0}), ∀ A ∈ Pb(X).

So,

αK(ρ(A)) ≤ αK(co(A ∪ {0})) = αK(A).

Example 4.2.9. Let Xi, i = 1, 2, 3, be Banach spaces. Let f1 : X1 → X2

be a strong (αK , l1)-Lipschitz operator and f2 : X2 → X3 be a strong (αK , l2)-

Lipschitz. Then the operator f2 ◦ f1 : X1 → X3 is strong (αK , l1l2)-Lipschitz.

Example 4.2.10. Let X1, X2 be two Banach spaces and fi : X1 → X2 an

operator strong (αK , li)-Lipschitz, i = 1, 2. Then the operator f1 + f2 : X1 →
X2 is strong (αK , l1 + l2)-Lipschitz.

Example 4.2.11. ([6], p.40). Let X be an infinite dimensional Banach

space and B(0; 1) ⊂ X. Consider the operator f : B(0; 1) → B(0; 1) defined

by f(x) := (1 − ‖x‖)x. This operator is αK-condensing and is not (αK , l)-

contraction for any l ∈ (0, 1).
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Chapter 5

First general fixed point

principle and applications

5.1 First general fixed point principle

One of the main results in the f.p.s. theory is the following

Theorem 5.1.1. (First general fixed point principle).

Let (X,S(X),M) be a f.p.s., (θ, η) (θ : Z → R+) a compatible pair with

(X,S(X),M). Let Y ∈ η(Z) and f ∈M(Y ). We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) f is a (θ, ϕ)-contraction.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Proof. (a)+(b). Y ∈ η(Z) implies Y ∈ Z, Condition (ii) implies f(Y ) ∈ Z.

Let Y1 := η(f(Y )), Y2 := η(f(Y1)), . . . , Yn := η(f(Yn−1)), . . . . We remark that

69
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Yn+1 ⊂ Yn, Yn ∈ Fη and Yn ∈ I(f). Let we denote Y∞ :=
⋂

n∈N

Yn. From the

condition (ii) we have that

θ(Yn) = θ(η(f(Yn−1))) = θ(f(Yn−1))

≤ ϕ(θ(Yn−1)) ≤ · · · ≤ ϕn(θ(Y )) → 0 as n→ ∞.

Since θ : η(Z) → R+ is a functional with the intersection property, we

have that Y∞ 6= ∅, Y∞ ∈ η(Z), Y∞ ∈ I(f) and θ(Y∞) = 0. Since the pair (θ, η)

is a compatible pair with (X,S(X),M) we have that Y∞ ∈ I(f) ∩ S(X) and

f |Y∞
∈M(Y∞). So, Ff 6= ∅.

(c). Let Ff ∈ Z. From f(Ff ) = Ff and the condition (ii) we have that

θ(Ff ) = θ(f(Ff )) ≤ ϕ(θ(Ff )).

Remark 5.1.1. In Theorem 5.1.1 is not necessarily that M(Y ) be defined

for all Y ∈ P (X). It is sufficiently that M(Y ) be defined for Y ∈ η(Z).

From the proof of Theorem 5.1.1 we have

Theorem 5.1.2. Let (X,S(X),M) be a f.p.s., (θ, η) a compatible pair with

(X,S(X),M). Let Y ∈ Fη and f ∈M(Y ) be such that f(Y ) ∈ Z. We suppose

that:

(i) θ|η(Z) has the intersection property;

(ii) f is a (θ, ϕ)-contraction.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Proof. First we remark that η(f(Y )) ∈ I(f). After that we apply Theorem

5.1.1 for the operator f |η(f(Y )) : η(f(Y )) → η(f(Y )).

Remark 5.1.2. In Theorem 5.1.2 is not necessarily that M(Y ) be defined

for all Y ∈ P (X). It is sufficiently that M(Y ) be defined for Y ∈ Fη.
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Remark 5.1.3. In the above results θ take values in R+ and ϕ is from R+

to R+. Let us consider instead of R+ an ordered L-space (A,≤,→) with the

least element 0.

Definition 5.1.1. An operator ϕ : A → A is a comparison operator iff

(i) ϕ is increasing;

(ii) ϕ(0) = 0 and α ≤ ϕ(α) implies α = 0, ∀ α ∈ A;

(iii) ϕn(α) → 0 as n→ ∞, ∀ α ∈ A.

In terms of comparison operators and of operator with intersection prop-

erty (Definition 3.9.1), the Theorem 5.1.1 and 5.1.2 take the following form:

Theorem 5.1.1’. Let (X,S(X),M) be a f.p.s., (θ, η) (θ : Z → A) a

compatible pair with (X,S(X),M). Let Y ∈ η(Z) and f ∈M(Y ). We suppose

that:

(i) θ|η(Z) has the intersection property;

(ii) f is a (θ, ϕ)-contraction, where ϕ : A → A.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Theorem 5.1.2’. Let (X,S(X),M) be a f.p.s., (θ, η) (θ : Z → A) a

compatible pair with (X,S(X),M). Let Y ∈ Fη and f ∈ M(Y ) be such that

f(Y ) ∈ Z. We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) f is a (θ, ϕ)-contraction, where ϕ : A → A.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Remark 5.1.4. All terms in the above results are set-theoretic. So, The-
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orem 5.1.1, Theorem 5.1.2, Theorem 5.1.1’ and Theorem 5.1.2’ are on an ar-

bitrary set.

In what follow we shall present some consequences of the above theorems.

5.2 (δ, ϕ)-contraction principle

Let ϕ : R+ → R+ a comparison function, (X, d) a metric space and δ :

Pb(X) → R+ the diameter functional. We have

Theorem 5.2.1. Let (X, d) be a bounded and a complete metric space and

f : X → X a (δ, ϕ)-contraction. Then Ff = {x∗}.
Proof. Consider the trivial f.p.s. on X. Let Z = P (X), θ = δ, η(A) = A,

Y = X. It is clear that we are in the conditions of the Theorem 5.1.1. So,

Ff 6= ∅ and δ(Ff ) = 0, i.e., Ff = {x∗}.
Theorem 5.2.1’. Let (X, d) be a bounded and complete metric space, ϕ :

R5
+ → R+ a comparison function and f : X → X an operator. We suppose

that

d(f(x), f(y)) ≤ ϕ(d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x)))

for all x, y ∈ X.

Then, Ff = {x∗}.
Proof. Let ψ : R+ → R+ be defined by ψ(t) := ϕ(t, t, t, t, t). The func-

tion ψ is a comparison function. We remark that the operator f is a (δ, ψ)-

contraction. The proof follows from Theorem 5.2.1.

Theorem 5.2.2. Let (X, d) be a complete metric space and f : X → X a

(δ, ϕ)-contraction such that f(X) ∈ Pb(X). Then, Ff = {x∗}.
Proof. Follows from Theorem 5.1.2.

Theorem 5.2.2’. Let (X, d) be a complete metric space, ϕ : R5
+ → R+ be

a complete metric space, ϕ : R5
+ → R+ a comparison function and f : X → X

an operator. We suppose that
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(i) d(f(x), f(y)) ≤ ϕ(d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))), for

all x, y ∈ X.

(ii) f(X) ∈ Pb(X).

Then, Ff = {x∗}.
Proof. See the proof of Theorem 5.2.1’ and considers the operator f :

f(X) → f(X).

Theorem 5.2.3. Let (X, d) be a bounded and complete metric space and

f : X → X an operator. We suppose that:

(i) f is an (αk, ϕ)-contraction;

(ii) f is a contractive operator.

Then, Ff = {x∗}.
Proof. Consider on X the f.p.s. of Nemytzki-Edelstein. If we take Z =

P (X), θ = αK , η(A) = A, then we are in the conditions of Theorem 5.1.1.

From this theorem we have that Ff 6= ∅. From the condition (ii) we have that

CardFf ≤ 1. So, Ff = {x∗}.
Theorem 5.2.4. Let (X, d) be a complete metric space and f : X → X

an operator. We suppose that:

(i) f is an (αK , ϕ)-contraction;

(ii) f is a contractive operator;

(iii) f(X) ∈ Pb(X).

Then, Ff = {x∗}.
Proof. Consider on X the f.p.s. of Nemytzki-Edelstein. If we take Z =

Pb(X), θ = αK , η(A) = A, then we are in the conditions of Theorem 5.1.2.

From this theorem we have that Ff 6= ∅. From the condition (ii) we have that

cardFf ≤ 1. So, Ff = {x∗}.
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5.3 (α, ϕ)-contraction principle

In this section ϕ : R+ → R+ and α : Pb(X) → R+, where X is a Banach

space.

We have:

Theorem 5.3.1. Let X be a Banach space, α an abstract measure of

noncompactness, Y ∈ Pb,cl,cv(X) and f : Y → Y an operator. We suppose

that:

(i) f ∈ C(Y, Y );

(ii) f is an (α, ϕ)-contraction.

Then:

(a) Ff 6= ∅;
(b) Ff is a compact subset of Y .

Proof. Let (X,Pcp,cv(X),M) be the f.p.s. of Schauder (M(Y ) := C(Y, Y )).

Let Z = Pb(X), θ = α and η(A) = coA. The proof follows from Theorem 5.1.1.

Theorem 5.3.2. Let X be a Banach space, Y ∈ Pcl,cv(X), α an abstract

measure of noncompactness on X and f : Y → Y an operator. We suppose

that:

(i) f ∈ C(Y, Y );

(ii) f is an (α, ϕ)-contraction;

(iii) f(Y ) ∈ Pb(X).

Then:

(a) Ff 6= ∅;
(b) Ff is a compact subset of Y .

Proof. The proof follows from Theorem 5.1.2, where instead of Y we take

cof(Y ).

From the Theorem 5.3.1 we have

Theorem 5.3.3. (Darbo (1955)). Let X be a Banach space, l ∈ [0, 1[,



First general fixed point principle and applications 75

Y ∈ Pb,cl,cv(X) and f : Y → Y an operator. We suppose that:

(i) f ∈ C(Y, Y );

(ii) f is an (αK , l)-contraction.

Then:

(a) Ff 6= ∅;
(b) Ff is a compact subset of Y .

Proof. We take in the theorem 5.3.1, α := αK and ϕ(t) := lt, t ∈ R+.

From Theorem 5.3.2 we have:

Theorem 5.3.4. Let X be a Banach space, l ∈ [0, 1[, Y ∈ Pcl,cv(X) and

f : Y → Y an operator. We suppose that:

(i) f ∈ C(Y, Y );

(ii) f is an (αK , l)-contraction;

(iii) f(Y ) ∈ Pb(X).

Then:

(a) Ff 6= ∅;
(b) Ff is a compact subset of Y .

Remark 5.3.3 Darbo works with strong (αK , l)-contractions.

From Darbo’s fixed point theorem we have

Theorem 5.3.5. (Krasnoselskii (1958)). Let X be a Banach space, Y ∈
Pb,cl,cv(X) and f, g : Y → Y two operators. We suppose that:

(i) f is completete continuous;

(ii) g is a contraction;

(iii) f(x) + g(x) ∈ Y, ∀ x ∈ Y .

Then the operator f + g has at least a fixed point.

Proof. Let g be an l-contraction. Then f +g is an (αK , l)-contraction (see

Example 4.2.5). Now the proof follows from the fixed point theorem of Darbo.

Remark 5.3.4. In the Theorem 5.3.5 instead of condition (ii) we can put

the condition (ii’) g is a ϕ-contraction.
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5.4 (ω, ϕ)-contraction principle

In this section ϕ : R+ → R+ and ω : Pb(X) → R+ where X is a Banach

space.

We have

Theorem 5.4.1. Let X be a Banach space, ω an abstract measure of weak

noncompactness on X, Y ∈ Pb,wcl,cv(X) and f : Y → Y an operator. We

suppose that:

(i) f is weakly continuous;

(ii) f is an (ω, ϕ)-contraction.

Then:

(a) Ff 6= ∅
(b) Ff is a weak compact subset of Y .

Proof. Let (X,Pwcp,cv(X),M) be the fixed point structure of Tychonoff

(M(Y ) := {f : Y → Y |f is weakly continuous operator}). Let Z = Pb(X),

θ = ω and η(A) = coA. The proof follows from Theorem 5.1.1.

Theorem 5.4.2. (G. Emmanuele (1981)). Let X be a Banach space, ωD

the De Blasi weak measure of noncompactness on X, Y ∈ Pb,wcl,cv(X) and

f : Y → Y an operator. We suppose that:

(i) f is weakly continuous;

(ii) f is an (ωD, l)-contraction.

Then:

(a) Ff 6= ∅;
(b) Ff is a weak compact subset of Y .

Proof. One takes ω = ωD, ϕ(t) = lt in the Theorem 5.4.1.

Remark 5.4.1. In the Theorem 5.4.1 and 5.4.2 we can take Y ∈ Pwcl,cv(X)

with f(Y ) ∈ Pb(X).
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5.5 (β, ϕ)-contraction principle

We begin our considerations in this section with

Lemma 5.5.1. Let (X, τ, C) be a convex topological space and β : Z → R+

a large measure of nonconvexity on X. Let we suppose that:

(i) Z ⊂ P (X) and if A ∈ P (X) with cardA < +∞ imply that A ∈ Z;

(ii) f is a (β, ϕ)-contraction.

Then, cardFf ≤ 1.

Proof. Let x, y ∈ Ff . Then {x, y} ∈ Z. We have

β({x, y}) = β(f({x, y})) ≤ ϕ(β({x, y})).

This implies that β({x, y}) = 0. So, x = y.

Theorem 5.5.1. Let X be a Banach space, β a large measure of noncon-

vexity on X and Y ∈ Pcp(X). If f : Y → Y is a continuous (β, ϕ)-contraction,

then Ff = {x∗}.
Proof. We remark that

Y∞ :=
⋂

n∈N

fn(Y ) 6= ∅ and f(Y∞) = Y∞.

Since f is a (β, ϕ)-contraction, it follows that β(A∞) = 0. This implies that

A∞ ∈ Pcp,cv(X). The proof follows from the fixed point theorem of Schauder.

In order to present another result we consider (X, d,W ) Takahashi’s convex

metric space. Moreover we suppose that if x, y ∈ X and {x, y} is a convex set,

then x = y. We recall that a convex metric space X is with the property (C)

iff every bounded decreasing net of nonempty, closed convex subsets of X has

nonempty intersection.

Theorem 5.5.2. Let (X, d,W ) be a strictly convex metric space with prop-

erty (C), Y ∈ Pb,cl(X) and f : Y → Y an operator. We suppose that:

(i) f is a nonexpansive operator;
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(ii) f is a (βEL, ϕ)-contraction.

Then, Ff = {x∗}.
Proof. We consider on X the f.p.s. of Takahashi, i.e., S(X) := Pb,cl,cv(X)

and M(Y ) := {f : Y → Y |f a nonexpansive operator}. Let Z = Pb(X),

θ := βEL and η(A) := A. Now, the proof follows from Theorem 5.1.1.
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Akhmerov, M.I. Kamenskij, A.S. Potapov, A.E. Rodkina and B.M. Sadovskij

[2], J. Appell [5], J. Banas and K. Goebel [8], V. Berinde [9], K. Deimling [27],

M. Furi, M. Martelli and A. Vignoli [32], O. Hadžić [37], V.I. Istrăţescu [40],
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Chapter 6

Second general fixed point

principle and applications

6.1 Second general fixed point principle

The second main result in the f.p.s. theory is the following

Theorem 6.1.1. (Second general fixed point principle).

Let (X,S(X),M) be a f.p.s., (θ, η) (θ : Z → R+) a compatible pair with

(X,S(X),M). Let Y ∈ η(Z) and f ∈M(Y ). We suppose that:

(i) A ∈ Z, x ∈ Y imply that A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) f is a θ-condensing operator.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) if Ff ∈ Z, then θ(Ff ) = 0.

Proof. (a)+(b). Let x ∈ Y and A = {x}. By Lemma 1.6.1 there exists

A0 ∈ Fη ∩ I(f) such that η(f(A0) ∪ {x}) = A0. We have that

θ(η(f(A0) ∪ {x}) = θ(f(A0) ∪ {x}) = θ(f(A0)) = θ(A0).

83
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From the condition (ii) we have that A0 ∈ Zθ. Hence A0 ∈ Fη ∩ I(f). So,

A0 ∈ S(X) and f |A0
∈ M(A0). Since (X,S(X),M) is a f.p.s. we have that

Ff 6= ∅.
(c) From the condition (ii) and from f(Ff ) = Ff , we have that θ(Ff ) = 0.

From the proof of the above theorem we have

Theorem 6.1.2. Let (X,S(X),M) be a f.p.s., (θ, η) a compatible pair with

(X,S(X),M). Let Y ∈ Fη and f ∈M(Y ) with f(Y ) ∈ Z. We suppose that:

(i) A ∈ Z, x ∈ Y imply that A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) f is a θ-condensing operator.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Remark 6.1.1. In the above results θ take values in R+. If instead of R+

we take an ordered set, (A,≤), with the least element 0, then Theorem 6.1.1

and Theorem 6.1.2 take the following form:

Theorem 6.1.1’. Let (X,S(X),M) be a f.p.s., (θ, η) (θ : Z → A) a

compatible pair with (X,S(X),M). Let Y ∈ η(Z) and f ∈M(Y ). We suppose

that:

(i) A ∈ Z, x ∈ Y imply that A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A).

(ii) θ(f(A)) = θ(A) implies θ(A) = 0.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Theorem 6.1.2’. Let (X,S(X),M) be a f.p.s., (θ, η) (θ : Z → A) a

compatible pair with (X,S(X),M). Let Y ∈ Fη and f ∈M(Y ) with f(Y ) ∈ Z.

We suppose that:
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(i) A ∈ Z, x ∈ Y imply that A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) θ(f(A)) = θ(A) implies θ(A) = 0.

Then:

(a) I(f) ∩ S(X) 6= ∅;
(b) Ff 6= ∅;
(c) If Ff ∈ Z, then θ(Ff ) = 0.

Remark 6.1.2. All terms in the above results are set-theoretic. So, The-

orem 6.1.1, 6.1.2, 6.1.1’ and 6.1.2’ are on an arbitrary set.

Remark 6.1.3. See Remark 5.1.1 and Remark 5.1.2.

In the following sections we shall present some consequences of these ab-

stract theorems.

6.2 αDP -condensing operator principle

In this section X is a Banach space and αDP : Pb(X) → R+ is the abstract

measure of noncompactness of Daneš-Pasicki.

We have

Theorem 6.2.1. Let X be a Banach space, Y ∈ Pb,cl,cv(X) and f : Y → Y

a continuous αDP -condensing operator. Then, Ff 6= ∅ and αDP (Ff ) = 0.

Proof. If we consider S(X) := Pcp,cv(X), M(Y ) := C(Y, Y ), θ := αDP

and η(A) := coA, then we are in the conditions of the Theorem 6.1.1.

Theorem 6.2.2. Let X be a Banach space, Y ∈ Pcl,cv(X) and f : Y → Y

a continuous αDP -condensing operator with f(Y ) ∈ Pb(X). Then, Ff 6= ∅ and

αDP (Ff ) = 0.

Proof. Let S(X) := Pcp,cv(X), M(Y ) := C(Y, Y ), θ := αDP and η(A) :=

coA. Then we are in the conditions of Theorem 6.1.2.

Theorem 6.2.3. (Sadovskij (1967)). Let X be a Banach space, Y ∈
Pb,cl,cv(X) and f : Y → Y a continuous αH-condensing operator. Then, Ff 6= ∅
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and Ff is a compact subset of Y .

Proof. We take αDP = αH in Theorem 6.2.1.

Remark 6.2.1. Sadovskij works with strong αH -condensing operators.

Let X be a topological vector space S(X) := Pcp,cv(X) and M(Y ) := {f :

Y → Y | f continuous affine operator}, Y ∈ Pcv(X). Let L be a lattice and

α : P (X) → L a set-argument operator which satisfies the following conditions:

(i) α(A) = 0 ⇒ A ∈ Pcp(X);

(ii) α(A ∪ {x}) = α(A), A ∈ P (X), x ∈ X

(iii) α(coA) = α(A).

If we take, in Theorem 6.1.1, the above fixed point structure, θ := α,

η = co, then we have

Theorem 6.2.4. (H.S. Chon - W. Lee (2000)). Let X be a Hausdorff

topological vector space, Y ∈ Pcl,cv(X) and f : Y → Y a continuous affine

operator. If f is α-condensing, then Ff 6= ∅.

6.3 ω-condensing operator principle

In this section X is a Banach space and ω : Pb(X) → R+ is a weak

noncompactness measure on X.

We have

Theorem 6.3.1. Let X be a Banach space, ω an abstract measure of weak

noncompactness on X, Y ∈ Pb,cl,cv(X) and f : Y → Y an operator. We

suppose that:

(i) f is weakly continuous;

(ii) f is ω-condensing operator.

Then:

(a) Ff 6= ∅;
(b) Ff is a weak compact subset of Y .



Second general fixed point principle and applications 87

Proof. Let (X,Pwcp,M) be the fixed point structure of Tychonoff, Z :=

Pb(X), θ := ω and η(A) = cowA. The proof follows from Theorem 6.1.1.

Theorem 6.3.2. Let X be a Banach space, ω an abstract measure of

weak noncompactness on X,Y ∈ Pwcl,cv(X) and f : Y → Y an operator with

f(Y ) ∈ Pb(X). We suppose that:

(i) f is weakly continuous;

(ii) f is ω-condensing operator.

Then:

(a) Ff 6= ∅;
(b) Ff is a weak compact subset of Y .

Proof. We apply Theorem 6.1.2.

Theorem 6.3.3. (G. Emmanuele (1981)). Let X be a Banach space, ωD

the De Blasi weak measure of noncompactness on X, Y ∈ Pb,wcl,cv(X) and

f : Y → Y an operator. We suppose that:

(i) f is weakly continuous;

(ii) f is ωD-condensing operator.

Then:

(a) Ff 6= ∅;
(b) Ff is a weak compact subset of Y .

6.4 β-condensing operator principle

We have

Lemma 6.4.1. Let (X, τ, C) be a convex topological space and β : Z → R+

a large measure of nonconvexity on X. Let Y ∈ P (X) and f : Y → Y be an

operator. We suppose that:

(i) Z ⊂ P (X) and if A ∈ P (X) with cardA < +∞ imply that A ∈ Z;
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(ii) f is β-condensing.

Then, cardFf ≤ 1.

Proof. Let x, y ∈ Ff . Then {x, y} ∈ Z. We have

β({x, y}) = β(f({x, y})).

From the condition (ii) it follows that β({x, y}) = 0. So, x = y.

Theorem 6.4.1. Let X be a Banach space, β : Pb(X) → R+ a large

measure of nonconvexity on X and Y ∈ Pcp(X). If f : Y → Y is a continuous

β-condensing operator, then Ff = {x∗}.
Proof. Let Y∞ :=

⋂

n∈N

fn(Y ). We remark that Y∞ 6= ∅, Y∞ ∈ Pcp(X) and

f(Y∞) = Y∞. Since f is β-condensing it follows that β(Y∞) = 0. This implies

that Y∞ ∈ Pcp,cv(X). Now, the proof follows from the fixed point theorem of

Schauder.

Theorem 6.4.2. Let X be a Banach space, β a large measure of noncon-

vexity on X and αDP a Daneš-Pasicki measure of noncompactness on X. Let

Y ∈ Pb,cl(X) and f : Y → Y a continuous operator. We suppose that:

(i) f is αDP -condensing;

(ii) f is β-condensing.

Then, Ff = {x∗}.
Proof. From Theorem 6.2.1 we have that Ff 6= ∅. From Lemma 6.4.1,

Ff = {x∗}.

6.5 δ-condensing operator principle

Theorem 6.5.1. Let (X, d) be a compact metric space and f : X → X a

continuous δ-condensing operator. Then Ff = {x∗}.
Proof. We remark that X∞ :=

⋂

n∈N

fn(X) 6= ∅ and f(X∞) = X∞. From

the δ-condensing condition it follows that δ(X∞) = 0, i.e., X∞ = {x∗} and
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Ff = {x∗}.
Theorem 6.5.2. Let (X, d) be a bounded and complete metric space, α a

measure of noncompactness space and f : X → X an operator. We suppose

that:

(i) f is a (α, ϕ)-contraction;

(ii) f is δ-condensing operator.

Then, Ff = {x∗}.
Proof. From the condition (i) it follow that there exists a compact set X∞

with the following properties:

• X∞ is an invariant subset for f ;

• X∞ is compact;

• Ff ⊂ X∞.

Now, the proof follows from the condition (ii) and Theorem 6.5.2.
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Chapter 7

Fixed point structures with

the common fixed point

property

7.1 Commuting operators, common fixed points

and common invariant subsets

Let X be a nonempty set and f, g : X → X two operators. We have

Lemma 7.1.1. If f ◦ g = g ◦ f , then
(a) Ff , Fg ∈ I(f) ∩ I(g);
(b) f(X), g(X) ∈ I(f) ∩ I(g).
Proof. (a) Let, for example, x ∈ Fg. Then

f(x) = f(g(x)) = g(f(x)).

So, f(x) ∈ Fg.

(b) It is clear that f(X) ∈ I(f). We have

g(f(X)) = f(g(X)) ⊂ f(X).

91
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So, f(X) ∈ I(f) ∩ I(g).
Lemma 7.1.2. If f ◦ g = g ◦ f , then

f(X) ∪ g(X) ⊂ Z ⊂ X ⇒ Z ∈ I(f) ∩ I(g).

Lemma 7.1.3. Let X be a nonempty set, η : P(X) → P(X) a closure

operator, Y ∈ Fη and f, g : Y → Y such that f ◦ g = g ◦ f . Let A1 ∈ P (Y ).

Then there exists A0 ⊂ Y such that:

(a) A1 ⊂ A0;

(b) A0 ∈ Fη;

(c) A0 ∈ I(f) ∩ I(g);
(d) η(f(A0) ∪ g(A0) ∪A1) = A0.

Proof. Let B := {B ⊂ Y | B satisfies the conditions (a), (b) and (c)}.
From Lemma 1.4.1 we have that ∩B ∈ B. This implies that ∩B is the least

element of the partially ordered set (B,⊂). Let us prove that A0 = ∩B.
We remark that η(f(A0) ∪ g(A0) ∪ A1) ∈ B and η(f(A0) ∪ g(A0)) ⊂ A0.

These imply that η(f(A0) ∪ g(A0) ∪A1) = A0.

7.2 Fixed point structures with the common fixed

point property

Definition 7.2.1. A fixed point structure (X,S(X),M) is with the com-

mon fixed point property iff

Y ∈ S(X), f, g ∈M(Y ), f ◦ g = g ◦ f ⇒ Ff ∩ Fg 6= ∅.

Example 7.2.1. The Tarski f.p.s. is with the common fixed point property.

Indeed, let (X,≤) be an ordered set and Y ⊂ X a complete lattice. Let

f, g : Y → Y be increasing operators such that f ◦ g = g ◦ f . By the Tarski’s
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fixed point theorem we have that Ff 6= ∅ and (Ff ,≤) is a complete lattice.

By Lemma 7.1.1, Ff ∈ Ig. By Tarski’s fixed point theorem the operator g|Ff
:

Ff → Ff has at least a fixed point. So, Ff ∩ Fg 6= ∅.
More general we have

Example 7.2.2. Let (X,S(X),M) be a fixed point structure such that

Y ∈ S(X), f ∈M(Y ) ⇒ Ff ∈ S(X).

Then, (X,S(X),M) is with common fixed point property.

Example 7.2.3. A continuous function f : [0, 1] → [0, 1] is full if the

interval [0, 1] may be subdivided into a finite number I1, . . . , Im of subintervals

on each of which f |Ik : Ik → [0, 1] is a topological isomorphism. Let X = [0, 1],

S(X) := {X} and M(X) := {f ∈ C([0, 1], [0, 1])| f is full}. Then the triple

(X,S(X),M) is a large f.p.s. with the common fixed point property. This

follows from the following result

Theorem 7.2.1. (H. Cohen (1964)). Let f, g ∈ C([0, 1], [0, 1]) be commut-

ing full functions. Then Ff ∩ Fg 6= ∅.
Remark 7.2.1. The following result is given by T. Suzuki in 2002:

Theorem 7.2.2. Let X be a Banach space, Y ∈ Pcp,cv(X) and f, g : Y →
Y be nonexpansive operators with f ◦ g = g ◦ f . Then for y ∈ Y , the following

statements are equivalent:

(i) y ∈ Ff ∩ Fg;

(ii) lim infn→∞

∥∥∥∥∥∥
1

n2

n∑

i=1

n∑

j=1

f igj(y)− y

∥∥∥∥∥∥
= 0.

7.3 (θ, ϕ)-contraction pair

Let X be a nonempty set, Y ⊂ X and θ : Z → R+, where Z ⊂ P (X),

Z 6= ∅.
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Definition 7.3.1. A pair of operators f, g : Y → Y is a (θ, ϕ)-contraction

pair if

(i) ϕ : R+ → R+ is a comparison function;

(ii) A ∈ P (Y ) ∩ Z ⇒ f(A) ∪ g(A) ∈ Z;

(iii) θ(f(A) ∪ g(A)) ≤ ϕ(θ(A)), ∀ A ∈ I(f) ∩ I(g) ∩ Z.
If l ∈ [0, 1[ and ϕ(t) = lt, then by (θ, l)-contraction pair we understand a

(θ, l(·))-contraction pair.

Example 7.3.1. Let (X, d) be a metric space and αK the Kuratowski

measure of noncompactness on X. If fi : X → X is an (αK , li)-contraction,

i = 1, 2, then the pair f1, f2 is an (αK ,max(l1, l2))-contraction pair.

We have

Theorem 7.3.1. Let (X,S(X),M) be a f.p.s. with the common fixed point

property and (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M). Let

Y ∈ η(Z) and f, g ∈M(Y ). We suppose that

(i) θ|η(Z) has the intersection property;

(ii) f ◦ g = g ◦ f ;
(iii) the pair (f, g) is a (θ, ϕ)-contraction pair.

Then:

(a) Ff ∩ Fg 6= ∅;
(b) If Ff ∩ Fg ∈ Z, then θ(Ff ∩ Fg) = 0.

Proof. (a) Let Y1 := η(f(Y )∪g(Y )), . . . , Yn+1 := η(f(Yn)∪g(Yn)), n ∈ N.

From Lemma 7.1.2 we have that Yn ∈ I(f)∩ I(g), n ∈ N. From the conditions

(ii) and (iii) we have

θ(Yn+1) = θ(η(f(Yn) ∪ g(Yn))) = θ(f(Yn) ∪ g(Yn))

≤ ϕ(θ(Yn)) ≤ · · · ≤ ϕn+1(θ(Y )) → 0 as n→ ∞.

From the condition (i) it follows that Y∞ :=
⋂

n∈N

Yn 6= ∅ and θ(Y∞) = 0. It

is clear that η(Y∞) = Y∞ and Y∞ ∈ I(f)∩ I(g). These imply that Y∞ ∈ S(X)
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and so, Ff ∩ Fg 6= ∅.
(b) This follows from

f(Ff ∩ Fg) ∪ g(Ff ∩ Fg) = Ff ∩ Fg.

Theorem 7.3.2. Let (X,S(X),M) be a f.p.s. with common fixed point

property and (θ, η) a compatible pair with (X,S(X),M). Let Y ∈ Fη, f, g ∈
M(Y ) and f(Y ) ∪ g(Y ) ∈ Z. We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) f ◦ g = g ◦ f ;
(iii) the pair (f, g) is a (θ, ϕ)-contraction pair.

Then:

(a) Ff ∩ Fg 6= ∅;
(b) If Ff ∩ Fg ∈ Z, then θ(Ff ∩ Fg) = 0.

Proof. We apply Theorem 7.3.1 to the operators

f, g : η(f(Y ) ∪ g(Y )) → η(f(Y ) ∪ g(Y )).

Theorem 7.3.3. Let X be a strictly convex Banach space, Y ∈ Pb,cl,cv(X)

and f, g : Y → Y , two nonexpansive operators. We suppose that:

(i) f ◦ g = g ◦ f ;
(ii) the pair (f, g) is an (αK , ϕ)-contraction pair.

Then:

(a) Ff ∩ Fg 6= ∅;
(b) αK(Ff ∩ Fg) = 0.

Proof.We consider in the Theorem 7.3.1 the following f.p.s. onX, S(X) :=

Pcp,cv(X) andM(Y ) := {h : Y → Y | h is a nonexpansive operator}. This f.p.s.
is as that in Example 7.2.2.
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7.4 θ-condensing pair

Let X be a nonempty set, Y ⊂ X and θ : Z → R+, Z ⊂ P (X), Z 6= ∅.
Definition 7.4.1. A pair of operators f, g : Y → Y is a θ-condensing pair

iff:

(i) Ai ∈ Z, i ∈ I,
⋂

i∈I

Ai 6= ∅ ⇒
⋂

i∈I

Ai ∈ Z;

(ii) A ∈ P (Y ) ∩ Z ⇒ f(A) ∪ g(A) ∈ Z;

(iii) θ(f(A)∪ g(A)) < θ(A), for all A ∈ I(f)∩ I(g)∩Z such that θ(A) 6= 0.

We have

Theorem 7.4.1. Let (X,S(X),M) be a f.p.s. with common fixed point

property and (θ, η) a compatible pair with (X,S(X),M). Let Y ∈ η(Z) and

f, g ∈M(Y ). We suppose that:

(i) x ∈ Y, A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) f ◦ g = g ◦ f ;
(iii) the pair (f, g) is θ-condensing pair.

Then:

(a) Ff ∩ Fg 6= ∅;
(b) if Ff ∩ Fg ∈ Z, then θ(Ff ∩ Fg) = 0.

Proof. (a) Let x0 ∈ Y . By Lemma 7.1.3 there exists A0 ⊂ Y such that

x0 ∈ A0, A0 ∈ Fη ∩ I(f) ∩ I(g) ∩ Z and η(f(A0) ∪ g(A0) ∪ {x0}) = A0. From

the condition (iii) we have that θ(A0) = 0. This implies that A0 ∈ S(X). So,

Ff ∩ Fg 6= ∅.
(b) From f(Ff ∩Fg)∪ g(Ff ∩Fg) = Ff ∩Fg, we have that θ(Ff ∩Fg) = 0.

From the proof of Theorem 7.4.1 we have

Theorem 7.4.2. Let (X,S(X),M) be a f.p.s. with the common fixed point

property and (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M). Let

Y ∈ Fη, f, g ∈M(Y ) and f(Y ) ∪ g(Y ) ∈ Z. We suppose that

(i) x ∈ Y, A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);
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(ii) f ◦ g = g ◦ f ;
(iii) the pair (f, g) is θ-condensing pair.

Then:

(a) Ff ∩ Fg 6= ∅;
(b) if Ff ∩ Fg ∈ Z, then θ(Ff ∩ Fg) = 0.

Theorem 7.4.3. Let X be a strictly convex Banach space, Y ∈ Pb,cl,cv(X)

and f, g : Y → Y two nonexpansive operators. We suppose that:

(i) f ◦ g = g ◦ f ;
(ii) the pair (f, g) is an αK-condensing pair.

Then, Ff ∩ Fg 6= ∅ and αK(Ff ∩ Fg) = 0.

Proof. We consider in Theorem 7.4.1 the fixed point structure S(X) :=

Pcp,cv(X), M(Y ) := {f : Y → Y | f is nonexpansive}, Z = Pb(X), θ = αK ,

η(A) = coA.

Remark 7.4.1. We can put instead of αK , in Theorem 7.4.3, an αDP

measure of noncompactness.
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Chapter 8

Fixed point property and

coincidence property

8.1 Set-theoretic aspects of coincidence theory

The following remarks are useful in order to apply the technique of the

fixed point theory to the coincidence theory.

Remarks 8.1.1. Let U and V be two nonempty sets and f, g : U → V two

operators. If the operator g is injective and f(U) ⊂ g(U) then for a left-inverse

g−1
l : g(U) → V of the operator g, we consider the operator

g−1
l ◦ f : U → U.

Let u0 ∈ C(f, g) := {u ∈ U | f(u) = g(u)}. Then we have that g−1
l (f(u0)) =

u0.

Let u0 ∈ Fg−1

l
◦f . Then g

−1
l (f(u0)) = u0. But g : U → g(u) is a bijection.

Hence f(u0) = g(u0).

So, in the above conditions we have that

C(f, g) = Fg−1

l
◦f .

101
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Remark 8.1.2. Let f, g : U → V be two operators. We suppose that g is

surjective. Let g−1
r be a right-inverse of g. Then

g−1
r (Ff◦g−1

r
) ⊂ C(f, g).

8.2 Applications of the first general fixed point

principle

We have

Theorem 8.2.1. Let (X,S(X),M) be a f.p.s. and (θ, η) (θ : Z → R+) a

compatible pair with (X,S(X),M). Let U ∈ η(Z) and f, g : U → U be two

operators. We suppose that:

(i) A ∈ Z implies P (A) ⊂ Z;

(ii) θ|η(Z) has the intersection property;

(iii) g has a left-inverse, g−1
l , f(U) ⊂ g(U) and g−1

l ◦ f ∈M(U);

(iv) there exist α, β ∈ R∗
+, α · β < 1, such that

(a) αθ(g(A)) ≥ θ(A), for all A ∈ P (U) with f(A) ⊂ g(A);

(b) θ(f(A)) ≤ βθ(A), for all A ∈ P (U) with f(A) ⊂ g(A).

Then C(f, g) 6= ∅ and θ(C(f, g)) = 0.

Proof. Let A ∈ P (U) such that f(A) ⊂ g(A). From (iii) there exists

B ⊂ A such that f(A) = g(B), and

θ(g−1
l (f(A))) = θ(B) ≤ αθ(g(B)) = αθ(f(A)) ≤ αβθ(A).

Now the proof follows from Remark 8.1.1 and the first general fixed point

principle.

Theorem 8.2.2. Let (X,S(X),M) be a f.p.s. and (θ, η) a compatible pair

with (X,S(X),M). Let U be a set, V ∈ η(Z), f, g : U → V and α ∈ [0, 1[. We

suppose that

(i) A ∈ Z implies P (A) ⊂ Z;
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(ii) θ|η(Z) has the intersection property;

(iii) g has a right inverse, g−1
r , such that f ◦ g−1

r ∈M(V );

(iv) θ(f(A)) ≤ α(θ(g(A))), for all A ∈ P (U), such that f(A) ⊂ g(A).

Then, C(f, g) 6= ∅.
Proof. Let B ∈ P (V ). From (iv) we have that

θ(f(g−1
r (B))) ≤ αθ(B), for all B ∈ P (V ),

such that f(g−1
r (B)) ⊂ B. Now the proof follows from Remark 8.1.2 and the

first general fixed point principle.

8.3 Applications of the second general fixed point

principle

Theorem 8.3.1. Let (X,S(X),M) be a f.p.s. and (θ, η) a compatible pair

with (X,S(X),M). Let U ∈ η(Z) and f, g : U → U be two operators. We

suppose that:

(i) A ∈ Z implies P (A) ∈ Z;

(ii) θ(A ∪ {x}) = θ(A), for all A ∈ P (U), x ∈ U ;

(iii) f(U) ⊂ g(U) and g has a left-inverse, g−1
l , such that g−1

l ◦f ∈M(U);

(iv) θ(g(A)) ≥ θ(A), for all A ∈ P (U) such that f(A) ⊂ g(A);

(v) θ(f(A)) < θ(A), for all A ∈ P (U) such that f(A) ⊂ g(A), θ(A) 6= 0.

Then, C(f, g) 6= ∅ and θ(C(fd, g)) = 0.

Proof. Let A ∈ P (U) such that f(A) ⊂ g(A) and θ(A) 6= 0. From the

condition (iii) there exists B ⊂ A such that f(A) = f(B). We have f(B) ⊂
g(B) and

θ(g−1
l (f(A))) = θ(B) ≤ θ(g(B)) = θ(f(A)) < θ(A).

Now the proof follows from the Remark 8.1.1 and the second general fixed

point principle.
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Theorem 8.3.2. Let (X,S(X),M) be a f.p.s. and (θ, η) a compatible pair

with (X,S(X),M). Let U be a set, V ∈ η(Z) and f, g : U → V be two

operators. We suppose that

(i) A ∈ Z implies P (A) ⊂ Z;

(ii) g has a right inverse, g−1
r , such that f ◦ g−1

r ∈M(V );

(iii) θ(A ∪ {x}) = θ(A), ∀ A ∈ P (V ), x ∈ V ;

(iv) A ∈ P (U), f(A) ⊂ g(A) and θ(g(A)) 6= 0, imply that θ(f(A)) <

θ(g(A)).

Then, C(f, g) 6= ∅.
Proof. Let B ∈ P (V ). From (iv) we have that θ(f(g−1

r (B))) < θ(B), for

all B such that θ(B) 6= 0 and f(g−1
r (B)) ⊂ B. Now the proof follows from

Remark 8.1.2 and the second general fixed point principle.

8.4 Fixed point structures with the coincidence

property

Definition 8.4.1. A f.p.s. (X,S(X),M) is with the coincidence property

iff Y ∈ S(X), f, g ∈M(Y ), f ◦ g = g ◦ f ⇒ C(f, g) 6= ∅.
Example 8.4.1. Each f.p.s. with the common fixed point property is a

f.p.s. with the coincidence property.

Example 8.4.2. (W.A. Horn (1970)). Let X = R, S(X) := Pcp,cv(R)

and M(Y ) := C(Y, Y ). Then (R, Pcp,cv(R),M) is a f.p.s. with the coincidence

property.

Proof. Let I ⊂ R be a compact interval and f, g ∈ C(I, I) such that

f ◦ g = g ◦ f . If f is surjective then we consider the sets A := {x ∈ I| f(x) ≤
g(x)} and B := {x ∈ I| f(x) ≥ g(x)}. Suppose C(f, g) = ∅. It is clear that,

A and B are nonempty closed-open subsets of I and, I = A ∪ B. So, in this
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case, C(f, g) 6= ∅. In the general case we consider the subset I∞ :=
⋂

n∈N

fn(I).

It is clear that f(I∞) = I∞ and if there exists J ⊂ I such that f(J) = J , then

J ⊂ I∞. On the other hand we have

g(I∞) = g(f(I∞)) = f(g(I∞)).

This implies that g(I∞) ⊂ I∞. Now we consider the functions

f |I∞ , g|I∞ : I∞ → I∞.

In this case I∞ is a compact interval of R and f |I∞ is a surjective function.

Problem 8.4.1. Which are the f.p.s. with the coincidence property?

The above problem has the following well known particular cases.

Horn’s conjecture. The Schauder f.p.s., (X,Pcp,cv(X),M), is with the

coincidence property.

Schauder’s conjecture. Let X be a Banach space and Y ∈ Pcl,cv(X). If

f : Y → Y is a continuous operator such that fn is compact for some n ∈ N∗,

then f has at least a fixed point.

Remark 8.4.1. If the Horn conjecture is a theorem, then the Schauder

conjecture is a theorem.

Indeed, let f as in Schauder’s conjecture. Then the pair fn, fn+1 is as in

the Horn conjecture (fn|cofn(Y ), f
n+1|cofn(Y )).

We have

Theorem 8.4.1. Let (X,S(X),M) be a f.p.s. with the coincidence prop-

erty, (θ, η) a compatible pair with (X,S(X),M). Let Y ∈ η(Z) and f, g ∈
M(Y ) such that f ◦ g = g ◦ f .

We suppose that the pair (f, g) is a θ-condensing pair. Then, C(f, g) 6= ∅.
Proof. Let A1 = Ff . From Lemma 7.1.3, there exists A0 ⊂ Y such that

η(f(A0) ∪ g(A0) ∪ Ff ) = A0.
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This relation implies that, θ(A0) = 0.

But A0 ∈ Fη ∩ Zθ ⊂ S(X). So, C(f, g) 6= ∅.
Theorem 8.4.2. The following statements are equivalent:

(i) (Horn’s conjecture). Let Y be a compact convex subset of a Banach space

X and let f, g : Y → Y be commuting continuous operators. Then C(f, g) 6= ∅.
(ii) Let Y be a bounded closed convex subset of a Banach space X and

let f, g : Y → Y be commuting continuous operators. If the pair (f, g) is

αK-condensing, then C(f, g) 6= ∅.
Proof. It is clear that (ii) ⇒ (i). Let us prove that (i) ⇒ (ii). Consider

the fixed point structure of Schauder. From (i) it follows that this f.p.s. is with

the coincidence property. We are in the conditions of the Theorem 8.4.1 where

we take θ = αK and η(A) = coA.

8.5 Coincidence structures

Let X be a nonempty set.

Definition 8.5.1. A triple (X,S(X),M) is a coincidence structure iff

(i) S(X) ⊂ P (X), S(X) 6= ∅;
(ii) M : P (X) ⊸

⋃

Y ∈P (X)

M(Y ), Y p⊸ M(Y ) ⊂ M(Y ), is an operator such

that if Y1 ⊂ Y , Y1 6= ∅, then M(Y1) ⊃ {f |Y1
: f ∈M(Y ), f(Y1) ⊂ Y1};

(iii) Y ∈ S(X), f, g ∈M(Y ), f ◦ g = g ◦ f imply C(f, g) 6= ∅.
Definition 8.5.2. Let (X,S(X),M) be a coincidence structure. A pair

(θ, η) is compatible with (X,S(X),M) iff

(i) θ : Z → R+, S(X) ⊂ Z ⊂ P (X);

(ii) η : P (X) → P (X) is a closure operator, S(X) ⊂ η(Z) ⊂ Z and

θ(η(Y )) = θ(Y ), for all Y ∈ Z;

(iii) Fη ∩ Zθ ⊂ S(X).

Example 8.5.1. A fixed point structure with the common fixed point
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property is a coincidence structure.

Example 8.5.2. A fixed point structure with the coincidence property is

a coincidence structure.

We have

Theorem 8.5.1. Let (X,S(X),M) be a coincidence structure and (θ, η) a

compatible pair with (X,S(X),M). Let Y ∈ η(Z) and f, g ∈ M(Y ) such that

f ◦ g = g ◦ f . We suppose that

(i) θ(f(A) ∪ g(A)) < θ(A), for all A ∈ I(f, g), θ(A) 6= 0;

(ii) Ff 6= ∅.
Then, C(f, g) 6= ∅.

Proof. Let A1 = Ff . From Lemma 7.1.3 there exists A0 ⊂ Y such that

η(f(A0) ∪ g(A0) ∪ Ff ) = A0.

Since (θ, η) is a compatible pair with (X,S(X),M), it follows

θ(η(f(A0) ∪ g(A0) ∪ Ff )) = θ(A0).

This implies θ(A0) = 0. So, A0 ∈ Fη ∩ Zθ, which imply that C(f, g) 6= ∅.
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Chapter 9

Fixed point theory for

retractible operators

9.1 Set-theoretic aspects for non self-operators

Let X be a nonempty set and Y ⊂ X a nonempty subset of X. An operator

ρ : X → Y is a set-retraction if ρ|Y = 1Y . An operator f : Y → X is retractible

w.r.t. the retraction ρ : X → Y iff Fρ◦f = Ff .

Lemma 9.1.1. Let (X,S(X),M) be a fixed point structure. Let Y ∈ S(X),

ρ : X → Y a retraction and f : Y → X an operator. We suppose that:

(i) ρ ◦ f ∈M(Y ); (ii) f is retractible w.r.t. ρ.

Then, Ff 6= ∅.
Proof. From (i) we have that Fρ◦f 6= ∅. From (ii) it follows that Ff 6= ∅.
Remark 9.1.1. In the terminology of R.F. Brown, Lemma 9.1.1 is the

general retraction operator principle.

Theorem 9.1.1. Let (X,S(X),M) be a f.p.s. and (θ, η) (θ : Z → R+) a

compatible pair with (X,S(X),M). Let Y ∈ η(Z), f : Y → X an operator and

ρ : X → Y a retraction. We suppose that:

111
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(i) θ|η(Z) is with the intersection property;

(ii) f is retractible w.r.t. ρ and ρ ◦ f ∈M(Y );

(iii) ρ is (θ, l)-Lipschitz (l ∈ R+);

(iv) f is a strong (θ, ϕ)-contraction;

(v) the function lϕ is a comparison function.

Then Ff 6= ∅ and if Ff ∈ Z, then θ(Ff ) = 0.

Proof. From the conditions (iii), (iv) and (v), the operator ρ◦f : Y → Y is

a strong (θ, lϕ)-contraction. By Theorem 5.1.1, Fρ◦f 6= ∅. From the condition

(ii) it follows that Ff 6= ∅. From f(Ff ) = Ff we have that θ(Ff ) = 0.

Theorem 9.1.2. Let (X,S(X),M) be a f.p.s. and (θ, η) (θ : Z → R+) a

compatible pair with (X,S(X),M). Let Y ∈ η(Z), f : Y → X an operator and

ρ : X → Y a retraction. We suppose that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) f is retractible w.r.t. ρ and ρ ◦ f ∈M(Y );

(iii) ρ is (θ, 1)-Lipschitz;

(iv) f is strong θ-condensing.

Then, Ff 6= ∅ and if Ff ∈ Z, then θ(Ff ) = 0.

Proof. From the conditions (iii) and (iv) the operator ρ ◦ f : Y → Y is

strong θ-condensing. By the Theorem 6.1.1, Fρ◦f 6= ∅. From the condition (ii)

it follows that Ff 6= ∅. From Ff ∈ Z, f(Ff ) = Ff and the condition (iv) we

have that θ(Ff ) = 0.

9.2 Retractible operators on ordered sets

In this section we shall give some fixed point theorem for retractible oper-

ators on ordered sets.

Theorem 9.2.1. Let (X,≤) be an ordered set with the least element 0. Let

Y ∈ P (X) and f : Y → X be such that
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(i) 0 ∈ Y ;

(ii) (Y,≤) is a complete lattice;

(iii) f is increasing;

(iv) f(x) ∈ X \ Y implies supY ([0, f(x)] ∩ Y ) 6= x.

Then, Ff 6= ∅.
Proof. Let (X,S(X),M) be the fixed point structure of Tarski, i.e.,

S(X) := {A ∈ P (X)| (A,≤) is a complete lattice and M(A) := {f : A→ A| f
is increasing}. We remark that Y ∈ S(X) and the ρ : X → Y , defined by

ρ(x) :=





x, if x ∈ Y

supY ([0, x] ∩ Y ), if x ∈ X \ Y

is an ordered-set retraction. From (iv) it follows that f is a retractible operator

with respect to ρ. From (iii) we have that ρ◦f ∈M(Y ). Now the proof follows

from Lemma 9.1.1.

Theorem 9.2.2. Let (X,≤) be an ordered set with the least element 0. Let

Y ∈ P (X) and f : Y → X an operator. We suppose that:

(i) 0 ∈ Y ;

(ii) (Y,≤) is a right inductive ordered set;

(iii) f is a progressive operator;

(iv) f(x) ∈ X \ Y implies x < supY ([0, f(x)] ∩ Y ).

Then, Ff 6= ∅.
Proof. Consider the fixed point structure (X,S(X),M), where S(X) :=

{A ∈ P (X)| (A,≤) is a right inductive ordered set} and M(A) := {f : A →
A| f is progressive}. Let ρ : X → Y be the retraction from the proof of

Theorem 9.2.1. It is clear that f(x) ∈ Y implies ρ(f(x)) = f(x) ≥ x. If

f(x) ∈ X \ Y , then by the condition (iv) we have that x < ρ(f(x)). Hence

ρ ◦ f ∈M(Y ) and f is retractible w.r.t. ρ. Now the proof follows from Lemma

9.1.1.
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9.3 Retractible operators on metric spaces

In this section we consider fixed point structures on metric spaces.

Theorem 9.3.1. Let (X, d) be a complete metric space and α a measure of

noncompactness on X. Let (X,S(X),M) be a fixed point structure and (α, η) a

compatible pair with (X,S(X),M). Let Y ∈ Pb,cl(X), f : Y → X an operator

and ρ : X → Y a retraction. We suppose that:

(i) f is a strong (α, ϕ)-contraction;

(ii) f is retractible w.r.t. the retraction ρ and ρ ◦ f ∈M(Y );

(iii) ρ is (α, l)-Lipschitz;

(iv) the function lϕ is a comparison function.

Then, Ff 6= ∅ and α(Ff ) = 0.

Proof. We take in the Theorem 9.1.1, Z := Pb(X), θ = α and η(A) = A.

Theorem 9.3.2. Let (X, d) be a complete metric space and αDP a Daneš-

Pasicki measure of noncompactness on X. Let (X,S(X),M) be a fixed point

structure and (αDP , η) a compatible pair with (X,S(X),M). Let Y ∈ Pb,cl(X),

f : Y → X an operator and ρ : X → Y a retraction. We suppose that:

(i) f is strong αDP condensing;

(ii) f is retractible w.r.t. the retraction ρ and ρ ◦ f ∈M(Y );

(iii) ρ is (αDP , 1)-Lipschitz.

Then, Ff 6= ∅ and αDP (Ff ) = 0.

Proof.We take in the Theorem 9.1.2, Z := Pb(X), θ = αDP and η(A) = A.

Theorem 9.3.3. Let (X, d) be a complete metric space, αK the Kuratowski

measure of noncompactness on X, Y ∈ Pb,cl(X), ρ : X → Y a retraction and

f : Y → X an operator. We suppose that:

(i) f is a strong (αK , ϕ)-contraction;

(ii) f is retractible w.r.t. the retraction ρ;

(iii) ρ is (α, l)-Lipschitz;
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(iv) f is a contractive operator;

(v) the function lϕ is a comparison function.

Then, Ff = {x∗}.
Proof. We take in the Theorem 9.3.1, the fixed point structure of

Nemytzki-Edelstein, α = αK and η(A) = A.

9.4 Retractible operators on Banach spaces

In this section we consider f.p.s. on Banach spaces.

Theorem 9.4.1. Let X be a Banach space, αK : Pb(X) → R+ Kuratowski

measure of noncompactnes on X and f : B(0;R) → X a continuous operator.

We suppose that:

(i) f is a strong (αK , ϕ)-contraction;

(ii) f is retractible w.r.t. the radial retraction.

Then, Ff 6= ∅ and αK(Ff ) = 0.

Proof. We consider in the Theorem 9.1.1, the fixed point structure of

Schauder, Z = Pb(X), θ = αK , η(A) = coA and ρ the radial retraction. We

remark that the radial retraction is (αK , 1)-Lipschitz.

Theorem 9.4.2. Let X be a Banach space and f : B(0;R) → X a con-

tinuous operator. We suppose that:

(i) f is αK-condensing;

(ii) f is retractible w.r.t. the radial retraction.

Then, Ff 6= ∅ and αK(Ff ) = 0.

Proof. We consider in the Theorem 9.1.2 the fixed point structure of

Schauder, Z = Pb(X), θ = αK , η(A) = coA.

Remark 9.4.1. Each of the following conditions implies the condition (ii)

in the Theorem 9.4.1 and 9.4.2:

(a) (Leray-Schauder). x ∈ ∂B(0;R), f(x) = λx imply λ ≤ 1.
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(b) (E. Rothe). f(∂B(0;R)) ⊂ B(0;R).

(c) (M. Altman). ‖f(x)− x‖2 ≥ ‖f(x)‖2 − ‖x‖2, ∀ x ∈ ∂B(0;R).

Remark 9.4.2. There are many other boundary conditions which appear

in fixed point theorems for non self-operator. The problem is if each of these

conditions imply the retractibility w.r.t. a suitable retraction.

Theorem 9.4.3. Let X be a Banach space and f : X → X a continuous

operator. We suppose that:

(i) f is αK-condensator;

(ii) f is quasibounded with |f | < 1.

Then, Ff 6= ∅.
Proof. We consider the operator f |B(0;R)B(0;R) → X. Condition (ii)

implies that there exist a, b ∈ R+, a < 1 such that

‖f(x)‖ ≤ a‖x‖+ b, ∀ x ∈ X.

This condition implies that there exists R > 0 such that the operator

f |B(0;R) is retractible w.r.t. the radial retraction ρ : X → B(0;R). So, we are

in the conditions of Theorem 9.4.2.

Theorem 9.4.4. Let X be a Banach space and f : X → X a continuous

operator. We suppose that:

(i) f is αK-condensing;

(ii) f is quasibounded with |f | < 1.

Then 1X − f : X → X is a surjective operator.

Proof. Let y ∈ X. We consider the operator gy : X → X defined by

gy(x) := f(x) + y. It is clear that gy is quasibounded with |gy| < 1 and there

exist a ∈ [|f |, 1[ and b > 0 such that

‖gy(x)‖ ≤ a‖x‖+ b, ∀ x ∈ X.

This implies that, for R ≥ b

1− a
, B(0;R) ∈ I(gy). So, the proof follows

from Theorem 9.4.2.
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on Geometry and Topology, Babeş-Bolyai Univ., Preprint Nr.2, 1988,

163-166.

For the retraction principle see

• R.F. Brown, Retraction mapping principle in Nielsen fixed point theory,

Pacific J. Math., 115(1984), 277-297.

• M.C. Anisiu, Fixed points of retractible mappings w.r.t. the metric pro-

jection, Sem. Math. Anal., 1988, 87-96.

• A. Horvat-Marc, Retraction methods in fixed point theory, Seminar on

Fixed Point Theory Cluj-Napoca, 1(2000), 39-54.

For the fixed point theory for non self-operators see: D. O’Regan and R.

Precup [52], J. Cronin [25], K. Deimling [27], A. Granas and J. Dugundji [36],

M.A. Krasnoselskii and P. Zabreiko [45], J. Leray [46], N. Lloyd [47], J. Mawhin

[49], I. Van der Walt [73] and E. Zeidler [74]. See also:

• D. Duffus, W. Poguntke and I. Rival, Retracts and the fixed point prob-

lems for finite partially ordered sets, Univ. of Calgary, Preprint Nr.373,

1977.



118 Chapter 9

• E.M. Jawhari, D. Misane and M. Pouzet, Retracts: Graphs and ordered

sets from the metric point of view, Contemporary Math., 57(1986), 175-

226.

• M. Altman, A fixed point theorem in Banach space, Bull. Acad. Pol. Sc.,

5(1957), 89-92.

• F.E. Browder, A new generalization of the Schauder fixed point theorem,

Math. Ann., 174(1967), 285-290.

• F.E. Browder and W.V. Petryshyn, Construction of fixed points of non-

linear mapping in Hilbert space, J. Math. Anal. Appl., 20(1967), 197-228.

• J. Caristi, Fixed point theorems for mappings satisfying inwardness con-

ditions, Trans. AMS, 215(1976), 241-251.
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37. O. Hadžić, Fixed Point Theory in Topological Vector Spaces, Univ. of

Novi Sad, 1984.
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Chapter 10

Background in multivalued

operator theory

10.1 Sets and multivalued operators

Let X and Y be nonempty sets. By definition an operator T : X → P(Y )

is a multivalued (or set-valued) operator from X to Y and we shall use the

notation T : X ⊸ Y for such an operator. Let T : X ⊸ Y be a multivalued

operator, A ⊂ X and B ⊂ Y . Then:

G(T ) := {(x, y)| x ∈ X, y ∈ T (x)} denotes the graph of the operator T ;

T (A) :=
⋃

a∈A

T (a) denotes the image of A under the operator T ;

T−1(B) := {a ∈ A| T (a) ∩B 6= ∅} the counter image of B under the operator

T .

From the above definitions we have

Lemma 10.1.1. Let X and Y be two nonempty sets, (Ai)i∈I a family

of subsets of X and (Bi)i∈I a family of subsets of Y . If T : X ⊸ Y is a

multivalued operator, then:
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(i) T

(
⋃

i∈I

Ai

)
=
⋃

i∈I

T (Ai);

(ii) T

(
⋂

i∈I

Ai

)
⊂
⋂

i∈I

T (Ai);

(iii) T−1

(
⋃

i∈I

Bi

)
=
⋃

i∈I

T−1(Bi);

(iv) T−1

(
⋂

i∈I

Bi

)
⊂
⋂

i∈I

T−1(Bi).

If T : X ⊸ X is a multivalued operator, then:

T 1 := T, T 2 := T ◦ T, . . . , Tn+1 := T ◦ Tn, n ∈ N∗;

FT := {x ∈ X| x ∈ T (x)} denotes the fixed point set of T ;

(SF )T := {x ∈ X| T (x) = {x}} denotes the strict fixed point set of T .

Let T : X → P (Y ) and s : X → Y . The singlevalued operator s is a

selection of the multivalued operator T iff s(x) ∈ T (x), for all x ∈ X. It is

clear that if s is a selection of T , then Fs ⊂ FT .

Remark 10.1.1. For the invariant subsets of multivalued operators see

section 1.6.

10.2 Functionals on P (X)× P (X)

Let (X, d) be a metric space. We consider the following functionals on

P (X)× P (X):

1) D : P (X)× P (X) → R+ defined by

A,B ∈ P (X), D(A,B) := inf{d(a, b)| a ∈ A, b ∈ B}.

This functional is called the gap functional.

2) δ : P (X)× P (X) → R+ ∪ {+∞} defined by

A,B ∈ P (X), δ(A,B) := sup{d(a, b)| a ∈ A, b ∈ B}.

This functional is called the diameter functional with two arguments.
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3) ρ : P (X)× P (X) → R+ ∪ {+∞}, defined by

A,B ∈ P (X), ρ(A,B) := sup{D(a,B)| a ∈ A}.

This functional is called the excess functional.

4) H : P (X)× P (X) → R+ ∪ {+∞} defined by

A,B ∈ P (X), H(A,B) := max(ρ(A,B), ρ(B,A)).

This functional is called the Pompeiu-Hausdorff functional.

From the definitions of these functionals we have:

Lemma 10.2.1. Let (X, d) be a metric space and D : P (X)×P (X) → R+

the gap functional on (X, d). Then:

(a) the functional D(·, A) : X → R+ is nonexpansive for each A ∈ P (X);

(b) the functional D(x, ·) : (Pb,cl(X), H) → R+ is nonexpansive for each

x ∈ X;

(c) if x ∈ X and A ∈ P (X), then

D(x,A) = 0 if and only if x ∈ A.

Lemma 10.2.2. Let (X, d) be a metric space, A,B,C ∈ Pb(X) and δ :

P (X)× P (X) → R+ the diameter functional on (X, d). Then:

(a) δ(A,B) = 0 ⇔ A = B = {a};
(b) δ(A,B) = δ(B,A);

(c) δ(A,B) ≤ δ(B,C) + δ(C,B);

(d) for every x ∈ X and 0 < q < 1, there exists a ∈ A such that qδ(x,A) ≤
d(x, a).

Lemma 10.2.3. Let (X, d) be a metric space and H : P (X) × P (X) →
R+ ∪ {+∞} the Pompeiu-Hausdorff functional on (X, d). Then:

(a) (Pb,cl(X), H) is a metric space;

(b) H(A,B) = inf{r > 0| Vr(A) ⊃ B, Vr(B) ⊃ A};
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(c) H(A,B) = sup{|D(x,A)−D(x,B)| | x ∈ X};
(d) for ε > 0 and a ∈ A there exists b(ε, a) ∈ B such that d(a, b) ≤

H(A,B) + ε;

(e) for q > 1 and a ∈ A there exists b(q, a) ∈ B such that d(a, b) ≤
qH(A,B);

(f) if η > 0 is such that:

(1) for each a ∈ A there exists b ∈ B such that d(a, b) ≤ η,

(2) for each b ∈ B there exists a ∈ A such that d(a, b) ≤ η,

then H(A,B) ≤ η;

(g) if (X, d) is a complete metric space, then (Pb,cl(X), H) is a complete

metric space;

(h) if (X, d) is a complete metric space, then (Pcp(X), H) is a complete

metric space;

(i) if (X, d) is a compact metric space, then (Pcp(X), H) is a compact

metric space;

(j) if (X, d) is a complete metric space, then (Pcl(X), H) is a complete

generalized metric space.

10.3 Continuity

Let X and Y be two Hausdorff topological spaces and T : X → P (Y ) be

a multivalued operator.

Definition 10.3.1. By definition T is upper semicontinuous (u.s.c.) iff for

each closed set A ⊂ Y , T−1(A) is a closed subset of X.

Definition 10.3.2. By definition T is lower semicontinuous (l.s.c.) iff for

each open set A ⊂ Y , T−1(A) is an open subset of X.

Definition 10.3.3. By definition T is continuous iff it is both l.s.c. and

u.s.c.



Background in multivalued operator theory 135

Definition 10.3.4. By definition T is closed iff the graph of T , G(T ) ⊂
X × Y is closed.

From the above definitions we have:

Theorem 10.3.1. If T is u.s.c. with closed values then T is closed.

Theorem 10.3.2. If T is closed and Y is compact then T is u.s.c.

Theorem 10.3.3. (i) If T is u.s.c. with compact values and X is compact,

then T (X) is compact.

(ii) If T is u.s.c. or l.s.c., with connected values, and C ∈ Pcn(X), then

T (C) is connected.

Let (X, d) and (Y, ρ) be two metric spaces. An operator T : X → Pb,cl(Y )

is called Lipschitz (respective, contraction, contractive, nonexpansive, expan-

sive, dilatation,...) if the singlevalued operator T : (X, d) → (Pb,cl(X), H) is

Lipschitz (respective, contraction, contractive, nonexpansive, expansive, di-

latation,...).

Theorem 10.3.4. If an operator T : X → Pb,cl(X) is Lipschitz, then T is

closed.

Let X be a Hausdorff topological space and (Y, d) a metric space.

Definition 10.3.5. An operator T : X → P (Y ) is H-u.s.c. iff the func-

tional ρ(F (·), F (x0)) : X → R+, x 7→ ρ(F (x), F (x0)) is continuous at x0, for

all x0 ∈ X.

Definition 10.3.6. An operator T : X → P (Y ) isH-l.s.c. iff the functional

ρ(F (x0), F (·)) : X → R+, x 7→ ρ(F (x0), F (x)) is continuous at x0, for all

x0 ∈ X.

Definition 10.3.7. An operator T : X → P (Y ) is H-continuous iff T is

H-u.s.c. and H-l.s.c.

We have:

Theorem 10.3.5. Let (X, τ) be a Hausdorff topological space, (Y, d) a

metric space and T : X → P (Y ). Then:
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(a) If T is u.s.c., then T is H-u.s.c.

(b) If T is H-l.s.c., then T is l.s.c.

(c) If T (x) ∈ Pcp(Y ), ∀ x ∈ X, then the converse of (a) and (b) hold.

(d) T : X → Pcp(Y ) is continuous if and only if T is H-continuous.

For the algebraic operations on multivalued operators we have

Theorem 10.3.6. Let X1, X2 and X3 be Hausdorff topological spaces and

T : X1 → P (X2), S : X2 → P (X3).

Then:

(a) T and S u.s.c. imply S ◦ T u.s.c.

(b) T and S l.s.c. imply S ◦ T l.s.c.

Theorem 10.3.7. Let X be a Hausdorff topological space, Y a Hausdorff

linear topological space and T, S : X → P (Y ). Then:

(a) T (x) ∈ Pcp(Y ), S(x) ∈ Pcp(Y ), ∀ x ∈ X and T, S u.s.c. imply T + S

u.s.c.

(b) T and S l.s.c. imply T + S l.s.c.

Theorem 10.3.8. Let X and Y be Hausdorff topological spaces and T, S :

X → P (Y ). Then:

(a) T and S u.s.c. imply T ∪ S u.s.c.

(b) T and S l.s.c. imply T ∪ S l.s.c.

(c) Y normal, T (x) ∩ S(x) 6= ∅, ∀ x ∈ X and T and S u.s.c. imply T ∩ S
u.s.c.

(d) T and S closed imply T ∩ S closed.

10.4 References
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Chapter 11

Fixed point structures for

multivalued operators

11.1 Definitions

Let X be a nonempty set.

Definition 11.1.1. A triple (X,S(X),M0) is a fixed point structure on

X (f.p.s.) iff:

(i) S(X) ⊂ P (X), S(X) 6= ∅;
(ii) M0 : P (X) ⊸

⋃

Y ∈P (X)

M0(Y ), Y ⊸ M0(Y ) ⊂ M0(Y ) is an operator

such that if Z ⊂ Y , Z 6= ∅, then M0(Z) ⊃ {T |Z : T ∈M0(Y ) and Z ∈ I(T )};
(iii) every Y ∈ S(X) has the fixed point property with respect to M0(Y ),

i.e., Y ∈ S(X), T ∈M0(Y ) imply FT 6= ∅.
Definition 11.1.2. A triple (X,S(X),M0) which satisfies (i) and (iii) in

Definition 11.1.1 and the condition

(ii’) M : P (X) ⊸
⋃

Y ∈P (X)

M0(Y ), Y ⊸M0(Y ) ⊂ M0(Y ) is an operator;

is called large fixed point structure (l.f.p.s.).
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Remark 11.1.1. In 1973 T.B. Muenzenberger and R.E. Smithson have

introduced another type of f.p.s. By Muenzenberger and Smithson a triple

(X,S(X),M0) is a fixed point structure iff:

(a) For all x, y ∈ X, there exists A ∈ S(X) such that x, y ∈ A.

(b) If Z ⊂ S(X), Z 6= ∅, then ∩Z = ∅ or ∩Z ∈ S(X).

(c) For all A ∈ S(X) there exist x, y ∈ X such that A = [x, y]. Here [x, y]

is the minimal element in (S(X),⊂) containing x, y.

(d) The union of two chainable sets with nonempty intersection is chain-

able. By definition a subset A ⊂ X is chainable if and only if, for all x, y ∈ A,

[x, y] ⊂ A.

(e) If Z ⊂ S(X) is nested (i.e. totally ordered), then there exists A ∈ S(X)

such that ∪Z ⊂ A.

(f) If x 6= y, then [x, y] contains at least three points.

(g) Fix a point e ∈ X and define a relation ≤ by: x ≤ y iff x ∈ [e, y]. This

axiom states that if x ≤ y, then T ([x, y]) is chainable for all T ∈M0(X).

(h) A subset A ⊂ X is closed iff for all y, z ∈ X with y ≤ z, inf(A∩ [y, z]) ∈
A and sup(A ∩ [y, z]) ∈ A whenever A ∩ [y, z] 6= ∅. This axiom states that for

all T ∈M0(X), T (x) is closed for all x ∈ X.

(i) For all T ∈ M0(X) either T−1(x) is chainable or T−1(x) is closed for

all x ∈ X.

(j) T ∈M0(X) implies FT 6= ∅.
In this f.p.s. the authors only consider the multivalued operators from X

to X.

11.2 Examples

Example 11.2.1. Trivial f.p.s. X is a nonempty set,

S(X) := {{x}| x ∈ X} şi M0(Y ) := M0(Y ).
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Example 11.2.2. (I.A. Rus (2005)). Fixed point structure of pro-

gressive operators. Let (X,≤) be a partially ordered set and A,B ∈ P (X).

We denote A ≤ B if a ∈ A, b ∈ B imply a ≤ b. Let Y ∈ P (X). By defi-

nition an operator T : Y → P (Y ) is progressive if y ≤ T (y), ∀ y ∈ Y . Let

S(X) := {Y ∈ P (X)| (Y,≤) is such that every chain in Y has an upper bound

in Y }, and M0(Y ) := {T : Y → P (Y )| T is a progressive operator}. Then the

triple (X,S(X),M0) is a f.p.s.

Example 11.2.3. The fixed point structure of contractions

(Avramescu-Markin-Nadler). (X, d) is a complete metric space, S(X) :=

Pcl(X) andM0(Y ) := {T : Y → Pcl(Y )| T is contraction, i.e. H(T (x), T (y)) ≤
ld(x, y), ∀ x, y ∈ Y , with 0 < l < 1}.

Example 11.2.4. The fixed point structure of S. Reich (1972). (X, d)

is a complete metric space, S(X) := Pcl(X) andM0(Y ) := {T : Y → Pcl(Y )| T
is such that there exist a, b, c ∈ R+, a + b + c < 1 and H(T (x), T (y)) ≤
ad(x, y) + bD(x, T (x)) + cD(y, T (y)), ∀ x, y ∈ X}.

Example 11.2.5. The fixed point structure of T. Wang (1989).

(X, d) is a complete metric space, S(X) := Pcl(X), M0(Y ) := {T : Y →
Pcl(Y )| T is such that there exists a, b, c ∈ R+, a+b+c < 1 and ρ(T (x), T (y)) ≤
ad(x, y) + bD(x, T (x)) + cD(y, T (y)), ∀ x, y ∈ Y }.

Example 11.2.6. The f.p.s. of graphic contraction (I.A. Rus (1975)).

(X, d) is a complete metric space, S(X) := Pcl(X) and M0(Y ) := {T : Y →
Pcp(Y )| there exist α, β ∈ R+, α+β < 1, such thatH(T (x), T (y)) ≤ αd(x, y)+

βD(y, T (y)), for every x ∈ X and every y ∈ T (x), and T is closed}.
Example 11.2.7. The f.p.s. of nonexpansive operators (T.C. Lim

(1974)). X is a uniformly convex Banach space, S(X) := Pb,cl,cv(X) and

M0(Y ) := {T : Y → Pcp(Y )| T is nonexpansive}.
Example 11.2.8. The f.p.s. of contractive operators (R.E. Smithson

(1971)). (X, d) is a complete metric space, S(X) := Pcp(X) and M0(Y ) :=
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{T : Y → Pcl(Y )| T is a contractive operator}.
Example 11.2.9. The f.p.s. of M. Frigon (2002). Let (X, (di)i∈I) be

a sequentially complete Hausdorff gauge space and Y ∈ Pcl(X). An operator

T : Y → Pcl(Y ) is called admissible li-contraction, i ∈ I, if li ∈]0, 1[, ∀ i ∈ I

and the following conditions are satisfied:

(a) Hdi(T (x), T (y)) ≤ lidi(x, y), ∀ x, y ∈ Y and ∀ i ∈ I;

(b) for every x ∈ Y and every q ∈]1,+∞[ there exists y ∈ T (x) such that

di(x, y) ≤ qiDi(x, T (x)), for each i ∈ I.

If we take S(X) := Pcl(X) and M0(Y ) := {T : Y → Pcl(Y )| T is an

admissible contraction}, then (X,Pcl(X),M0) is a f.p.s.

Example 11.2.10. The f.p.s. of S. Kakutani (1941). X = Rn, S(X) :=

Pcp,cv(X) and M0(Y ) := {T : Y → Pcp,cv(Y )|T is u.s.c.}.
Example 11.2.11. The f.p.s. of Bohnenblust-Karlin (1950). X is a

Banach space, S(X) := Pcp,cv(X) and M0(Y ) := {T : Y → Pcp,cv(Y )| T is

u.s.c.}.
Example 11.2.12. The f.p.s. of Fan-Glicksberg (1952). X is a Haus-

dorff locally convex topological space, S(X) := Pcp,cv(X) and M0(Y ) := {T :

Y → Pcp,cv(Y )| T is u.s.c.}.
Example 11.2.13. The f.p.s. of F.E. Browder (1968). X is a Haus-

dorff topological vector space, S(X) := Pcp,cv(X) and M0(Y ) := {T : Y →
Pcv(Y )| T−1(y) is an open subset in Y, ∀ y ∈ Y }.

It is clear that for any fixed point theorem we have an example of a f.p.s.

or of a l.f.p.s.

11.3 Compatible pair with a fixed point structure

The following notion is fundamental in the f.p.s. theory.
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Definition 11.3.1. Let (X,S(X),M0) be a f.p.s., S(X) ⊂ Z ⊂ P (X),

θ : Z → R+ and η : P (X) → P (X). The pair (θ, η) is a compatible pair with

(X,S(X),M0) iff:

(i) η is a closure operator, S(X) ⊂ η(Z) ⊂ Z and θ(η(Y )) = θ(Y ), for all

Y ∈ Z;

(ii) Fη ∩ Zθ ⊂ S(X).

Example 11.3.1. Let (X,S(X),M0) be the f.p.s. in Example 11.2.7, Z =

Pb(X), θ = αK or αH and η(A) = A. Then the pairs (αK , η) and (αH , η) are

compatible with (X,S(X),M0).

Example 11.3.2. Let (X,S(X),M0) be the f.p.s. in Example 11.2.10,

Z = Pb(X), θ = αK or αH and η(A) = coA. Then the pairs (αK , η), (αH , η)

are compatible with (X,S(X),M0).

11.4 Maximal fixed point structures

Let (X,S(X),M0) be a f.p.s. and S1(X) ⊂ P (X) such that S(X) ⊂ S1(X).

Definition 11.4.1. The f.p.s. (X,S(X),M0) is maximal in S1(X) if we

have S(X) = {A ∈ S1(X)| T ∈M0(A) ⇒ FT 6= ∅}.
Example 11.4.1. (Generic example). Let (X,S(X),M) be a f.p.s. for

singlevalued operators. Let (X,S(X),M0) be a f.p.s. for multivalued operators.

Let f ∈ M(Y ). We consider the multivalued operator f̃ : Y ⊸ Y defined by

f̃(x) = {f(x)}, ∀ x ∈ Y . We denote by M̃(Y ) the set of multivalued operators

generated, in the above way, by the singlevalued operators from M(Y ). We

suppose that M̃(Y ) ⊂ M0(Y ) for all Y ∈ S1(X). Then the maximality of

the f.p.s. (X,S(X), M̃), in S1(X), implies the maximality of (X,S(X),M0) in

S1(X).

From this example and for the examples given in section 2.3, we have

Example 11.4.2. The trivial f.p.s., (X,S(X),M0) is maximal in P (X).
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Example 11.4.3. Let X be a Banach space and (X,Pcp,cv(X),M0) the

Bohnenblust-Karlin f.p.s. on X. This f.p.s. is maximal in Pb,cl,cv(X).

In spite of the above remarks, to establish if a given f.p.s. is maximal or

not, this is an open problem.
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[31], I.A. Rus [34], [35] and [37], R. Wegrzyk [40].

For the fixed point theorems on ordered set, see also:

• R.E. Smithson, Fixed point of order preserving multifunctions, Proc.

A.M.S., 28(1971), 403-310.

• M.A. Khamsi and D. Misane, Fixed point theorems in logic programming,

Ann. Math. Artificial Intelligence, 21(1997), 231-243.

• I.A. Rus, Set-theoretic aspects of fixed point theory of multivalued oper-

ators: open problems, Notices from the ISMS, September 2005, 1-6.

For fixed point theorems for generalized contractions see:

• J.T. Markin, Fixed point theorems for set valued contractions, Notices

A.M.S., 15(1968), 373.



Fixed point structures for multivalued operators 145

• S.B. Nadler, Multivalued contractions mappings, Pacific J. Math.,

30(1969), No.2, 475-488.

• C. Avramescu, Teoreme de punct fix pentru aplicaţii multivoce contrac-
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Strict fixed point structures

12.1 Definitions and examples

Let X be a nonempty set.

Definition 12.1.1. A triple (X,S(X),M0) is a strict fixed point structure

on X (s.f.p.s.) iff:

(i) S(X) ⊂ P (X), S(X) 6= ∅;
(ii) M0 : P (X) →

⋃

Y ∈P (X)

M0(Y ), Y p⊸ M0(Y ) ⊂ M0(Y ) is an operator

such that if Z ⊂ Y , Z 6= ∅, then

M0(Z) ⊃ {T |Z : T ∈M0(Y ) and Z ∈ I(T )};

(iii) every Y ∈ S(X) has the strict fixed point property w.r.t. M0(Y ).

Definition 12.1.2. A triple (X,S(X),M) which satisfies (i) and (iii) in

Definition 12.1.1 and the condition

(ii’) M0 : P (X) ⊸
⋃

Y ∈P (X)

M0(Y ), Y p⊸M0(Y ) ⊂ M0(Y ) is an operator;

is called large strict fixed point structure (l.s.f.p.s.).

Example 12.1.1. The trivial f.p.s. is a s.f.p.s.

Example 12.1.2. The s.f.p.s. of S. Reich (1972). (X, d) is a complete

147
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metric space, S(X) := Pcl(X) and M0(Y ) := {T : Y → Pb(X)| there exists

a, b, c ∈ R+, a + b + c < 1 such that δ(T (x), T (y)) ≤ ad(x, y) + bδ(x, T (x)) +

cδ(y, T (y)), ∀ x, y ∈ Y }.
Example 12.1.3. The s.f.p.s. of reflexive operators (S. Dancs, M.

Hegedüs and P. Medvegyev (1983)). Let (X, d) be a complete metric space

and Y ∈ Pcl(X). For an operator T : Y → P (Y ) we consider the following

conditions:

(i) x ∈ T (x), ∀ x ∈ X;

(ii) T (x) ∈ Pcl(X);

(iii) x2 ∈ T (x1) ⇒ T (x2) ⊂ T (x1), ∀ x1, x2 ∈ X;

(iv) if (xn)n∈N is an orbit of T , i.e., xn+1 ∈ T (xn), ∀ n ∈ N, then

d(xn, xn+1) → 0 as n→ ∞.

If we take S(X) := Pcl(X) and M0(Y ) := {T : Y → Pcl(Y )| T satisfies

conditions (i)-(iv)}, then the triple (X,S(X),M0) is a s.f.p.s.

Example 12.1.4. The s.f.p.s. of H.W. Corley (1986). (X, d) is a metric

space, S(X) := Pcp(X) and M0(Y ) := {T : Y → Pcl(Y )| T is reflexive,

antisymmetric and transitive}.
Example 12.1.5. The s.f.p.s. of reductible operators (I.A. Rus

(1990)). Let X be a nonempty set. A family U ⊂ P (X), U 6= ∅, has the

intersection property if for any totally ordered subset V ⊂ U (U is partial

ordered by the set inclusion) we have ∩V ∈ U . By definition a multivalued

operator T : X → P (X) is said to be reductible on U if for any A ∈ U ,

A ∈ I(T ) and cardA > 1, there exists B ∈ I(T ) ∩ U , proper subset of A.

Let X be a set, U ⊂ P (X), U 6= ∅, a family with the intersection property.

If we take S(X) := {x}, M0(X) := {T : X → P (X)| I(Y ) ∩ U 6= ∅ and T is

reducible on U}, then (X,S(X),M0) is a s.f.p.s.

Example 12.1.6. (X, d) is a complete metric space, S(X) := Pb,cl(X)

and M0(Y ) := {T : Y → P (Y )| T is a (δ, ϕ)-contraction}. By definition,
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T : Y → P (Y ) is a (δ, ϕ)-contraction iff ϕ : R+ → R+ is a comparison

function and δ(T (A)) ≤ ϕ(δ(A)), ∀ A ∈ I(T ).

12.2 Compatible pair with a fixed point structures

Definition 12.2.1. Let (X,S(X),M0) be a s.f.p.s., S(X) ⊂ Z ⊂ P (X),

θ : Z → R+ and η : P (X) → P (X). The pair (θ, η) is a compatible pair with

(X,S(X),M0) iff:

(i) η is a closure operator, S(X) ⊂ η(Z) ⊂ Z and θ(η(Y )) = θ(Y ), for all

Y ∈ Z;

(ii) Fη ∩ Zθ ⊂ S(X).

Example 12.2.1. Let (X,S(X),M0) be the trivial s.f.p.s. on a metric

space (X, d), Z := Pb(X), θ := δ and η(A) = A. Then the pair (δ, η) is a

compatible pair with (X,S(X),M0).

12.3 Maximal strict fixed point structures

Let (X,S(X),M0) be a s.f.p.s. and S1(X) ⊂ P (X) such that S(X) ⊂
S1(X).

Definition 12.3.1. The s.f.p.s. (X,S(X),M0) is maximal in S1(X) if we

have

S(X) := {A ∈ S1(X)| T ∈M0(A) ⇒ (SF )T 6= ∅}.

Example 12.3.1. (Generic example). Let (X,S(X),M) be a f.p.s. for sin-

glevalued operators. Let (X,S(X),M0) be a s.f.p.s. for multivalued operators.

Let f ∈ M(Y ). We consider the multivalued operator, f̃ : Y ⊸ Y defined

by f̃(x) = {f(x)}, ∀ x ∈ Y . It is clear that (SF )
f̃
= F

f̃
= Ff . We denote

by M̃(Y ) the set of multivalued operator generated, in the above way, by

the singlevalued operators from M(Y ). We suppose that M̃(Y ) ⊂ M0(Y ) for
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all Y ∈ S1(X). Then the maximality of the s.f.p.s., (X,S(X), M̃), in S1(X)

implies the maximality of the s.f.p.s., (X,S(X),M0) in S1(X).

Remark 12.3.1. To establish if a given s.f.p.s. is maximal or not, this is

an open problem.
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Chapter 13

(θ, ϕ)-contractions and

θ-condensing operators

13.1 (θ, ϕ)-contractions

Let X be a nonempty set, Y ∈ P (X) and Z ∈ P (P (X)).

Definition 13.1.1. Let ϕ : R+ → R+ be a comparison function and

θ : Z → R+ a functional. An operator T : Y ⊸ X is said to be strong

(θ, ϕ)-contraction iff:

(i) A ∈ P (Y ) ∩ Z implies T (A) ∈ Z;

(ii) θ(T (A)) ≤ ϕ(θ(A)), for all A ∈ P (Y ) ∩ Z.
Definition 13.1.2. An operator T : Y → Y is said to be a (θ, ϕ)-

contraction iff:

(i) A ∈ P (Y ) ∩ Z implies T (A) ∈ Z;

(ii’) θ(T (A)) ≤ ϕ(θ(A)) for all A ∈ P (Y ) ∩ Z ∩ I(T ).
Example 13.1.1. Let (X, d) be a metric space, δ the diameter functional

on X, Z = Pb(X), and ϕ : R+ → R+ a comparison function. Then an operator
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T : Y → P (Y ), Y ∈ Pb(X), is a (δ, ϕ)-contraction iff

δ(T (A)) ≤ ϕ(δ(A)), ∀ A ∈ I(T ).

The operator T is a strong (δ, ϕ)-contraction iff

δ(T (A)) ≤ ϕ(δ(A)), ∀ A ∈ P (Y ).

We have

Lemma 13.1.1. Let (X, d) be a metric space, ϕ : R5
+ → R+ a comparison

function, Y ∈ Pb(X) and T : Y → P (Y ). If

δ(T (x), T (y)) ≤ ϕ(d(x, y), δ(x, T (x)), δ(y, T (y)), δ(x, T (y)), δ(y, T (x)))

for all x, y ∈ Y , then T is a (δ, ψ)-contraction, where δ : Pb(X) → R+ and

ψ : R+ → R+, ψ(t) := ϕ(t, t, t, t, t).

Proof. Let A ∈ I(T ), and x, y ∈ A. Then

δ(T (x), T (y)) ≤ ϕ(δ(A), δ(A), δ(A), δ(A), δ(A)),

for all x, y ∈ A. This implies that

δ(T (A)) ≤ ψ(δ(A)).

Lemma 13.1.2. Let T : Y → P (Y ) be a strong (δ, ϕ)-contraction. Then

T is a singlevalued ϕ-contraction.

Proof. Since T is a strong (δ, ϕ)-contraction we have that

δ(T (A)) ≤ ϕ(δ(A)), ∀ A ∈ P (Y ).

If we take A = {x}, x ∈ Y , then δ(A) = 0 and we have δ(T (x)) = 0, i.e.

cardT (x) = 1.

Now we take A = {x, y}, x, y ∈ X. Then

d(T (x), T (y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ Y,
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i.e. T is a singlevalued ϕ-contraction.

Example 13.1.2. Let (X, d) a metric space, Z = Pb(X), α : Pb(X) → R+

an abstract measure of noncompactness on the metric space (X, d) and Y ∈
Pb(X). Then T : Y → P (Y ) is a strong (α, ϕ)-contraction iff

α(T (A)) ≤ ϕ(α(A)), ∀ A ∈ Pb(X),

and T is an (α, ϕ)-contraction iff

α(T (A)) ≤ ϕ(α(A)), ∀ A ∈ I(T ).

For example, if T is a compact operator, then T is a strong (α, 0)-

contraction.

Example 13.1.3. Let X be a Banach space, ωD : Pb(X) → R+ the De

Blasi measure of weak noncompactness on X and Y ∈ Pb(X).

Then T is a (ωD, ϕ)-contraction iff

ωD(T (A)) ≤ ϕ(ωD(A)), ∀ A ∈ I(T )

and T is a strong (ωD, ϕ)-contraction iff

ωD(T (A)) ≤ ϕ(ωD(A)), ∀ A ∈ P (Y ).

For example, if T is a weak compact operator, then T is a strong (ωD, 0)-

contraction.

Example 13.1.4. Let (X, d,W ) be a convex metric space and β : Pb(X) →
R+ an abstract measure of nonconvexity on X. Then an operator T : Y →
P (Y ), Y ∈ Pb(X) is a (β, ϕ)-contraction iff

β(T (A)) ≤ ϕ(β(A)), ∀ A ∈ I(T )

and T is a strong (β, ϕ)-contraction iff

β(T (A)) ≤ ϕ(β(A)), ∀ A ∈ P (Y ).
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Remark 13.1.1. if T is a strong (β, ϕ)-contraction then

A ∈ Pcv(Y ) ⇒ T (A) ∈ Pcv(Y ).

Example 13.1.5. Let X be a Banach space, Y ∈ Pb(X) and T : X →
Pcp,cv(X) an l-contraction. Then T is a (αH , l) strong contraction on Y .

Indeed, let A ∈ P (Y ) and αH(A) = r. For ε > 0 we choose {a1, . . . , am} ⊂

X such that A ⊂
m⋃

i=1

B(ai, r + ε). For each i ∈ {1, . . . ,m} we choose bij ,

j = 1,m(i) such that T (xi) ⊂
m(i)⋃

j=1

B(bij , ε). From this we have that

T (A) ⊂
m⋃

i=1

m(i)⋃

j=1

B(bij , l(r + ε) + ε).

This implies that αH(T (A)) ≤ l(r+ε)+ε, ∀ ε > 0. So, αH(T (A)) ≤ lαH(A),

∀ A ∈ P (Y ).

Example 13.1.6. Let X be a Banach space, Y ∈ Pb(X), T : X →
Pcp,cv(X) and S : Y → Pcp,cv(X). We suppose that

(a) T is an l-contraction;

(b) S is a compact operator.

Then T + S is an (αH , l)-contraction.

13.2 θ-condensing operators

Let X be a nonempty set, Y ∈ P (X) and Z ∈ P (P (X)). Let θ : Z → R+

a setargument functional.

Definition 13.2.1. An operator T : Y ⊸ X is said to be strong θ-

condensing iff

(i) A ∈ P (Y ) ∩ Z implies T (A) ∈ Z;

(ii) A ∈ P (Y ) ∩ Z, θ(A) 6= 0 implies θ(T (A)) < θ(A).



(θ, ϕ)-contractions and θ-condensing operators 157

Definition 13.2.2. An operator T : Y ⊸ Y is said to be θ-condensing iff

(i) A ∈ P (Y ) ∩ Z implies T (A) ∈ Z;

(ii) A ∈ I(T ) ∩ Z, θ(A) 6= 0 implies θ(T (A)) < θ(A).

Example 13.2.1. Let (X, d) be a metric space, Y ∈ Pb(X) and T : Y →
P (Y ). Then T is strong δ-condensing iff

δ(T (A)) < δ(A), ∀ A ∈ P (Y ), δ(A) 6= 0,

and T is δ-condensing iff

δ(T (A)) < δ(A), ∀ A ∈ I(T ), δ(A) 6= 0.

Lemma 13.2.1. If T : Y → P (Y ) is a strong δ-condensing, then

δ(T (x) ∪ T (y)) < d(x, y), ∀ x, y ∈ Y, x 6= y.

Proof. We take A = {x, y} in Definition 13.2.1.

Example 13.2.2. Let (X, d) be a metric space and αK : Pb(X) → R+ the

Kuratowski measure of noncompactness on X and Y ∈ Pb(X). Then T : Y →
P (Y ) is a strong αK-condensing iff

αK(T (A)) < αK(A), ∀ A ∈ P (Y ) with αK(A) 6= 0,

and T is αK-condensing iff

αK(T (A)) < αK(A), ∀ A ∈ I(T ), αK(A) 6= 0.

For example, if T is compact, then T is strong αK-condensing.

Remark 13.2.1. Let (A,≤) be an ordered set with the least element, 0.

If in Definition 13.2.1 and 13.2.2, instead of θ : Z → R+ we put θ : Z → A
then we shall have different classes of condensing operators if we put instead
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of condition θ(T (A)) < θ(A) for all A ∈ I(T ) (A ∈ P (Y )), with θ(A) 6= 0 each

of the following conditions:

(ii’) A ∈ I(T )(P (Y )), θ(T (A)) ≥ θ(A) implies θ(A) = 0.

(ii”) A ∈ I(T )(P (Y )), θ(T (A)) = θ(A) implies θ(A) = 0.

For example, W.V. Petryshyn and P.M. Fitzpatrick (1974) work with the

following setargument operator.

Let (A,≤) be a lattice with the first element, 0. Let X be a Hausdorff

locally convex topological vector space. An operator α : P (X) → A is called

a measure of noncompactness if it satisfies the following conditions:

(i) α(coA) = α(A), ∀ A ∈ P (X);

(ii) α(A) = 0 iff A is precompact;

(iii) α(A ∪B) = max(α(A), α(B)), ∀ A,B ∈ P (X).

Let Y ⊂ X. An operator T : Y → Pcl,cv(X) is said to be α-condensing iff:

α(T (A)) � α(A), ∀ A ∈ P (Y ),

such that A is not precompact.

So, Petryshyn and Fitzpatrick (1974) work with strong α-condensing op-

erators. E. Tarafdar and R. Výborný (1975) use α-condensing operators w.r.t.

a setargument operator.
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Chapter 14

First general fixed point

principle for multivalued

operators

14.1 First general fixed point principle

Let X be a nonempty set.

Theorem 14.1.1. (First general fixed point principle).

Let (X,S(X),M0) be a f.p.s. on the set X and (θ, η) (θ : Z → R+) a

compatible pair with (X,S(X),M0). Let Y ∈ η(Z) and T ∈ M0(Y ). We

suppose that:

(i) θ|η(Z) has the intersection property;

(ii) T is a (θ, ϕ)-contraction.

Then:

(a) FT 6= ∅;
(b) if FT ∈ Z and T (FT ) = FT , then θ(FT ) = 0;

(c) if:

161
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(1) T is a strong (θ, ϕ)-contraction;

(2) A,B ∈ Z, A ⊂ B ⇒ θ(A) ≤ θ(B);

(3) FT ∈ Z;

then, θ(FT ) = 0.

Proof. (a) From Y ∈ η(Z) we have that T (Y ) ∈ Z. Let Y1 :=

η(T (Y )), . . . , Yn := η(T (Yn−1)). From the definition of Yn it follows that

Yn+1 ⊂ Yn, Yn ∈ I(T ) and Yn ∈ Fη, n ∈ N (Y0 := Y ).

Let Y∞ :=
⋂

n∈N

Yn. From the condition (ii) we have

θ(Yn) ≤ ϕ(θ(Yn−1)) ≤ · · · ≤ ϕn(θ(Y )) → 0 as n→ ∞.

Since θ : η(Z) → R+ is a functional with the intersection property, it

follows that Y∞ 6= ∅, Y∞ ∈ η(Z), Y∞ ∈ I(T ) and θ(Y∞) = 0. These imply that

Y∞ ∈ S(X) and T |Y∞
∈M0(Y∞), i.e., FT 6= ∅.

(b) From T (FT ) = FT , we have that

θ(FT ) = θ(T (FT )) ≤ ϕ(θ(FT )).

But ϕ is a comparison function, so, θ(FT ) = 0.

(c) From (1), (2) and (3) we have

θ(FT ) ≤ θ(T (FT )) ≤ ϕ(θ(FT )).

Hence θ(FT ) = 0.

Remark 14.1.1. In Theorem 14.1.1 is not necessarily that M(A) be de-

fined for all A ∈ P (X). It is sufficiently that M(A) be defined for A ∈ η(Z).

Theorem 14.1.2. Let (X,S(X),M0) be a f.p.s. and (θ, η) a compatible

pair with (X,S(X),M0). Let Y ∈ Fη and T ∈M0(Y ) be such that T (Y ) ∈ Z.

In the conditions (i) and (ii) in Theorem 14.1.1 we have (a), (b) and (c) in

that theorem.
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Proof. First we remark that η(T (Y )) ∈ I(T ) and T |η(T (Y )) : η(T (Y )) →
η(T (Y )) is in the conditions of Theorem 14.1.1.

The proof follows from this theorem.

Remark 14.1.2. In Theorem 14.1.2 it is sufficiently thatM(A) be defined

for A ∈ Fη.

Remark 14.1.3. In terms of comparison operator ϕ : A → A (Definition

5.1.1) and of operator with intersection property θ : Z → A (Definition 3.9.1),

Theorem 14.1.1 and 14.1.2 take the following form:

Theorem 14.1.1’. Let (X,S(X),M0) be a f.p.s., on the set X, and (θ, η)

a compatible pair with (X,S(X),M0). Let Y ∈ η(Z) and T ∈ M0(Y ). We

suppose that:

(i) the operator θ|η(Z) : η(Z) → A has the intersection property;

(ii) T is a (θ, ϕ)-contraction, where ϕ : A → A.

Then:

(a) FT 6= ∅;
(b) if FT ∈ Z and T (FT ) = FT , then θ(FT ) = 0.

Theorem 14.1.2’. Let (X,S(X),M0) be a f.p.s. and (θ, η) (θ : Z → A) a

compatible pair with (X,S(X),M0). Let Y ∈ Fη and T ∈M0(Y ) be such that

T (Y ) ∈ Z. We suppose that:

(i) the operator θ|η(Z) : η(Z) → A has the intersection property;

(ii) T is a (θ, ϕ)-contraction, where ϕ : A → A.

Then:

(a) FT 6= ∅;
(b) if FT ∈ Z and T (FT ) = FT , then θ(FT ) = 0.

Remark 14.1.4. If in addition, in Theorem 14.1.1’ and 14.1.2’ T is a

strong (θ, ϕ)-contraction and FT ∈ Z, then θ(FT ) = 0. So, in this case for to

have θ(FT ) = 0 it is not necessarily that T (FT ) = FT .

Remark 14.1.5. The Theorems 14.1.1, 14.1.2, 14.1.1’ and 14.1.2’ are set-
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theoretical.

In what follow we shall present some consequences of these general results.

14.2 (α, ϕ)-contraction principle

Let (X, d) be a metric space and α : Pb(X) → R+ an abstract measure of

noncompactness on the metric space X (Definition 3.7.3).

Theorem 14.2.1. Let (X, d) be a bounded complete metric space and T :

X → Pcl(X). We suppose that:

(i) T is an (α, ϕ)-contraction;

(ii) T is contractive, i.e.,

H(T (x), T (y)) < d(x, y), ∀ x, y ∈ X, x 6= y.

Then:

(a) FT 6= ∅;
(b) if T (FT ) = FT , then α(FT ) = 0;

(c) if T is a strong (α, ϕ)-contraction, then α(FT ) = 0.

Proof. We consider, in Theorem 14.1.1, the f.p.s. of R.E. Smithson (see

Example 11.2.8), Z := Pb(X), θ := α and η(A) = A.

Theorem 14.2.2. Let (X, d) be a complete metric space and T : X →
Pcl(X). We suppose that:

(i) T is an (α, ϕ)-contraction;

(ii) T is contractive;

(iii) T (X) ∈ Pb(X).

Then:

(a) FT 6= ∅;
(b) if T (FT ) = FT , then α(FT ) = 0;

(c) if T is a strong (α, ϕ)-contraction, then α(FT ) = 0.
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Proof. We consider, in Theorem 14.1.2, the f.p.s. of R.E. Smithson, Z :=

Pb(X), θ := α and η(A) := A.

Theorem 14.2.3. Let X be a Banach space, Y ∈ Pb,cl,cv(X) and α an

abstract measure of noncompactness on the Banach space X (Definition 3.7.1).

If T : Y → Pcp,cv(Y ) is u.s.c. and (α, ϕ)-contraction, then FT 6= ∅. If T is a

strong (α, ϕ)-contraction, then α(FT ) = 0.

Proof. We consider, in Theorem 14.1.1, the f.p.s. of Bohnenblust-Karlin

(see Example 11.2.11), Z := Pb(X), θ := α and η(A) := coA.

Theorem 14.2.4. Let X be a Banach space, Y ∈ Pcl,cv(X) and α an

abstract measure of noncompactness on the Banach space X. We suppose that:

(i) T : Y → Pcp,cv(Y ) is u.s.c.;

(ii) T is an (α, ϕ)-contraction;

(iii) T (Y ) ∈ Pb(X).

Then, FT 6= ∅. If T is a strong (α, ϕ)-contraction, then θ(FT ) = 0.

Proof. We take, in Theorem 14.1.2, the f.p.s. of Bohnenblust-Karlin, Z :=

Pb(X), θ := α and η(A) := coA.

Theorem 14.2.5. (S. Czerwik (1980)). Let X be a Banach space, Y ∈
Pb,cl,cv(X) and T : Y → Pcp,cv(Y ) an operator. We suppose that:

(i) T is u.s.c.;

(ii) T is an (αH , ϕ)-contraction.

Then:

(a) FT 6= ∅;
(b) if T (FT ) = FT , then αH(FT ) = 0;

(c) if T is a strong (αH , ϕ)-contraction, then αH(FT ) = 0.

Proof. We take α := αH in Theorem 14.2.3.

Remark 14.2.1. We can take, in Theorem 14.2.5, Y ∈ Pcl,cv(X) and

T : Y → Pcp,cv(Y ) with T (Y ) ∈ Pb(X).
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Theorem 14.2.6. (W.V. Petryshyn and P.M. Fitzpatrick (1974)). Let X

be a Banach space, Y ∈ Pb,cl,cv(X), T : X → Pcp,cv(X) and S : Y → Pcp,cv(Y ).

We suppose that:

(i) T is a strong (αH , l)-contraction;

(ii) Y ∈ I(T );

(iii) T and S are u.s.c.;

(iv) S is compact;

(v) T (x) + S(x) ∈ Y, ∀ x ∈ Y .

Then, FT+S 6= ∅.
Proof. We remark that T + S is a strong (αH , l)-contraction. The proof

follows from Theorem 14.2.3.

Remark 14.2.2. We can take in Theorem 14.2.6 instead of condition (i)

the condition

(i’) H(T (x), T (y)) ≤ ld(x, y), ∀ x, y ∈ X.

14.3 (ω, ϕ)-contraction principle

Let X be a Banach space and ω : Pb(X) → R+ an abstract measure of

weak noncompactness on X. We have

Theorem 14.3.1. Let X be a Banach space, Y ∈ Pb,wcl,cv(X) and T :

Y → Pwcp,cv(Y ). We suppose that:

(i) T is weakly u.s.c., i.e., T : (X, τw) → (X, τw) is u.s.c.;

(ii) T is an (ω, ϕ)-contraction.

Then:

(a) FT 6= ∅;
(b) if FT ∈ I(T ), then ω(FT ) = 0;

(c) if T is strong (ω, ϕ)-contraction, then ω(FT ) = 0.
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Proof. Let S(X) := Pwcp,cv(X) and M0(A) := {T : A → Pwcp,cv(A) | T
is weakly u.s.c.}. Then (X,S(X),M0) is a f.p.s. on X (see J. Ewert (1986)).

Now, we take Z := Pb(X), θ := ω and η(A) := cowA, in Theorem 14.1.1.

Theorem 14.3.2. Let X be a Banach space, Y ∈ Pwcl,cv(X) and T : Y →
Pwcp,cv(Y ). We suppose that:

(i) T is weakly u.s.c.;

(ii) T is an (ω, ϕ)-contraction;

(iii) T (Y ) ∈ Pb(X).

Then:

(a) FT 6= ∅;
(b) if FT ∈ I(T ), then ω(FT ) = 0;

(c) if T is a strong (ω, ϕ)-contraction then, ω(FT ) = 0.

Proof. We remark that cow(T (Y )) ∈ I(T ). The proof follows from Theo-

rem 14.3.1.

Theorem 14.3.3. (J. Ewert (1986)). Let X be a Banach space, Y ∈
Pb,wcl,cv(X) and T : Y → Pwcp,cv(Y ). We suppose that:

(i) T is weakly u.s.c.;

(ii) T is an (ωD, l)-contraction.

Then:

(a) FT 6= ∅;
(b) if FT ∈ I(T ), then ωD(FT ) = 0;

(c) if T is a strong (ωD, l)-contraction, then ωD(FT ) = 0.

Proof. We take ω := ωD and ϕ(t) := lt, in Theorem 14.3.1.

14.4 First general strict fixed point principle

Let X be a nonempty set.
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Theorem 14.4.1. Let (X,S(X),M0) be a s.f.p.s. and (θ, η) (θ : Z → R+)

a compatible pair with (X,S(X),M0). Let Y ∈ η(Z) and T ∈ M0(Y ). We

suppose that:

(i) θ|η(Z) has the intersection property;

(ii) T is a (θ, ϕ)-contraction.

Then:

(a) (SF )T 6= ∅;
(b) if (SF )T ∈ Z, then θ((SF )T ) = 0.

Proof. See the proof of Theorem 14.1.1.

Theorem 14.4.2. Let (X,S(X),M0) be a s.f.p.s. and (θ, η) a compatible

pair with (X,S(X),M0). Let Y ∈ Fη and T ∈M0(Y ) be such that T (Y ) ∈ Z.

We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) T is a (θ, ϕ)-contraction.

Then:

(a) (SF )T 6= ∅;
(b) if (SF )T ∈ Z, then θ((SF )T ) = 0.

Proof. See the proof of Theorem 14.1.2.

Theorem 14.4.3. Let (X, d) be a bounded complete metric space and T :

X → P (X) a (δ, ϕ)-contraction. Then:

(a) (SF )T = {x∗};
(b) FT = (SF )T .

Proof. (a) We take in Theorem 14.4.1 the trivial s.f.p.s. onX, Z := Pb(X),

θ := δ and η(A) := A.

(b) We remark that FT ⊂ X∞ (see the proof of Theorem 14.1.1) and

δ(X∞) = 0.

Theorem 14.4.4. Let (X, d) be a complete metric space and T : X →
Pb(X) a (δ, ϕ)-contraction. If T (X) ∈ Pb(X), then:
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(a) (SF )T = {x∗};
(b) FT = (SF )T .

Proof. We take in Theorem 14.4.2 the trivial s.f.p.s., Z := Pb(X), θ := δ

and η(A) := A. See also the proof of Theorem 14.4.3.
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Chapter 15

Second general fixed point

principle for multivalued

operators

15.1 Second general fixed point principle

Let X be a nonempty set, Z ∈ P (P (X)) and (O,≤) an ordered set with

the first element, denoted by 0. Let θ : Z → O be an operator.

Theorem 15.1.1. (Second general fixed point principle).

Let (X,S(X),M0) be a f.p.s. and (θ, η) a compatible pair with

(X,S(X),M0). let Y ∈ η(Z) and T ∈M0(Y ). We suppose that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T is θ-condensing, i.e.,

A ∈ Z ⇒ T (A) ∈ Z, and

A ∈ Z ∩ I(T ), θ(T (A)) ≥ θ(A) ⇒ θ(A) = 0.

Then:

(a) FT 6= ∅;
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(b) if FT ∈ Z and T (FT ) = FT , then θ(FT ) = 0.

Proof. (a) Let y0 ∈ Y and A = {y0}. By Lemma 1.6.2 there exists A0 ∈
Fη ∩ I(T ) such that η(T (A0) ∪ {y0}) = A0. From the condition (i) we have

θ(η(T (A0) ∪ {y0}) = θ(T (A0) ∪ {y0}) = θ(T (A0)) = θ(A0).

From the condition (ii) it follows that A0 ∈ Zθ. Thus, A0 ∈ Fη ∩ Zθ and

T |A0
∈M0(A0). Since (X,S(X),M0) is a f.p.s. and (θ, η) is a compatible pair

with this f.p.s., we have FT 6= ∅.
(b) From T (FT ) = FT and the condition (ii) it follows that θ(FT ) = 0.

Remark 15.1.1. In the above theorem is not necessarily that M(A) be

defined for all A ∈ P (X). It is sufficiently that M(A) be defined for A ∈ η(Z).

Theorem 15.1.2. Let (X,S(X),M0) be a f.p.s. and (θ, η) (θ : Z → O) a

compatible pair with (X,S(X),M0). Let Y ∈ Fη and T ∈M0(Y ) be such that

T (Y ) ∈ Z. We suppose that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T is θ-condensing.

Then:

(a) FT 6= ∅;
(b) if FT ∈ Z and T (FT ) = FT , then θ(FT ) = 0.

Proof. The operator T |η(T (Y )) : η(T (Y )) ⊸ η(T (Y )) is in the conditions

of Theorem 15.1.1.

Remark 15.1.2. In Theorem 15.1.2 is not necessarily that M(A) be de-

fined for all A ∈ P (X). It is sufficiently that M(A) be defined for A ∈ Fη.

Remark 15.1.2. If O = R+, then the condition (ii) in the above results

take the following form:

(ii’) A ∈ Z ⇒ T (A) ∈ Z,

and

A ∈ Z ∩ I(T ), θ(A) 6= 0 ⇒ θ(T (A)) < θ(A).
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Remark 15.1.3. All terms in the above results are set-theoretic.

In what follow we shall present some consequences of these general results.

15.2 α-condensing operators principle

Let X be a locally convex space and (pi)i∈I a family of seminorms which

generate the topology on X. Let αK : Pb(X) → M(I,R+) be the operator

defined in Example 3.9.1, i.e., α(A)(i) = αi
K(A), A ∈ Pb(X), where αi

K is the

Kuratowski measure of noncompactness w.r.t. the seminorm pi. We call this

operator the Kuratowski measure of noncompactness on X. In a similar way

we define the Hausdorff measure of noncompactness on X, αH .

Theorem 15.2.1. Let X be a Hausdorff locally convex linear topological

space, Y ∈ Pb,cl,cv(X) and T : Y → Pcl,cv(Y ). We suppose that:

(i) T is u.s.c.;

(ii) T is α-condensing, where α = αK or αH .

Then, FT is nonempty, and FT is compact, if T (FT ) = FT .

Proof. We take in Theorem 15.1.1, the Glicksberg-Fan f.p.s., Z := Pb(X),

θ := α and η(A) = coA. From this theorem we have that FT 6= ∅ and α(FT ) =

0. But FT = F T , so FT is a nonempty compact subset of Y .

Theorem 15.2.2. Let X be a Hausdorff locally convex linear topological

space, Y ∈ Pcl,cv(X) and T : Y → Pcl,cv(Y ). We suppose that:

(i) T is u.s.c.;

(ii) T is α-condensing, where α = αK or αH ;

(iii) T (Y ) ∈ Pb(X).

Then FT is a nonempty, and FT is compact subset of Y if T (FT ) = FT .

Proof. We take in the Theorem 15.1.2 the Glicksberg-Fan f.p.s.

Theorem 15.2.3. Let X be a Banach space, αDP : Pb(X) → R+ the

Daneš-Pasicki measure of noncompactness on X, Y ∈ Pb,cl,cv(X) and T :
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Y → Pcl,cv(Y ). We suppose that:

(i) T is u.s.c.;

(ii) T is αDP -condensing.

Then FT is nonempty, and if T (FT ) = FT , then αDP (FT ) = 0.

Proof. We take in Theorem 15.1.1 the Bohnenblust-Karlin f.p.s., Z :=

Pb(X), θ := αDP and η(A) := coA. From this theorem we have that FT 6= ∅
and αDP (FT ) = 0, if T (FT ) = FT .

Theorem 15.2.4. Let X be a Banach space, Y ∈ Pcl,cv(X) and T : Y →
Pcl,cv(Y ). We suppose that:

(i) T is u.s.c.;

(ii) T is αDP -condensing;

(iii) T (Y ) ∈ Pb(X).

Then FT is a nonempty subset of Y .

Proof. We take in Theorem 15.1.2 the Bohnenblust-Karlin f.p.s.

15.3 ω-condensing operators principle

Let X be a Banach and ωD : Pb(X) → R+ the De Blasi weak measure of

noncompactness on X.

Theorem 15.3.1. Let X be a Banach space, Y ∈ Pb,wcl,cv(X) and T :

Y → Pwcp,cv(X). We suppose that:

(i) T is weakly u.s.c.;

(ii) T is ωD-condensing.

Then FT 6= ∅ and if T (FT ) = FT , then ωD(FT ) = 0.

Proof. Let S(X) := Pwcp,cv(X) and M0(A) := {T : A→ Pwcp,cv(A) | T is

weakly u.s.c.}. Then (X,S(X),M0) is a f.p.s. Now we take in Theorem 15.1.1,

the above f.p.s., Z = Pb(X), θ := ωD and η(A) := cow(A).
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Theorem 15.3.2. Let X be a Banach space, Y ∈ Pwcl,cv(X) and T : Y →
Pwcp,cv(X). We suppose that:

(i) T is weakly u.s.c.;

(ii) T is ωD-condensing;

(iii) T (Y ) ∈ Pb(X).

Then FT 6= ∅ and if T (FT ) = FT , then ωD(FT ) = 0.

Proof. We take in Theorem 15.1.2, S(X) := Pwcp,cv(X), M0(A) := {T :

A→ Pwcp,cv(A) | T is weakly u.s.c.}, Z = Pb(X), θ = ωD and η(A) = cow(A).

15.4 Second general strict fixed point principle

Let X be a nonempty set.

Theorem 15.4.1. (Second general strict fixed point principle). Let

(X,S(X),M0) be a s.f.p.s., and (θ, η) (θ : Z → O) a compatible pair with

(X,S(X),M0). Let Y ∈ η(Z) and T ∈M0(Y ). We suppose that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T is θ-condensing.

Then:

(a) (SF )T 6= ∅;
(b) if (SF )T ∈ Z, then θ((SF )T ) = 0.

Proof. (a) See the proof of Theorem 15.1.1.

(b) We remark that T ((SF )T ) = (SF )T . From (ii) we have that

θ((SF )T ) = 0.

Theorem 15.4.2. Let (X,S(X),M0) be a s.f.p.s., and (θ, η) (θ : Z → O) a

compatible pair with (X,S(X),M0). Let Y ∈ Fη and T ∈M0(Y ). We suppose

that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T is θ-condensing;



178 Chapter 15

(iii) T (Y ) ∈ Z.

Then:

(a) (SF )T 6= ∅,
(b) if (SF )T ∈ Z, then θ((SF )T ) = 0.

Proof. The proof is similar with that of Theorem 15.1.2.

Theorem 15.4.3. Let (X, d) be a bounded complete metric space and T :

X → P (X) a (δ, ϕ)-contraction. Then:

(a) (SF )T = {x∗};
(b) FT = (SF )T .

Proof. (a) We consider in Theorem 14.1.1 the trivial f.p.s., Z := P (X),

θ := δ and η(A) := A. The proof follows from Theorem 14.1.1.

(b) We remark that FT ⊂ X∞ (see the proof of the Theorem 14.1.1) and

δ(X∞) = 0.

Theorem 15.4.4. Let (X, d) a complete metric space and T : X → P (X)

a (δ, ϕ)-contraction with T (X) ∈ Pb(X). Then:

(a) (SF )T = {x∗}; (b) FT = (SF )T .

Proof. We apply Theorem 15.4.3 to the operator, T |
T (X)

: T (X) → T (X).

Theorem 15.4.5. Let (X, d) a compact metric space and T : X → P (X)

a δ-condensing operator. Then, FT = (SF )T = {x∗}.
Proof. (a) By Martelli’s lemma (see Lemma 1.6.3) there exists a nonempty

closed subset Y ⊂ X such that Y = T (Y ). Since Y ∈ I(T ) and δ(Y ) = δ(T (Y ))

it follows that δ(Y ) = 0. So, x∗ ∈ (SF )T . Since T ((SF )T ) = (SF )T we have

that (SF )T = {x∗}.
(b) Now we shall prove that FT = (SF )T . Let x0 ∈ FT and consider the

following family of subsets of X, B(x0) := {B ∈ Pcl(X) | B ∈ I(T ), x0 ∈ B}.
Let B(x0) := ∩B(x0). B(x0) is the first element of the ordered set (B(x0),⊂).

But, T (B(x0)) ∈ B(x0) so, T (B(x0)) = B(x0). Hence cardB(x0) = 1. Since

T (x0) ⊂ B(x0), hence T (x0) = {x0}.
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Chapter 16

Common fixed point property

for a pair of multivalued

operators

16.1 Commuting operators, common fixed points

and common invariant subsets

Let X be a nonempty set and T, S : X → P (X) two multivalued operators.

we have:

Lemma 16.1.1. FT ∩ FS = FT∩S .

Remark 16.1.1. In general, {x ∈ X | T (x) ∩ S(x) 6= ∅} 6= X.

Lemma 16.1.2. If T ◦ S = S ◦ T , then:
(a) T (X), S(X) ∈ I(T ) ∩ I(S);
(b) T (X) ∪ S(X) ⊂ Z ⊂ X ⇒ Z ∈ I(T ) ∩ I(S);
(c) S(FT ) ⊂ T (S(FT )) and T (FS) ⊂ S(T (FS));

(d) If (SF )T 6= ∅, then (SF )T ∈ F
T̂
;

181
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(e) F
T̂
∈ I(Ŝ) and F

Ŝ
∈ I(T̂ ).

Proof. (c) From FT ⊂ T (FT ) it follows

S(FT ) ⊂ S ◦ T (FT ) = T (S(FT )).

(e) We remark that T̂ ◦ Ŝ = Ŝ ◦ T̂ . The proof follows from Lemma 7.1.1.

Lemma 16.1.3. Let X be a nonempty set, η : P(X) → P(X) a closure

operator, Y ∈ Fη and T, S : Y → P (Y ) such that T ◦S = S◦T . Let A1 ∈ P (Y ).

Then there exists A0 ∈ Y such that:

(a) A1 ⊂ A0;

(b) A0 ∈ Fη;

(c) A0 ∈ I(T ) ∩ I(S);
(d) η(T (A0) ∪ S(A0) ∪A1) = A0.

Proof. Let B := {B ⊂ Y | B satisfies the conditions (a), (b) and (c)}.
From Lemma 1.4.1 we have that ∩B ∈ B. This implies that ∩B is the least

element of the partially ordered set (B,⊂). We shall prove that A0 = ∩B. We

remark that

η(T (A0) ∪ S(A0) ∪A1) ∈ B and η(T (A0) ∪ S(A0) ∪A1) ⊂ A0.

These imply that η(T (A0) ∪ S(A0) ∪A1) = A0.

Example 16.1.1. Let (X, τ) be a topological space, Y ∈ Pcl(X) and

T, S : Y → P (Y ) such that T ◦ S = S ◦ T . Let A1 ∈ P (Y ). Then there exists

A0 ⊂ Y such that:

(a) A1 ⊂ A0;

(b) A0 = A0;

(c) A0 ∈ I(T ) ∩ I(S);
(d) (T (A0) ∪ S(A0) ∪A1) = A0.

Example 16.1.2. Let (X,+,R, τ) be a linear topological space, Y ∈
Pcl,cv(X) and T, S : Y → P (Y ) such that T ◦ S = S ◦ T . Then there ex-

ists A0 ⊂ Y such that:
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(a) A1 ⊂ A0;

(b) A0 = coA0;

(c) A0 ∈ I(T ) ∩ I(S);
(d) co(T (A0) ∪ S(A0) ∪A1) = A0.

The first problems in the common fixed point theory for multivalued op-

erators are the following.

Let X be a nonempty set and T, S : X → P (X). In which conditions we

have:

(P1) FT ∩ FS 6= ∅;
(P2) F

T̂
∩ F

Ŝ
6= ∅;

(P3) FT = FS 6= ∅;
(P4) F

T̂
= F

Ŝ
6= ∅;

(P5) FT = FS = {x∗};
(P6) (SF )T ∩ (SF )S 6= ∅;
(P7) (SF )T = (SF )S 6= ∅;
(P8) (SF )T = (SF )S = {x∗};
(P9) FT = (SF )T = FS = (SF )S = {x∗};
(P10) FT 6= ∅, FS 6= ∅, T ◦ S = S ◦ T ⇒ FT ∩ FS 6= ∅;
(P11) (SF )T 6= ∅, (SF )S 6= ∅, T ◦ S = S ◦ T ⇒ (SF )T ∩ (SF )S 6= ∅.
In this chapter we shall consider, in principal, the problems (P10) and

(P11).

16.2 Common fixed point structures

Let X be a nonempty set.

Definition 16.2.1. A fixed point structure (X,S(X),M0) is with the

common fixed point property iff

Y ∈ S(X), T, S ∈M0(Y ), T ◦ S = S ◦ T ⇒ FT ∩ FS 6= ∅.
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Definition 16.2.2. A strict fixed point structure (X,S(X),M0) is with

the common strict fixed point property iff

Y ∈ S(X), T, S ∈M0(Y ), T ◦ S = S ◦ T ⇒ (SF )T ∩ (SF )S 6= ∅.

Definition 16.2.3. Let X be a nonempty set, S(X) ⊂ P (X), S(X) 6= ∅
and (PM)0 ⊂ (PM)0 := {(T, S) | T, S ∈ M(Y ), Y ⊂ X}. A triple

(X,S(X), (PM)0) is a common fixed point structure iff

Y ∈ S(X), (T, S) ∈ (PM)0(Y ) ⇒ FT ∩ FS 6= ∅.

Definition 16.2.4. A triple (X,S(X), (PM)0) is a common strict fixed

point structure iff

Y ∈ S(X), (T, S) ∈ (PM)0(Y ) ⇒ (SF )T ∩ (SF )S 6= ∅.

Example 16.2.1. Trivial f.p.s. (Example 11.2.1) is a f.p.s. with the com-

mon fixed point property.

Example 16.2.2. Let (X, d) be a complete metric space, S(X) := Pcl(X)

andM0(Y ) := {T : Y → Pcl(Y ) | T is a multivalued contraction with (SF )T 6=
∅}. The triple (X,Pcl(X),M0(Y )) is a s.p.p.s. with the common strict fixed

point property.

Indeed, from Theorem 8.5.1 in I.A. Rus [37] (p.87) (X,Pcl(X),M0(Y )) is

a s.f.p.s. Let Y ∈ Pcl(X) and T, S ∈ M0(Y ) such that T ◦ S = S ◦ T . We

have FT = (SF )T = {x∗}, FS = (SF )S = {y∗}. From T ◦ S = S ◦ T it follows

x∗ = y∗.

Example 16.2.3. Let X be a Banach, S(X) := Pcp,cv(X) and

(PM)0(Y ) := {(T, S) | T, S : Y → Pcp,cv(Y ) are u.s.c. and T (x) ∩ S(x) 6=
∅, ∀ x ∈ Y }. Then the triple (X,Pcp,cv(X), (PM)0) is a common fixed point

structure.
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Indeed, let Y ∈ Pcp,cv(X) and T, S : Y → Pcp,cv u.s.c. such that T (x) ∩
S(x) 6= ∅. The operator T∩S satisfies the conditions of the fixed point theorem

of Bohnenblust-Karlin. It is clear that FT ∩ FS = FT∩S 6= ∅.
Example 16.2.4. (M. Avram (1975)) Let (X, d) be a complete metric

space, S(X) := Pb,cl(X) and (PM)0(Y ) := {(T, S) | T, S : Y → Pb,cl(Y )

and there exist a, b, c ∈ R+, a + 2b + 4c < 1 such that δ(T (x), S(y)) ≤
ad(x, y) + b[δ(x, T (x)) + δ(y, S(y))] + c[δ(x, S(y)) + δ(y, T (x))], ∀ x, y ∈ Y }.
Then (X,Pb,cl(X), (PM)0) is a common strict fixed point structure.

Remark 16.2.1. For other examples of common fixed point structures and

of common strict fixed point structures see A. Ŝıntămărian (2006, Sc. Math.

Japonicae).

Remark 16.2.2. To give examples of f.p.s. with the common fixed point

property is another open problem in the f.p.s. theory.

16.3 (θ, ϕ)-contraction pair

Let X be a nonempty set, Y ⊂ X and θ : Z → R+, where Z ⊂ P (X),

Z 6= ∅.
Definition 16.3.1. A pair of operators T, S : Y → P (Y ) is a (θ, ϕ)-

contraction pair iff

(i) ϕ : R+ → R+ is a comparison function;

(ii) A ∈ P (Y ) ∩ Z ⇒ T (A) ∪ S(A) ∈ Z;

(iii) θ(T (A) ∪ S(A)) ≤ ϕ(θ(A)), ∀ A ∈ I(T ) ∩ I(S) ∩ Z.
If l ∈ [0, 1[ and ϕ(t) = lt, then by (θ, l)-contraction pair we understand a

(θ, l(·))-contraction pair.

We have

Theorem 16.3.1. Let (X,S(X),M0) be a f.p.s. with the common fixed

point property and (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M).
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Let Y ∈ η(Z) and T, S ∈M0(Y ). We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is a (θ, ϕ)-contraction pair.

Then, FT ∩ FS 6= ∅.
Proof. Let Y1 := η(T (Y ) ∪ S(Y )), . . . , Yn+1 := η(T (Yn) ∪ S(Yn)), n ∈ N.

From Lemma 16.1.2 we have that Yn ∈ I(T )∩I(S), n ∈ N. From the conditions

(ii) and (iii) we have that

θ(Yn+1) = θ(η(T (Yn) ∪ S(Yn))) = θ(T (Yn) ∪ S(Yn))

≤ ϕ(θ(Yn)) ≤ · · · ≤ ϕn+1(θ(Y )) → 0 as n→ ∞.

From the condition (i) it follows that Y∞ :=
⋂

n∈N

Yn 6= ∅ and θ(Y∞) = 0. It

is clear that η(Y∞) = Y∞ and Y∞ ∈ I(T )∩I(S). These imply that Y∞ ∈ S(X)

and so, FT ∩ FS 6= ∅.
Theorem 16.3.2. Let (X,S(X),M0) be a f.p.s. with the common fixed

point property and (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M0).

Let Y ∈ Fη and T, S ∈M0(Y ) with T (Y ) ∪ S(Y ) ∈ Z. We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is a (θ, ϕ)-contraction pair.

Then, FT ∩ FS 6= ∅.
Proof. We apply Theorem 16.3.1 to the pair T, S : η(T (Y ) ∪ S(Y )) →

P (η(T (Y ) ∪ S(Y ))).

In a similar way we have

Theorem 16.3.3. Let (X,S(X),M0) be a s.f.p.s. with the common fixed

point property and (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M0).

Let Y ∈ η(Z) and T, S ∈M0(Y ). We suppose that:

(i) θ|η(Z) has the intersection property;
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(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is a (θ, ϕ)-contraction pair.

Then, (SF )T ∩ (SF )S 6= ∅.
Theorem 16.3.4. Let (X,S(X),M0) be a s.f.p.s. with the common fixed

point property and (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M0).

Let Y ∈ Fη and T, S ∈M0(Y ) with T (Y ) ∪ S(Y ) ∈ Z. We suppose that:

(i) θ|η(Z) has the intersection property;

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is a (θ, ϕ)-contraction pair.

Then, (SF )T ∩ (SF )S 6= ∅.

16.4 θ-condensing pair

Let X be a nonempty set, Y ⊂ X and θ : Z → R+ where Z ⊂ P (X),

Z 6= ∅.
Definition 16.4.1. A pair T, S : Y → P (Y ) is a θ-condensing pair iff:

(i) Ai ∈ Z, i ∈ I,
⋂

i∈I

Ai 6= ∅ ⇒
⋂

i∈I

Ai ∈ Z;

(ii) A ∈ P (Y ) ∩ Z ⇒ T (A) ∪ S(A) ∈ Z;

(iii) θ(T (A)∪S(A)) < θ(A), for all A ∈ I(T )∩I(S)∩Z such that θ(A) 6= ∅.
We have

Theorem 16.4.1. Let (X,S(X),M0) be a f.p.s. with common fixed point

property and (θ, η) a compatible pair with (X,S(X),M0). Let Y ∈ η(Z) and

T, S ∈M0(Y ).

We suppose that:

(i) x ∈ Y, A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is θ-condensing pair.

Then, FT ∩ FS 6= ∅.
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Proof. Let x0 ∈ Y . By Lemma 16.1.3 there exists A0 ⊂ Y such that

x0 ∈ A0, A0 ∈ Fη ∩ I(T )∩ I(S)∩Z and η(T (A0)∪ S(A0)∪ {x0}) = A0. From

the condition (iii) we have that θ(A0) = 0. This implies that A0 ∈ S(X). So,

FT ∩ FS 6= ∅.
From the proof of Theorem 16.4.1 we have

Theorem 16.4.2. Let (X,S(X),M0) be a f.p.s. with common fixed point

property and (θ, η) a compatible pair with (X,S(X),M0). Let Y ∈ Fη and

T, S ∈M0(Y ) with T (Y ) ∪ S(Y ) ∈ Z.

We suppose that:

(i) x ∈ Y, A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is θ-condensing pair.

Then, FT ∩ FS 6= ∅.
Theorem 16.4.3. Let (X,S(X),M0) be a s.f.p.s. with common fixed point

property and (θ, η) a compatible pair with (X,S(X),M0). Let Y ∈ η(Z) and

T, S ∈M0(Y ). We suppose that:

(i) x ∈ Y, A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is θ-condensing pair.

Then, (SF )T ∩ (SF )S 6= ∅.
Theorem 16.4.4. Let (X,S(X),M0) be a s.f.p.s. with common fixed point

property and (θ, η) a compatible pair with (X,S(X),M0). Let Y ∈ Fη and

T, S ∈M0(Y ) with T (Y ) ∪ S(Y ) ∈ Z. We suppose that:

(i) x ∈ Y, A ∈ Z imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T ◦ S = S ◦ T ;
(iii) the pair (T, S) is θ-condensing pair.

Then, (SF )T ∩ (SF )S 6= ∅.
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Chapter 17

Fixed point property and

coincidence property

17.1 Fixed point structure with the coincidence

property

Definition 17.1.1. A f.p.s. (X,S(X),M0) on a nonempty set X is with

the coincidence property iff

Y ∈ S(X), P,Q ∈M0(Y ), P ◦Q = Q ◦ P ⇒ C(P,Q) 6= ∅.

Example 17.1.1. Each f.p.s. with the common fixed point property is a

f.p.s. with the coincidence property.

Example 17.1.2. Let (X,S(X),M) be a f.p.s. with the coincidence prop-

erty, in the case of singlevalued operators. For Y ∈ S(X), let

M0(Y ) := {P : Y ⊸ Y | P (x) := {p(x)}, p ∈M(Y )}.

Then (X,S(X),M0(Y )) is a f.p.s. with the coincidence property.

It is an open problem to establish if a given f.p.s. is or not with the coin-

cidence property. So, we have
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Problem 17.1.1. Which are the f.p.s. with the coincidence property?

This problem has the following particular cases.

Problem 17.1.2. For which Banach spaces X the f.p.s. of Bohnenblust-

Karlin, (X,Pcp,cv(X),M0) is with the coincidence property?

Problem 17.1.3. For which complete metric spaces, (X, d), the f.p.s. of

multivalued contractions, (X,Pcl(X),M0), is with the coincidence property?

Problem 17.1.4. Let X be a Banach space, Y ∈ Pb,cl,cv(X) and P : Y →
Pcl,cv(X) a multivalued operator. We suppose that

(i) P is u.s.c.;

(ii) there exists n0 ∈ N∗ such that Pn0(Y ) ∈ Pcp(Y ).

Does P have a fixed point?

Remark 17.1.1. For the case of singlevalued operators see Problem 8.4.1,

Horn’s conjecture and Schauder’s conjecture.

We have

Theorem 17.1.1. Let X be a nonempty set and Z ⊂ P (X) such that

A,B ∈ Z implies A∪B ∈ Z. Let (X,S(X),M0) be a f.p.s. with the coincidence

property, (θ, η) (θ : Z → R+) a compatible pair with (X,S(X),M0). Let Y ∈
η(Z) and P,Q ∈M0(Y ) such that P ◦Q = Q ◦ P . We suppose that:

(i) θ(A ∪B) = max(θ(A), θ(B)), ∀ A,B ∈ Z;

(ii) P and Q are θ-condensing operators;

(iii) FP ∈ Z and P (FP ) = FP .

Then C(P,Q) 6= ∅.
Proof. First of all we remark that condition (ii) implies that FP 6= ∅ and

(ii) and (iii) imply that θ(FP ) = 0.

Let A1 := FP . From Lemma 16.1.3 there exists A0 ⊂ Y such that A1 ⊂ A0,

A0 ∈ I(P ) ∩ I(Q) ∩ Fη and η(P (A0) ∪ Q(A0) ∪ FP ) = A0. If θ(A0) > 0, we
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have

θ(A0) = θ[η(P (A0) ∪Q(A0) ∪ FP )] = θ(P (A0) ∪Q(A0) ∪ FP )

= θ(P (A0) ∪Q(A0)) = max(θ(P (A0)), θ(Q(A0))) < θ(A0).

So, θ(A0) = 0. Hence, A0 ∈ Fη ∩ Zθ. But the pair (θ, η) is a compatible

pair with (X,S(X),M0). From this we have that A0 ∈ S(X) and P |A0
, Q|A0

∈
M0(A0). These imply that C(P,Q) 6= ∅.

17.2 Coincidence producing singlevalued operators

Definition 17.2.1. Let (X,S(X),M) be a l.f.p.s. on a nonempty set X

and Y ∈ S(X). An operator p : Y → Y is coincidence producing w.r.t.

(X,S(X),M) iff q ∈M(Y ) implies that C(p, q) 6= ∅.
Remark 17.2.1. In 1964, W. Holsztynski gave the following definition:

Let X and Y be two topological spaces. A continuous operator p : X → Y

is universal iff q ∈ C(Y, Y ) implies that C(p, q) 6= ∅. In 1967, H. Schirmer

suggested to use ”coincidence producing” instead ”universal”.

Example 17.2.1. Let (R, Pcp,cv(R),M) be the f.p.s. of Brouwer on R.

Let Y ∈ Pcp,cv(R), i.e., Y is compact interval of R. Then each surjective and

continuous function f : Y → Y is a coincidence producing function w.r.t.

(R, Pcp,cv(R),M).

Example 17.2.2. Let X be a Banach space, S(X) := {X} and M(X) :=

{f ∈ C(X,X) | f(x) ∈ Pcp(X)}. Then (X,S(X),M) is a l.f.p.s. By M. Furi,

M. Martelli and A. Vignoli (1978) a continuous operator g : X → X is a

strong surjection iff it is coincidence producing w.r.t. (X,S(X),M). So, each

example of strong surjection is an example of producing operator.

Example 17.2.3. (H. Schirmer (1966)). Consider on Rn the following

l.f.p.s.: S(Rn) := {In}, where I = [−1, 1] and M(In) = C(In, In). If
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g ∈ C(In, In) maps the boundary of In essentially onto itself, then g is a

coincidence producing function.

Example 17.2.4. (L.J. Chu and C.Y. Lin (2002)).

Let (X,Pcp,cv(X),M) be the f.p.s. of Tychonoff on a locally convex Hausdorff

topological vector space. Let Y ∈ Pcp,cv(X). Then a Vietoris operator g : Y →
Y is producing w.r.t. (X,Pcp,cv(X),M).

By definition g ∈ C(Y, Y ) is Vietoris iff g(y) = y and g−1(y) is acyclic

w.r.t. Ĉech homology with the coefficients in Q (i.e., Hq(g
−1(y)) = 0 for g ≥ 1

and H0(g
−1(y)) ≈ Q), for each y ∈ Y .

17.3 Coincidence producing multivalued operators

Definition 17.3.1. Let (X,S(X),M0) be a l.f.p.s. of a nonempty set X

and Y ∈ S(X). An operator P : Y ⊸ Y is coincidence producing w.r.t.

(X,S(X),M0) iff Q ∈M0(Y ) implies that C(P,Q) 6= ∅.
Example 17.3.1. Let X be a locally convex Hausdorff topological vector

space and (X,Pcp,cv(X),M0) the f.p.s. of Glicksberg-Fan. Let Y ∈ Pcp,cv(X)

and P : Y → Pcp(Y ) such that P−1(y) ∈ Pcv(Y ), for each y ∈ Y . Then the

operator P is coincidence producing w.r.t. (X,Pcp,cv(X),M0).

Indeed, the following result of F.E. Browder (1968) is well known:

Theorem of Browder. Let X and E be two locally convex Hausdorff

topological vector spaces, Y ∈ Pcp,cv(X) and K ∈ Pcp,cv(E). Let P,Q : Y ⊸ K

be two multivalued operators. We suppose that:

(i) P : Y → Pcl,cv(K) is u.s.c.;

(ii) Q : Y → Pcp(K) is such that Q−1(y) is a nonempty convex subset of

Y .

Then, C(P,Q) 6= ∅.
We take in the above theorem E = X and K = Y .
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The following problem is one of the basic problems in the coincidence

theory.

Problem 17.3.1. Let (X,S(X),M0) be a fixed point structure, Y ∈ S(X)

and P : Y ⊸ Y . In which conditions the multivalued operator P is coincidence

producing w.r.t. (X,S(X),M0)?
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Chapter 18

Fixed point theory for

retractible multivalued

operators

18.1 Fixed point theorems

Let X be a nonempty set and Y ∈ P (X). An operator ρ : X → Y is a

set-retraction if ρ|Y = 1Y . An operator T : Y → P (X) is retractible w.r.t. the

retraction ρ : X → Y iff Fρ◦T = FT .

We have

Lemma 18.1.1. Let (X,S(X),M0) be a l.f.p.s. on X. Let Y ∈ S(X),

ρ : X → Y a retraction and T : Y → P (X) an operator. We suppose that:

(i) ρ ◦ T ∈M0(Y );

(ii) T is retractible w.r.t. ρ.

Then, FT 6= ∅.
Proof. Since (X,S(X),M0) is a f.p.s. and Y ∈ S(X), from (i) we have

that Fρ◦T 6= ∅. From (ii) it follows that FT 6= ∅.
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Theorem 18.1.1. Let (X,S(X),M0) be a f.p.s. and (θ, η) (θ : Z → R+) a

compatible pair with (X,S(X),M0). Let Y ∈ η(Z), T : Y → P (X) an operator

and ρ : X → Y a retraction. We suppose that:

(i) θ|η(Z) is with the intersection property;

(ii) T is retractible w.r.t. ρ and ρ ◦ T ∈M(Y );

(iii) ρ is (θ, l)-Lipschitz (l ∈ R+);

(iv) T is a strong (θ, ϕ)-contraction;

(v) the function lϕ is a comparison function.

Then, FT 6= ∅.
Proof. From the condition (iii), (iv) and (v) the operator ρ◦T : Y ⊸ Y is

a strong (θ, lϕ)-contraction. By Theorem 14.1.1 we have that Fρ◦T 6= ∅. From
the condition (ii) it follows FT 6= ∅.

Theorem 18.1.2. Let (X,S(X),M0) be a f.p.s. and (θ, η) (θ : Z → R+) a

compatible pair with (X,S(X),M0). Let Y ∈ η(Z), T : Y → P (X) an operator

and ρ : X → Y a retraction. We suppose that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) T is retractible w.r.t. ρ and ρ ◦ T ∈M(Y );

(iii) ρ is (θ, 1)-Lipschitz;

(iv) T is strong θ-condensing.

Then, FT 6= ∅.
Proof. From the conditions (iii) and (iv) the operator ρ ◦ T : Y ⊸ Y is

strong θ-condensing. By Theorem 15.1.1, we have that Fρ◦T 6= ∅. From the

condition (ii) it follows that FT 6= ∅.
From Theorem 18.1.1 we have

Theorem 18.1.3. (I.A. Rus (1991)) Let X be a Hilbert space and T :

B(0;R) → Pcp(X) a multivalued operator. We suppose that:

(i) there exists a comparison function ϕ : R+ → R+ such that

H(T (x), T (y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ B(0;R);
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(ii) T is retractible onto B(0;R) w.r.t. the radial retraction ρ : X →
B(0;R).

Then, FT 6= ∅.

18.2 Strict fixed point theorems

As in section 18.1, we have:

Lemma 18.2.1. Let (X,S(X),M0) be a l.s.f.p.s. on X. Let Y ∈ S(X),

ρ : X → Y a retraction and T : Y → P (X) a multivalued operator. We

suppose that:

(i) ρ ◦ T ∈M0(Y );

(ii) (SF )ρ◦T = (SF )T .

Then, (SF )T 6= ∅.
Theorem 18.2.1 Let (X,S(X),M0) be a s.f.p.s. and (θ, η) (θ : Z → R+)

a compatible pair with (X,S(X),M0). Let Y ∈ η(Z), T : Y → P (X) an

operator and ρ : X → Y a retraction. We suppose that:

(i) θ|η(Z) is with the intersection property;

(ii) (SF )ρ◦T = (SF )T and ρ ◦ T ∈M(Y );

(iii) ρ is (θ, l)-Lipschitz;

(iv) T is a strong (θ, ϕ)-contraction;

(v) the function lϕ is a comparison function.

Then, (SF )T 6= ∅.
Theorem 18.2.2. Let (X,S(X),M0) be a s.f.p.s. and (θ, η) (θ : Z → R+)

a compatible pair with (X,S(X),M0). Let Y ∈ η(Z), T : Y → P (X) an

operator and ρ : X → Y a retraction. We suppose that:

(i) A ∈ Z, x ∈ Y imply A ∪ {x} ∈ Z and θ(A ∪ {x}) = θ(A);

(ii) (SF )ρ◦T = (SF )T and ρ ◦ T ∈M(Y );

(iii) ρ is (θ, 1)-Lipschitz;
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(iv) T is strong θ-condensing.

Then, (SF )T 6= ∅.
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