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FINITELY ACCESSIBLE CATEGORIES, GENERALIZED
MODULE CATEGORIES AND APPROXIMATIONS

SEPTIMIU CRIVEI

Abstract. We review some properties of finitely accessible categories
related to approximations, and we analyze the relationship between ap-
proximations in a finitely accessible additive category and in its associ-
ated generalized module category.

1. Introduction

The starting point of approximation theory for modules may be consid-
ered the classical result stating that any module embeds (minimally) in an
injective module (the injective hull) [11]. Except for some very special cases,
for instance when the ring R is of finite representation type (then the mod-
ules are direct sums of indecomposable modules), it is virtually impossible
to describe all the modules over R. That is why one approximates arbitrary
modules with modules in some classes and uses the properties of that class in
order to study the entire category of modules. Such a technique, suggested
by the previous study of injective hulls begun by Eckmann and Schopf [11]
and of projective covers by the study of Bass [4] on perfect rings, appears in
the early 1980s. In this sense, the research by Auslander and Smalø [3] in
the case of finitely generated modules over finite dimensional algebras, and
that by Enochs [13] for arbitrary modules set the base for a modern general
theory of (pre)envelopes and (pre)covers. Apart from the classical module-
theoretic setting, there have been considered various categorical frameworks
for problems concerning approximations, especially for the existence of flat
covers, see [2], [12], [14] or [15].

In the present note we place ourselves in the context of a finitely accessible
additive category. Any finitely accessible additive category C is equivalent
to the full subcategory Fl(A) of the category Mod(A) of unitary right A-
modules consisting of flat right A-modules, where A is a ring with enough
idempotents called the functor ring of C (e.g., see [10]). Note also that the
category Mod(A) is equivalent to the functor category (fp(C)op, Ab) of all
contravariant functors from the full subcategory fp(C) of finitely presented
objects of C to the category Ab of abelian groups, and this equivalence
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restricts to one between the full subcategories of flat objects of Mod(A) and
(fp(C)op,Ab).

Functor ring (functor category) techniques may be employed in order to
relate properties of modules over rings with enough idempotents (objects
in a functor category) to properties of objects in finitely accessible additive
categories (e.g., see [10], [18]). We shall show how approximations of objects
in a finitely accessible additive category and of objects in its associated
functor category (or of unitary modules over its functor ring) may be related.
Previously, Herzog [20] has used such an approach to prove the existence
of a pure-injective envelope for any object in a finitely accessible additive
category.

2. The setting

Throughout the paper C will be an additive category. We prepare the
setting, explaining the needed terminology: functor rings and functor cate-
gories, finitely accessible categories, purity in finitely accessible categories,
special functors.

Functor ring and functor category. Assume that the class of finitely
presented objects of C is skeletally small and let U = (Ui)i∈I be the family
of representative classes of all finitely presented objects of C. We associate
a ring A = AU to the family U in the following way (e.g., see [10], [17]):

A =
⊕

i∈I

⊕

j∈J

Hom(Ui, Uj)

as abelian group, and the multiplication is given by the rule: if f ∈
Hom(Ui, Uj) and g ∈ Hom(Uk, Ul), then fg = f ◦ g if i = l and zero other-
wise. Then A is a ring with enough idempotents [16], say A =

⊕
i∈I eiA =⊕

i∈I Aei. The idempotents ei are the elements of A which are the iden-
tity on Ui and zero elsewhere, and they form a complete family of pairwise
orthogonal idempotents. The ring A constructed above is called the func-
tor ring of C. Denote by Mod(A) the category of unitary right A-modules
and note that the family (eiA)i∈I is a family of finitely generated projective
generators of Mod(A). Mod(A) is also refered to as a generalized module
category.

Denote by (fp(C)op, Ab) the category of all contravariant functors from
the full subcategory fp(C) of finitely presented objects of C to the category
Ab of abelian groups. A family of finitely generated projective generators
of (fp(C)op, Ab) is given by the representable functors. It is well known that
there is an equivalence of categories between (fp(C)op, Ab) and Mod(A) (see
[17], [25]).

Finitely accessible categories. Let us recall some terminology on finitely
accessible categories. The category C is called finitely accessible (or locally
finitely presented in the terminology of [8]) if the class of finitely presented
objects is skeletally small, C has direct limits, and every object of C is a
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direct limit of finitely presented objects [23]. Following [23], we reserve
the name locally finitely presented for a category which is finitely accessible
and cocomplete (i.e., it has all colimits), equivalently finitely accessible and
complete (i.e., it has all limits).

A finitely accessible additive category C may be identified with a full
subcategory of the functor category (fp(C)op, Ab). Denote by Fl(fp(C)op,Ab)
the full subcategory of (fp(C)op, Ab) consisting of the flat objects.

Theorem 2.1. [8, 1.4 Theorem] Let C be a finitely accessible category and
consider the covariant Yoneda functor H : C → (fp(C)op, Ab), which sends
an object Z of C to the functor

HZ = Hom(−, Z)|fp(C),

and a morphism f : X → Y in C to the natural transformation

Hf = Hom(−, f) : HX → HY .

Then H induces an equivalence between the categories C and Fl(fp(C)op, Ab).

The covariant Yoneda functor may have a left adjoint in some finitely
accessible categories.

Theorem 2.2. [8, 2.2] Let C be a locally finitely presented category. Then
the covariant Yoneda functor H : C → (fp(C)op, Ab) has a left adjoint.

In particular, if C is locally coherent finitely accessible, then H has a left
adjoint.

Purity in finitely accessible categories. The framework of an accessible
category in the sense of [1] and, in particular, of a finitely accessible additive
category [8], is a natural one in which to consider purity.

By a sequence

0 → X
f→ Y

g→ Z → 0
in C we mean a pair of morphisms f : X → Y and g : Y → Z in C with
gf = 0. Such a sequence in C is called pure exact if it induces an exact
sequence of abelian groups

0 → HomC(P, X) → HomC(P, Y ) → HomC(P, Z) → 0

for every finitely presented object P of C [8]. Then f and g are called
pure monomorphism and pure epimorphism respectively. Note that in a
pure exact sequence the morphisms form a kernel-cokernel pair, and so pure
monomorphisms and pure epimorphisms are indeed monomorphisms and
epimorphisms respectively.

Purity has a nice behaviour through the Yoneda functor, as we may see
in the following result (see [8]).

Theorem 2.3. Let 0 → X → Y → Z → 0 be a sequence in C. Then it is
pure exact in C if and only if

0 → HX → HY → HZ → 0
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is exact in (fp(C)op, Ab). In this case the latter sequence is pure exact in
(fp(C)op,Ab).

Separable and Maschke functors. There are special functors that have
good properties with respect to approximations, among them separable and
Maschke functors. We recall their definitions from [22] and [7].

Let F : C → D be a covariant functor between categories C and D.
Consider the associated natural transformation

F : HomC(−,−) → HomD(F (−), F (−))

defined by
FC,C′(f) = F (f)

for every morphism f : C → C ′ in C.
The functor F is called separable if F splits as a natural transformation,

that is, there exists a natural transformation

L : HomD(F (−), F (−)) → HomE(−,−)

such that L ◦ F = 1HomC(−,−).
The functor F is called Maschke if for every object M of C, for every

morphism i : C → C ′ in C with F (i) : F (C) → F (C ′) a split monomorphism
in D, and for every morphism f : C → M in C, there exists a morphism
g : C ′ → M in C such that f = gi.

Dually, one defines the notion of dual Maschke functor.
Let us note that every separable functor is a Maschke and dual Maschke

functor [7, Proposition 3.3].

3. Approximations

Covers and envelopes. Let us recall the notions of (pre)cover and
(pre)envelope (e.g., see [26]). By a class of objects in C we mean a class
of objects closed under isomorphisms.

Let M be an object in C and A be a class of objects in C. A morphism
f ∈ Hom(A, M), with A ∈ A, is called an A-precover of M if the induced
abelian group morphism

Hom(A′, A) → Hom(A′,M)

is surjective for every A′ ∈ A.
An A-precover f ∈ Hom(A,M) of M is called an A-cover if every endo-

morphism g : A → A with fg = f is an automorphism.
The class A is called (pre)covering if every object of C has an A-cover.
An A-(pre)cover f ∈ Hom(A,M) of M is said to have the unique mapping

property if for every f ′ ∈ Hom(A′, M) with A′ ∈ A, there exists a unique
g ∈ Hom(A′, A) such that fg = f ′.

Dually, one defines the notions of relative (pre)envelope, (pre)enveloping
class and (pre)envelope with the unique mapping property.



FINITELY ACCESSIBLE CATEGORIES 57

Properties in finitely accessible categories versus approximations.
Properties in a finitely accessible category C may be deduced or expressed
by means of approximations in its associated generalized module category
Mod(A). Recall that a pseudokernel of a morphism g : Y → Z in C is a
morphism f : X → Y with gf = 0 such that for every morphism h : X ′ → Y
there is a morphism α : X ′ → X such that fα = h. Dually, one defines the
notion of pseudocokernel.

We discuss the existence of (pseudo)kernels and (pseudo)cokernels in a
finitely accessible category.

Proposition 3.1. [18, Lemma 2.2] Every finitely accessible category has
pseudokernels.

This follows because a finitely accessible category C has pseudokernels if
and only if every right A-module has a flat cover, which always holds (e.g.,
see [18, Lemma 2.2]). Note that since the class of flat right A-modules is
closed under direct limits, the existence of flat precovers is equivalent to the
existence of flat covers [26, Theorem 2.2.8].

Proposition 3.2. [18, Proposition 2.1] Let C be a finitely accessible cate-
gory. Then C has products if and only if C has pseudocokernels if and only
if every right A-module has a flat preenvelope.

Immediate categorical considerations show the following.

Proposition 3.3. Let C be a finitely accessible category. Then C has kernels
if and only if every right A-module has a flat cover with the unique mapping
property.

Proposition 3.4. Let C be a finitely accessible category. Then C has cok-
ernels if and only if every right A-module has a flat preenvelope with the
unique mapping property.

Preserving and reflecting approximations. Several functors have a
good behaviour with respect to preserving or reflecting approximations.

Let A be a class of objects in C. A covariant functor F : C → D between
categories C and D is said to preserve A-(pre)covers if whenever f : A →
D is an A-(pre)cover of an object D of D, F (f) : F (A) → F (D) is an
F (A)-(pre)cover of F (D). The functor F reflects A-(pre)covers if whenever
F (f) : F (A) → F (D) is an F (A)-(pre)cover of F (D) for some object D of
D, f : A → D is an A-(pre)cover of D.

Proposition 3.5. [19, Proposition 3] Let F : C → D be a covariant functor
between categories C and D, and let A be a class of objects in C.

(i) If F is full, then F preserves A-precovers.
(ii) If F is full and faithful, then F preserves A-covers.
(iii) If F is separable, then F reflects A-covers.

If C is a finitely accessible category, then the covariant Yoneda functor
H : C → (fp(C)op, Ab) is full and faithful. It is known and easy to see that
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a functor is full and faithful if and only if it is full and separable. Now we
have the following corollary.

Corollary 3.6. Let C be a finitely accessible category and A be a class of
objects in C. Then H preserves and reflects A-covers.

In case of a pair of adjoint functors, we have the following variations
of the above results, obtained by using [19, Propositions 4 and 6] and the
Rafael-type characterization of dual Maschke functors [7, Theorem 3.4].

Theorem 3.7. Let (L,R) be an adjoint pair of covariant functors L : D → C
and R : C → D, and let A be a class of objects in C and B be a class of
objects in D such that R(A) ⊆ B and L(B) ⊆ A.

(i) If C is an object of C which has an A-precover, then R(C) has a
B-precover.

(ii) If R is dual Maschke and C is an object of C such that R(C) has a
B-precover, then C has an A-precover.

As the covariant Yoneda functor H : C → (fp(C)op, Ab) is separable, it
is also dual Maschke. We have seen that if C is a locally finitely presented
category, then H has a left adjoint, say S. Now we obtain a corollary for
locally finitely presented categories.

Corollary 3.8. Let C be a locally finitely presented category, let A be a
class of objects in C and B be a class of objects in (fp(C)op, Ab) such that
S(A) ⊆ B and H(B) ⊆ A, and let X be an object of C. Then X has an
A-precover if and only if H(X) has a B-precover.

Similar results may be established for (pre)envelopes.

Applications. In practice, in order to obtain approximation results in a
finitely accessible category C, one may establish such properties in the asso-
ciated functor category (fp(C)op, Ab) (or in the associated category Mod(A)
of unitary modules over the functor ring A of C), and afterwards pull them
back in C, using the covariant Yoneda functor H : C → (fp(C)op,Ab) and
the above results.

It is worth mentioning a couple of general results on the existence of covers
and envelopes. Note that a class of modules is closed under direct sums and
pure epimorphic images if and only if it is closed under direct limits and
pure epimorphic images (see [25, 33.9]).

Theorem 3.9. [6], [5, Theorem 2.5], [21, Theorem 2.5] Over a ring with
identity, every class of modules closed under direct sums and pure epimor-
phic images is covering.

Theorem 3.10. [24, Corollary 3.5] Over a ring with identity, every class of
modules closed under direct products and pure submodules is preenveloping.

Both results are shown to hold in the context of a ring with enough idem-
potents as well, see [9]. Using some of the above properties and techniques,
they have been extended to finitely accessible categories in [9].
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Theorem 3.11. [9] Let C be a finitely accessible category and let A be a
class of objects in C closed under direct limits and pure epimorphic images.
Then A is a covering class.

Theorem 3.12. [9] Let C be a finitely accessible category with products
and let A be a class of objects in C closed under direct products and pure
subobjects. Then A is a preenveloping class.
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[1] J. Adámek and J. Rosický, Locally presentable and accessible categories, London
Math. Soc., Lecture Note Ser. 189, Cambridge University Press, 1994.
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