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Abstract. We investigate a generalization of extending modules relative to
a class of modules and a proper class of short exact sequences of modules.

1. Introduction

Let A be a class of modules closed under isomorphisms and containing the zero
module. Smith, Huynh and Dung studied in [19] and [20] the class dA consisting of
modules A with the property that every submodule B of A is contained in a direct
summand C of A such that C/B ∈ A. This class has been useful, among other
things, for providing some general characterizations of modules which are direct
sums of a module from the class A and a module from some other class. In order
to point out previous interest in dealing with such direct sum decompositions, we
mention the studies of Chatters [5] on rings such that every cyclic module is the
direct sum of a projective module and a module of Krull dimension at most an
ordinal α, Huynh and Dan [13] on rings such that every cyclic module is a direct
sum of a projective module and an Artinian module, and Al-Khazzi and Smith
[1] on modules which are direct sums of a semisimple and a Noetherian module.
A certain class of type dA includes the extending modules, which are defined as
modules with the property that every submodule is essential in a direct summand
or, equivalently, every closed submodule is a direct summand [10]. Indeed, every
extending module is in dS, where S is the class of singular modules. Extending
modules have been generalized in [8] to E-extending modules by using instead of
direct summands (i.e. splitting short exact sequences) elements of a proper class
E of short exact sequences of modules. As particular cases, our framework also
included purely extending introduced by Fuchs [11] and then studied by Clark [6].

In the present paper we generalize the class dA using proper classes of short
exact sequences. We study the members of this new class of modules, which will
be called E-A-extending modules. They generalize extending modules, but also
E-extending modules, since every E-extending module is E-S-extending, where S
is the class of singular modules. We show that natural classes of modules and pre-
covers fit well into the theory of extending modules at this level of generality. The
paper is organized as follows. In Section 2 we introduce and make use of suitable
closures of modules, which are related to natural classes of modules and module
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approximations. In Section 3 we introduce and give some basic properties of E-
A-extending modules. In Section 4 we collect needed properties of some classes
generalizing the class Add(M) of direct summands of direct sums of copies of a
module M , and we show that every module has a cover relative to the class of
pure homomorphic images of direct sums of copies of M . The main characteriza-
tions of Σ-E-A-extending modules are established in Section 5 as well as various
corollaries of them for natural classes of modules, non-singular modules or relative
complemented modules. Motivated by the fact that the closed submodules actually
coincide with the direct summands in the case of extending modules, we consider
strongly E-A-extending modules, and we establish characterizations of Σ-strongly
E-A-extending modules. Finally, for a Σ-E-extending module M , we show in Sec-
tion 6 that certain M -generated extensions preserve modules in a class generalizing
the class Add(M).

Throughout R is an associative ring with non-zero identity, all modules are unital
right R-modules, and M is a module. By a class of modules we mean a class of
modules closed under isomorphisms and containing the zero module. Denote by
Mod-R the category of right R-modules, by σ[M ] the full subcategory of Mod-R
whose objects are submodules of M -generated modules, and by Gen(M) the class
of M -generated modules. Also, A will be a class of modules in Mod-R. As usual,
M is said to be Σ-P if every direct sum of copies of M has the property P. A
submodule L of M is called closed in M if L has no proper essential extension
in M . Given submodules K ⊆ L ⊆ M , we say that L is a closure of K in M if
K is an essential submodule of L and L is a closed submodule of M . A module
N ∈ σ[M ] is called M -singular if N ∼= L/K for some essential submodule K of a
module L ∈ σ[M ]. The modules in the torsionfree class of the torsion theory in
σ[M ] generated by the M -singular modules are called non-M -singular [7, p.72].

2. Relatively closed submodules

We introduce the notions of closed submodule and closure of a submodule relative
to a class of modules. We employ some special classes of modules associated to A,
which play an important part in the theory of natural classes of modules, very
much investigated in recent years. A class of modules is called natural if it is closed
under submodules, direct sums and essential extensions (or injective hulls) (see [9]).
Let us denote by F ′(A) the class consisting of all modules which do not contain
any non-zero submodule embeddable in some module of A, and by F(A) the class
consisting of all modules having no non-zero submodule in A. It is clear that
F ′(A) = F(A) if A is closed under submodules. A key result states that a class of
modules closed under submodules is natural if and only if it is of the form F ′(A)
[9, Theorem 2.3.15]. If S is the class of M -singular modules, then F ′(S) = F(S)
is the class of non-M -singular modules. If A is the torsion class of a hereditary
torsion theory τ in σ[M ], then F ′(A) = F(A) is the class of τ -torsionfree modules.

Definition 2.1. Let A be a module and B a submodule of A. Then a submodule
C of A is called A-dense in A if A/C ∈ A, and A-closed in A if A/C ∈ F(A). A
submodule C of A containing B is called an A-closure of B in A if B is A-dense
in C and C is A-closed in A.

If S is the class of M -singular modules, then any closure of a submodule of a
non-M -singular module is an S-closure. Our terminology of A-closures completely
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agrees with that of τ -closures when A is the torsion class of a torsion theory τ in
σ[M ]. Let B be a submodule of a module A ∈ σ[M ]. Then B is called τ -dense (τ -
closed) in A if A/B is τ -torsion (τ -torsionfree) [12]. A submodule C of A containing
B is called a τ -closure of B in A if B is τ -dense in C and C is τ -closed in A.

Lemma 2.2. Let A be the torsion class of a torsion theory τ in σ[M ], A a module
and B,C submodules of A with B ⊆ C. Then:

(i) C is A-closed in A if and only if it is τ -closed in A.
(ii) C is an A-closure of B in A if and only if it is a τ -closure of B in A.

Proof. Straightforward. �

For the sake of brevity, let us say that a module M has the A-closure property
if every submodule of M has an A-closure in M . A module may have or may not
have the A-closure property, as we see in the following example.

Example 2.3. (i) If A is the torsion class of a torsion theory τ in σ[M ], then it is
well known that every submodule of a module A ∈ σ[M ] has a τ -closure in A, and
so an A-closure in A by Lemma 2.2.

(ii) A module A ∈ σ[M ] is called M -corational if Hom(M,A/C) = 0 for every
submodule C of A [7, p. 84]. These modules have a natural interpretation in the
language of relative closed submodules. It is easy to see that if A is closed under
homomorphic images, A is a module and C is a submodule of A, then C is A-closed
in A if and only if Hom(X, A/C) = 0 for every X ∈ A. Then it follows that a module
A ∈ σ[M ] is M -corational if and only if every submodule of A is Gen(M)-closed in
A. Hence clearly every M -corational module has the Gen(M)-closure property.

(iii) Let Z be the class consisting of the zero modules and the simple modules.
Also, let A be a module and B a submodule of A such that the socle of A/B consists
of a non-zero module, say D/B, and A/D is simple. Then it is easy to see that B
does not have a Z-closure in A.

Let X be any class of modules and A a module. Then f ∈ Hom(X, A), with
X ∈ X , is called an X -precover of A if the induced abelian group homomorphism
Hom(X ′, X) → Hom(X ′, A) is surjective for every X ′ ∈ X . An X -precover f ∈
Hom(X, A) of A is called an X -cover if every endomorphism g : X → X with
fg = f is an automorphism (e.g. [22]). The existence of relative closures can be
related to the existence of monic relative (pre)covers (i.e., relative (pre)covers which
are monomorphisms) in the following way.

Theorem 2.4. Let A be a module and B a submodule of A. Consider the following
statements:

(i) B has an A-closure in A;
(ii) A/B has a monic A-(pre)cover.
Then (i)⇒(ii), provided A is closed under homomorphic images, and (ii)⇒(i),

provided A is closed under extensions.

Proof. (i)⇒(ii) Assume that A is closed under homomorphic images, and let C

be an A-closure of B in A. Then there is a short exact sequence 0 → C/B
f→

A/B
g→ A/C → 0, where C/B ∈ A and A/C ∈ F(A). Let h : X → A/B be a

homomorphism with X ∈ A. By hypothesis we have Im(gh) ∈ A, whence gh = 0,
and so Im h ⊆ Im f . Then h factors through f , showing that f : C/B → A/B is
an A-(pre)cover of A/B.
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(ii)⇒(i) Assume that A is closed under extensions, let f : C/B → A/B be a
monic A-(pre)cover of A/B, and consider the induced short exact sequence 0 →
C/B → A/B → A/C → 0. Let K be a submodule of A/C with K ∈ A. By a
pullback we obtain a commutative diagram:

0 // C/B
j // Z //

β

��

α

||x
x

x
x

x K //

��

0

0 // C/B
f // A/B // A/C // 0

Since C/B, K ∈ A, we have Z ∈ A. Then there is a homomorphism α : Z → C/B
such that fα = β. Note that α is a monomorphism, because so is β. We have
fαj = βj = f , and so αj = 1C/B . Hence α is an isomorphism, whence K = 0.
Therefore, A/C ∈ F(A) and so C is an A-closure of B in A. �

Corollary 2.5. Consider the following statements for a module M :
(i) M has the Σ-A-closure (A-closure) property;
(ii) Every M -generated (M -cyclic) module has a monic A-(pre)cover.
Then (i)⇒(ii), provided A is closed under homomorphic images, and (ii)⇒(i),

provided A is closed under extensions.

Thus the theory of module approximations may be used to obtain modules or
rings with the (Σ-)A-closure property. For instance, denote by Inj and FPInj the
classes of injective and FP -injective modules respectively.

Corollary 2.6. (i) A right hereditary ring R is right Noetherian if and only if it
has the Σ-Inj-closure property.

(ii) Every right semihereditary ring R has the Σ-FPInj-closure property.

Proof. (i) If R is right hereditary, then Inj is closed under homomorphic images.
Then use Corollary 2.5 and the fact that R is right hereditary right Noetherian if
and only if every module has a monic injective cover [18, Corollary 4.12].

(ii) If R is right semihereditary, then FPInj is closed under homomorphic im-
ages. Then use Corollary 2.5 and the fact that R is right semihereditary if and only
if every module has a monic FP -injective cover [18, Corollary 4.13]. �

3. Relatively extending modules and proper classes

Throughout E will be a proper class of short exact sequences in Mod-R in the
sense of Buchsbaum [4] or Mishina and Skornjakov [14]. We now recall its definition.

Definition 3.1. Let E be a class of short exact sequences in Mod-R. If an exact
sequence 0 → K

f→ L
g→ N → 0 belongs to E, then f is called an E-monomorphism

and g is called an E-epimorphism. Also, Im f is called an E-submodule of L and N
is called an E-homomorphic image of L.

The class E is called a proper class if it has the following properties:
P1. E is closed under isomorphisms;
P2. E contains all splitting short exact sequences;
P3. the class of E-monomorphisms is closed under composition;
if f, f ′ are monomorphisms and f ′f is an E-monomorphism, then f is an E-

monomorphism;
P4. the class of E-epimorphisms is closed under composition;
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if g, g′ are epimorphisms and gg′ is an E-epimorphism, then g is an E-
epimorphism.

Example 3.2. Some examples of proper classes, which will be referred by us in
the sequel, are the following (e.g., see [7]):

(i) The class Es of all splitting short exact sequences in Mod-R.
(ii) The class EX of all short exact sequences in Mod-R on which the functor

Hom(X,−) is exact for every X ∈ X , where X is any class of modules in Mod-R.
Its elements are called X -pure exact sequences. For the class X = P of finitely
presented modules, one has the classical pure exact sequences. Taking X = G to
be the class of finitely generated modules, one has the finitely split exact sequences
in the sense of Azumaya [2]. Clearly, we have Es ⊆ EG ⊆ EP .

We introduce the following definition.

Definition 3.3. A module A is called E-A-extending if every submodule B of A
is contained in an E-submodule C of A such that B is A-dense in C.

We call Es-A-extending modules simply A-extending. Note that the class of
A-extending modules is exactly the class dA mentioned in the introduction. By
analogy with purely extending modules in the sense of Clark [6], let us call EP -
A-extending modules purely A-extending. Also, we call EG-A-extending modules
finitely A-extending. Clearly, every A-extending module is finitely A-extending,
which furthermore is purely A-extending.

Example 3.4. (i) Every semisimple module is E-A-extending, and every C-
extending module is extending, where C is the class of semisimple modules in σ[M ]
[19, Proposition 1.5].

(ii) Let τ be a torsion theory in σ[M ]. A module A is called τ -complemented if
every submodule of A is τ -dense in a direct summand of A [21]. If A is the torsion
class of τ , then A-extending means τ -complemented. If τ is generated by A and
hereditary, then every τ -torsionfree A-extending module is extending.

(iii) A module A is called E-extending if every submodule of A is essential in an
E-submodule of A [8]. For the proper classes Es, EG and EP , the corresponding no-
tions are extending, finitely extending and purely extending modules respectively.
If A ∈ σ[M ] is E-extending, then it is clearly E-S-extending, where S is the class
of M -singular modules. In particular, every extending module is S-extending, ev-
ery finitely extending module is finitely S-extending, and every purely extending
module is purely S-extending.

We shall need the following result, whose proof is similar to the corresponding
one for extending modules.

Lemma 3.5. (i) Let A be an E-A-extending module. Then every A-closed sub-
module of A is an E-submodule.

(ii) Let A be a module with the A-closure property such that every A-closed
submodule of A is an E-submodule. Then A is E-A-extending.

(iii) The class of E-A-extending modules is closed under homomorphic images.

4. The classes EAdd(M)

Following [8], we denote by EAdd(M) the class of modules N for which there is
an E-epimorphism from some direct sum M (I) of copies of M to N . For instance,
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EsAdd(M) is the class Add(M) of direct summands of direct sums of copies of M ,
hence EsAdd(R) is the class of projective modules. Also, EGAdd(R) is the class of
finitely projective modules in the sense of Azumaya [2], and EPAdd(R) is the class
of flat modules. Clearly, every projective module is finitely projective, and every
finitely projective module is flat.

We need the following lemma, which follows because the composition of two
E-epimorphisms is an E-epimorphism, and EPAdd(M) is closed under direct sums.

Lemma 4.1. [8, Lemma 3.1] (i) The class EAdd(M) is closed under E-
homomorphic images.

(ii) The class EPAdd(M) is closed under direct limits.

Let us recall from [8] a generalization of direct projectivity and its basic char-
acterization, which are useful for studying E-A-extending modules. We include a
proof for the reader’s convenience.

Definition 4.2. A module M is called E-direct projective if, for every E-
homomorphic image X of M , every epimorphism M → X is an E-epimorphism.

Lemma 4.3. [8, Lemma 4.3] A module M is Σ-E-direct projective if and only if
for every U ∈ Gen(M) and every V ∈ EAdd(M), every epimorphism U → V is an
E-epimorphism.

Proof. Suppose that M is Σ-E-direct projective. Let U ∈ Gen(M), V ∈ EAdd(M)
and let f : U → V be an epimorphism. Then there is an epimorphism g : M (I) → U
and an E-epimorphism h : M (J) → V . Consider the epimorphism fgp : M (I) ⊕
M (J) → V , where p : M (I)⊕M (J) → M (I) is the projection epimorphism. Since V
is an E-homomorphic image of M (I)⊕M (J) and M is Σ-E-direct projective, fgp is
an E-epimorphism, hence f is an E-epimorphism. The converse is clear. �

Now let us discuss the existence of certain relative covers, that will be useful
in the last section, but may also be of independent interest. In [8] the question
was raised as to whether the class EPAdd(M) of pure homomorphic images of
direct sums of copies of M is (pre)covering, in the sense that every module has
an EPAdd(M)-(pre)cover. Since the class EPAdd(M) is closed under direct limits
by Lemma 4.1, if it is precovering, then it is covering by [22, Theorem 2.2.8]. For
M = R, the class EPAdd(R) of flat modules is known to be covering, this being the
positively solved Flat Cover Conjecture [3]. More generally, it was showed that if
M is finitely presented, then every module has an EPAdd(M)-cover [8, Proposition
3.3]. Now we give a complete positive answer to our question, following an idea
from [17]. First we need some preliminary results.

Theorem 4.4. [3, Theorem 5] Let σ be a purity projectively generated by a set of
modules. Then for each cardinal λ, there is a cardinal κ such that for any module
M and any submodule L of M with |M | ≥ κ and |M/L| ≤ λ, L contains a non-zero
σ-pure submodule of M .

Lemma 4.5. [17, Lemma 4.7] Let M be a module and let A be a class of modules
closed under direct sums and B ⊂ A a set such that any homomorphism A → M
with A ∈ A factors through a module in B. Then M has an A-precover.

Proof. One shows that
⊕

B∈B BHom(B,M) → M is an A-precover of M . �
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Lemma 4.6. Let M be a module with |M | = λ and let κ be the cardinal from
Theorem 4.4. Then any homomorphism A → M with A ∈ EPAdd(M) factors
through a module B ∈ EPAdd(M) with |B| < κ.

Proof. Let f0 : A → M be a homomorphism with A ∈ EPAdd(M) large enough and
let K0 = Ker f0. Since |A/K0| ≤ |M |, A/K0 is small enough, hence K0 contains a
non-zero pure submodule L0 of A by Theorem 4.4. Then A/L0 ∈ EPAdd(M) by
Lemma 4.1. If A/L0 is not small enough, then repeat the process with the induced
homomorphism f1 : A/L0 → M . Let K1/L0 = Ker f1. Since A/K1 is small enough,
K1/L0 contains a non-zero pure submodule L1/L0 of A/L0 by Theorem 4.4. Then
A/L1 ∈ EPAdd(M) by Lemma 4.1. If A/L1 is not small enough, then continue
the process with the induced homomorphism f2 : A/L1 → M . Thus we arrive at
B = lim

→
A/Li. Now we have B ∈ EPAdd(M) by Lemma 4.1, |B| < κ, and the

required factorization. �

Theorem 4.7. Every module has an EPAdd(M)-cover.

Proof. We have seen that in order to derive the conclusion it is enough to show
that every module has an EPAdd(M)-precover. Let M be a module and take a set
X with |X| = κ, where κ is the cardinal from Theorem 4.4. Form the set of all
subsets of X, and then for each such subset consider all binary operations on it,
which form a set. Then find all scalar multiplications on the union of the above
sets, and in this way get a set B′. Some of the elements of B′ are modules and
choose from them those which are in EPAdd(M). Then we obtain a set B and⊕

B∈B BHom(B,M) is again a set.
We claim that

⊕
B∈B BHom(B,M) → M is an EPAdd(M)-precover of M . First

note that the class EPAdd(M) is closed under direct sums. Let f : A → M be a
homomorphism with A ∈ EPAdd(M). By Lemma 4.6, f factors through a module
B ∈ EPAdd(M) with |B| < κ, and consequently through a module in EPAdd(M)
isomorphic to one in B. Now by Lemma 4.5, it follows that

⊕
B∈B BHom(B,M) → M

is an EPAdd(M)-precover of M . �

5. Σ-E-A-extending modules

Now we can characterize Σ-E-A-extending modules.

Theorem 5.1. Consider the following statements:
(a) M is Σ-E-A-extending;
(b) Every module in Add(M) is E-A-extending;
(c) Every M -generated module N has an E-submodule Y ∈ A such that N/Y ∈

EAdd(M);
(d) Every M -generated module in F ′(A) is in EAdd(M);
(e) Every M -generated module in F ′(A) is E-A-extending.

Then the following implications hold:
(1) For every module M , (a)⇔(b)⇒(c)⇒(d).
(2) If M is Σ-E-direct projective, then (c)⇒(a).
(3) If M is Σ-E-direct projective, has the Σ-A-closure property, and A is closed

under submodules, then (d)⇒(e).
(4) If M ∈ F ′(A), then (e)⇒(a).
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Proof. (1) (a)⇔(b) The first implication follows by Lemma 3.5 and the converse is
obvious.

(b)⇒(c) Let N be an M -generated module and take an epimorphism f : M (I) →
N with K = Ker f . Since M (I) is E-A-extending, K is contained in an E-submodule
L of M (I) such that L/K ∈ A. Then N has a submodule Y ∼= L/K ∈ A which is
an E-submodule of N , because L/K is an E-submodule of M (I)/K. Also, we have
N/Y ∼= M (I)/L ∈ EAdd(M).

(c)⇒(d) Let N be an M -generated module in F ′(A). By (c) there is an E-
submodule Y ∈ A such that N/Y ∈ EAdd(M). Since N ∈ F ′(A), we have Y = 0
and so N ∈ EAdd(M), as required.

(2) Assume that M is Σ-E-direct projective.
(c)⇒(a) Let I be a set and K a submodule of M (I). Then by hypothesis

M (I)/K has an E-submodule Y/K ∈ A such that M (I)/Y ∼= (M (I)/K)/(Y/K) ∈
EAdd(M). Then by Lemma 4.3, the natural epimorphism M (I) → M (I)/Y is an
E-epimorphism, hence Y is an E-submodule of M (I). Thus M (I) is E-A-extending.

(3) Assume that M is Σ-E-direct projective, has the Σ-A-closure property, and
A is closed under submodules.

(d)⇒(e) Let N be an M -generated module in F ′(A) and K a proper submodule
of N . Let L be an A-closure of K in N . Then N/L is M -generated and N/L ∈
F(A) = F ′(A), hence by hypothesis we have N/L ∈ EAdd(M). Now the natural
epimorphism N → N/L is an E-epimorphism by Lemma 4.3. Thus L is an E-
submodule of N , so that N is E-A-extending.

(4) Assume that M ∈ F ′(A).
(e)⇒(a) If M ∈ F ′(A), then every M (I) ∈ F ′(A) because F ′(A) is a natural

class. Hence every M (I) is E-A-extending. �

Let us first give a widely applicable corollary for natural classes. Recall that
for a natural class of modules K, we have F ′(K) = F(K) and F(F(K)) = K [9,
Theorem 2.3.15].

Corollary 5.2. Let K be a natural class of modules and consider the following
statements:

(a) M is Σ-E-F(K)-extending;
(b) Every module in Add(M) is E-F(K)-extending;
(c) Every M -generated module N has an E-submodule Y ∈ F(K) such that

N/Y ∈ EAdd(M);
(d) Every M -generated module in K is in EAdd(M);
(e) Every M -generated module in K is E-F(K)-extending.

Then the following implications hold:
(1) For every module M , (a)⇔(b)⇒(c)⇒(d).
(2) If M is Σ-E-direct projective, then (c)⇒(a).
(3) If M is Σ-E-direct projective and has the Σ-F(K)-closure property, then

(d)⇒(e).
(4) If M ∈ K, then (e)⇒(a).

For the class S of M -singular modules Theorem 5.1 yields a generalization of [8,
Theorem 5.1] from E-extending to E-S-extending modules. When A is the torsion
class of a torsion theory τ in σ[M ], we have seen in Example 3.4 that A-extending
means τ -complemented. Then Theorem 5.1 extends [21, Proposition 10].
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For M = R and the proper classes Es, EG and EP we have the following conse-
quence of Theorem 5.1.

Corollary 5.3. Consider the following statements:
(a) R is right (finitely, purely) Σ-A-extending;
(b) Every projective module is (finitely, purely) A-extending;
(c) Every module N has a direct summand (finitely split submodule, pure sub-

module) Y ∈ A such that N/Y is projective (finitely projective, flat);
(d) Every module in F ′(A) is projective (finitely projective, flat);
(e) Every module in F ′(A) is (finitely, purely) A-extending.

Then the following implications hold:
(1) For any R, (a)⇔(b)⇔(c)⇒(d).
(2) If R has the Σ-A-closure property, and A is closed under submodules, then

(d)⇒(e).
(3) If R ∈ F ′(A), then (e)⇒(a).

Let R be non-singular and let S be the class of singular modules. Then S-
extending means extending for R, and R has the Σ-S-closure property, because
the latter means here exactly the Σ-closure property. Then one obtains character-
izations of a non-singular ring R to be right (finitely, purely) Σ-extending, which
recover some known results for extending modules [10, Corollary 11.4] and purely
extending modules [6, Proposition 2.1]. Similar characterizations hold for right
(finitely, purely) Σ-τ -complemented rings, when τ is a faithful hereditary torsion
theory in Mod-R.

Now let us consider a natural intermediate notion between those of A-extending
module and E-A-extending module, motivated by the fact that actually a module
is extending if and only if its closed submodules coincide with its direct summands.

Definition 5.4. A module M is called strongly E-A-extending if M has the A-
closure property and theA-closed submodules of M coincide with its E-submodules.

Lemma 5.5. Let A be a strongly E-A-extending module and D an A-closed sub-
module (E-submodule) of A. Then A/D is strongly E-A-extending.

Proof. Straightforward. �

In the following result we characterize Σ-strongly E-A-extending modules.

Theorem 5.6. Consider the following statements:
(a) M is Σ-strongly E-A-extending;
(b) Every module in Add(M) is strongly E-A-extending;
(c) Every module in EAdd(M) is strongly E-A-extending;
(d) Every M -generated module in F ′(A) is strongly E-A-extending;
(e) EAdd(M) consists of the M -generated modules in F ′(A).

Then the following implications hold:
(1) For every module M , (a)⇔(b)⇔(c).
(2) If A is closed under submodules, then (a)⇒(e) and (a)⇒(d).
(3) If M ∈ F ′(A), then (d)⇒(a).

Proof. (1) (a)⇒(c) By Lemma 5.5.
(c)⇒(b)⇒(a) Clear.
(2) Assume that A is closed under submodules.
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(a)⇒(e) By Theorem 5.1, every M -generated module in F ′(A) is in EAdd(M).
Conversely, let N ∈ EAdd(M) and take some E-epimorphism g : M (I) → N .
Then K = Ker g is an E-submodule of M (I), hence A-closed in M (I). Now any
submodule L ∈ A of N is isomorphic to a submodule of M (I)/K ∈ F ′(A) = F(A),
hence L = 0. Thus N ∈ F(A) = F ′(A).

(a)⇒(d) By (c), every module in EAdd(M) is strongly E-A-extending. Then
by (e) it follows that every M -generated τ -torsionfree module is strongly E-A-
extending.

(3) Assume that M ∈ F ′(A).
(d)⇒(a) If M ∈ F ′(A), then every M (I) ∈ F ′(A) because F ′(A) is a natural

class. Hence every M (I) is strongly E-A-extending. �

As in the case of E-A-extending modules, one may obtain various corollaries of
Theorem 5.6, for instance, for natural classes of modules, the class of M -singular
modules, or the torsion class of a torsion theory in σ[M ].

6. Σ-E-A-extending modules and relatively dense extensions

A classical theorem of Oshiro states that for a right Σ-extending ring the class
of projective modules is closed under essential extensions [15, Theorem II]. More
generally, Gómez Pardo and Guil Asensio showed that for a Σ-extending module
M the class Add(M) is closed under essential extensions [16, Theorem 2.3]. Let us
establish such a property in our context.

By Theorem 5.6, for a torsion theory τ in Mod-R generated by A, it follows that
if R is τ -torsionfree right Σ-strongly E-A-extending, then the class EAdd(R) is the
torsionfree class of τ . Moreover, if τ is hereditary, then EAdd(R) is closed under
essential extensions (injective hulls). We give such a closure result in the case of
A-dense extensions. We consider the following condition on a module M , suggested
by the behavior of essential extensions:

(∗) For every non-zero submodules B,C,D of M with D∩B = 0 and B A-dense
in C we have D ∩ C = 0.

Example 6.1. (i) Any uniform module trivially satisfies (∗).
(ii) For a torsion theory τ , recall that a module is called τ -full if it is τ -torsionfree

and a submodule of M is τ -dense in M if and only if it is essential in M [12]. Let
A be the torsion class of τ . Then it is easy to see that every τ -full module satisfies
(∗). In particular, every τ -semicocritical module (i.e., non-zero module which is
isomorphic to a finite direct sum of τ -cocritical modules) satisfies (∗).

We need the following technical lemma.

Lemma 6.2. Let p : M → N be an epimorphism such that M is E-A-extending and
N satisfies (∗). If there exists a non-zero submodule D of M such that D∩Ker p = 0
and p(D) is A-dense in N , then Ker p is an E-submodule of M .

Proof. We may assume that K = Ker p 6= 0. Since M is E-A-extending, K is
contained in an E-submodule L of M such that L/K ∈ A. Since D ∩K = 0, we
have D ∩ L = 0, whence it follows easily that p(D) ∩ p(L) = 0. This together with
the fact that p(D) is A-dense in N implies by hypothesis that p(L) = p(L)∩N = 0,
hence L ⊆ K. Thus K = L is an E-submodule of M . �
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Theorem 6.3. Let M be Σ-E-A-extending. If j : X → Y is a non-zero monomor-
phism such that X ∈ EAdd(M), Y is M -generated and satisfies (∗), Im j is A-dense
in Y and Y has an EAdd(M)-precover, then Y ∈ EAdd(M).

Proof. Let p : C → Y be an EAdd(M)-precover of Y . Then j factors through p,
hence there is a homomorphism q : X → C such that pq = j. Since there exists
some E-epimorphism M (I) → C, C is E-A-extending by Lemma 3.5. Since Y is
M -generated, it follows that p is an epimorphism. Then we have q(X) 6= 0 and
Y/p(q(X)) = Y/j(X) ∈ A. It is easy to check that q(X)∩Ker p = 0, whence Ker p
is an E-submodule of C by Lemma 6.2. Since C ∈ EAdd(M), it follows by Lemma
4.1 that Y ∈ EAdd(M). �

Corollary 6.4. Let j : X → Y be a non-zero monomorphism such that Y is
M -generated and satisfies (∗), and Im j is A-dense in Y . Then:

(i) If M is Σ-A-extending and X ∈ Add(M), then Y ∈ Add(M).
(ii) If M is Σ-purely A-extending and X ∈ EPAdd(M), then Y ∈ EPAdd(M).

Proof. (i) Use the fact that every module has an Add(M)-precover [18] and Theo-
rem 6.3 for E = Es.

(ii) Every module has an EPAdd(M)-cover by Theorem 4.7. Now use Theorem
6.3 for E = EP . �

Corollary 6.5. (i) If R is right Σ-A-extending, then every A-dense extension
satisfying (∗) of a non-zero projective module is projective.

(ii) If R is right Σ-purely A-extending, then every A-dense extension satisfying
(∗) of a non-zero flat module is flat.
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