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Abstract. We show that in a finitely accessible additive category every class

of objects closed under direct limits and pure epimorphic images is covering.
In particular, the classes of flat objects in a locally finitely presented additive

category and of absolutely pure objects in a locally coherent category are

covering.

1. Introduction

In the theory of module approximation, originating in the work of Auslander and
Smalø for finitely generated modules over finite dimensional algebras [3] and Enochs
for modules over arbitrary rings [15], the Flat Cover Conjecture has played a special
part. After Bican, El Bashir and Enochs gave a positive answer to the conjecture,
showing that every module has a flat cover [5, Theorem 3], the problem of the
existence of flat covers for any object was raised and solved in categories other than
categories of modules over a ring. We point out the work of Aldrich, Enochs, Garćıa
Rozas and Oyonarte [2] and El Bashir [14] in arbitrary Grothendieck categories,
Enochs, Estrada, Garćıa Rozas and Oyonarte for quasi-coherent sheaves over the
projective line [16] and for quasi-coherent sheaves over a scheme [17], Enochs and
Oyonarte [19] for modules over a sheaf of rings on a topological space, Hovey [26]
and Gillespie [23], [24] on flat model structures. The features of the categories
considered have not usually allowed a straightforward generalization of the results
established for modules, such as the key result of Eklof and Trlifaj [13, Theorem 10],
which requires the existence of enough projectives. Therefore, specific techniques
had to be developed in order to overcome such difficulties, and other features have
been exploited, such as the existence of enough flat objects.

In the general theme of showing the existence of flat covers for any object in
certain categories, we consider the situation for a locally finitely presented additive
category. We shall prove a general result on covers in finitely accessible additive
categories and then derive the existence of flat covers in locally finitely presented
additive categories. The framework of an accessible category in the sense of [1] and,
in particular, of a finitely accessible additive category [6], is a natural one in which
to consider purity. Any finitely accessible additive category C may be embedded as
a full subcategory of the category Mod(A) of unitary right A-modules, where A is
a ring with enough idempotents, termed the functor ring of C, such that the pure
exact sequences in C are those which become exact sequences in Mod(A) through
the embedding (e.g., see [6], [12]). Then C may be seen as being equivalent to the
full subcategory Fl(A) of the category Mod(A) consisting of flat right A-modules.
The category Mod(A) also is equivalent to the functor category (fp(C)op,Ab) of all
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contravariant additive functors from the full subcategory fp(C) of finitely presented
objects of C to the category Ab of abelian groups, and this equivalence restricts
to one between the full subcategories of flat objects of Mod(A) and (fp(C)op,Ab).
Functor ring (functor category) techniques may be employed in order to relate
properties of modules over rings with enough idempotents (objects in a functor
category) to properties of objects in finitely accessible additive categories (e.g., see
[12], [20]). Concerning module approximation theory, we recall that Herzog [25]
used such an approach to prove the existence of a pure-injective envelope for any
object in a finitely accessible additive category.

A similar basic idea and a general result on the existence of covers for modules
over rings with enough idempotents will be the key ingredients in showing our
main result, namely: if C is a finitely accessible additive category and A is a class
of objects of C closed under direct limits and pure epimorphic images, then every
object of C has an A-cover. Also, if D is a definable category and A is a class of
objects of D closed under direct limits and pure epimorphic images, we show that
every object of D has an A-cover. As a consequence, we solve Open Problem 2.9
(b) from [10], which asks for a characterization of finitely accessible Grothendieck
categories such that every object has a flat cover; our result applies, for instance,
to the class of flat objects in the category of comodules over an arbitrary coalgebra.
Moreover, we show that every object of a locally coherent category has an absolutely
pure cover.

Now let us recall some necessary terminology. Throughout C will be an additive
category. The category C is said to be finitely accessible (“locally finitely presented”
in the terminology of [6]) if it has direct limits, the class of finitely presented objects
is skeletally small, and every object is a direct limit of finitely presented objects
[1]. Suppose that C is finitely accessible. A sequence 0 → X

f→ Y
g→ Z → 0

of morphisms in C is pure exact if it induces an exact sequence of abelian groups
0 → HomC(P,X) → HomC(P, Y ) → HomC(P,Z) → 0 for every finitely presented
object P of C [6]. This implies that g, f form a kernel-cokernel pair, that f is a
monomorphism and g an epimorphism. In such a pure-exact sequence f is said to
be a pure monomorphism and g a pure epimorphism.

By a class of objects in an additive category C we always mean a class of objects
closed under isomorphisms. Let M be an object in C and X a class of objects in
C. Recall (e.g., see [37]) that a morphism f ∈ Hom(X,M), with X ∈ X , is an X -
precover of M if the induced abelian group morphism Hom(X ′, X)→ Hom(X ′,M)
is surjective for every X ′ ∈ X . An X -precover f ∈ Hom(X,M) of M is an X -cover
if every endomorphism g : X → X with fg = f is an automorphism. The class X
is called (pre)covering if every object of C has an X -cover. In a dual manner one
defines the notions of relative (pre)envelope and (pre)enveloping class.

If C is a finitely accessible category with products then a full subcategory D
which is closed under products, direct limits and pure subobjects is said to be
a definable subcategory ; these classes arose in the model theory of modules, see
for example [31], and the terminology was introduced by Crawley-Boevey [6]; the
categories which arise in this way are precisely the exactly definable categories in
the sense of Krause [28]. For a general treatment of these categories see [32].

2. Covers

Over a ring with identity, every class of modules which is closed under direct sums
and pure epimorphic images is covering. This result, 2.4 below, can be obtained
from the arguments in [5] and is explicitly stated in [4, Theorem 2.5] and [27,
Theorem 2.5]. By for instance [36, 33.9], a class of modules is closed under direct
sums and pure epimorphic images if and only if it is closed under direct limits and
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pure epimorphic images. We first extend the above result to modules over a ring
with enough idempotents, giving a proof based on an idea, different of that from
[27], employed in [30] for showing that the class of absolutely pure modules over a
right coherent ring is covering.

Throughout this section R =
⊕

i∈I eiR =
⊕

i∈I Rei is a ring with enough idem-
potents and all modules are unitary right R-modules. First we need to recall two
results. The first is proved in [5] for modules over a ring with identity, but the proof
is almost the same in the case of a ring with enough idempotents, alternatively one
may extend to a ring with identity and deduce the more general result from that
case. Recall that a purity σ is projectively generated by a class A of modules if the
σ-pure sequences are exactly those with respect to which every A ∈ A is projective.

Theorem 2.1. [5, Theorem 5] Let σ be a purity projectively generated by a set of
modules. Then for each cardinal λ, there is a cardinal κ such that for any module N
with |N | ≥ κ and for any submodule L of N with |N/L| ≤ λ, L contains a non-zero
σ-pure submodule of N .

Lemma 2.2. [30, Lemma 2.4] Let M be a module, A a class of modules closed
under direct sums and B ⊂ A a set such that any homomorphism A → M with
A ∈ A factors through a module in B. Then M has an A-precover.

Proof. One checks that the canonical map
⊕

B∈B B
(Hom(B,M)) → M is an A-

precover of M . �

Suppose that C is the category of modules over a ring with enough idempotents;
then there is, up to isomorphism, just a set of finitely presented modules. The usual
notion of purity is that which is projectively generated by the set (to isomorphism)
of finitely presented modules, so Theorem 2.1 applies in this situation.

Lemma 2.3. Let A be a class of modules (over a ring with enough idempotents)
closed under direct limits and pure epimorphic images. Let M be a module with
|M | = λ and let κ be the cardinal from Theorem 2.1. Then any homomorphism
A→M with A ∈ A factors through a module B ∈ A with |B| < κ.

Proof. Let f0 : A → M be a homomorphism with A ∈ A having cardinality ≥ κ
and let K0 = Ker(f0). Since |A/K0| ≤ |M |, |A/K0| ≤ λ, hence K0 contains a
non-zero pure submodule L0 of A by Theorem 2.1. Then A/L0 ∈ A. If A/L0 does
not have cardinality < κ, then repeat the process with the induced homomorphism
f1 : A/L0 → M in place of f0. Let K1/L0 = Ker(f1). Since |A/K1| ≤ λ, K1/L0

contains a non-zero pure submodule L1/L0 of A/L0 by Theorem 2.1. Then A/L1 ∈
A. If |A/L1| is not < κ, then continue the process with the induced homomorphism
f2 : A/L1 →M . Continue transfinitely, setting Lγ =

⋃
α<γ Lα if γ is a limit ordinal

and noting that A/Lγ = lim
−→α<γ

A/Lα is in A by assumption. Eventually we reach

some α with B = A/Lα ∈ A, and |B| < κ, hence the required factorization. �

Theorem 2.4. Let A be a class of modules (over a ring with enough idempotents)
closed under direct limits and pure epimorphic images. Then A is covering.

Proof. Since A is closed under direct limits, in order to derive the conclusion it is
enough to show that every module has an A-precover [37, Theorem 2.2.8]. Let M
be a module and set λ = |M |. Let κ be the cardinal from Theorem 2.1; note that
there is, up to isomorphism, just a set B of modules of cardinality < κ.

We claim that
⊕

B∈B B
(Hom(B,M)) →M is an A-precover of M . Let f : A→M

be a homomorphism with A ∈ A. By Lemma 2.3, f factors through a module
B ∈ A with |B| < κ, and so through a module in A isomorphic to one in B. Now
by Lemma 2.2, it follows that

⊕
B∈B B

(Hom(B,M)) →M is an A-precover of M . �
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In what follows, we shall further extend Theorem 2.4 to the framework of a
finitely accessible additive category. We shall need a property on functors reflect-
ing covers. For its proof, we recall from [29] the concept of separable functor. Let
F : C → D be a covariant functor between (additive) categories and consider the
associated natural transformation F : HomC(−,−) → HomD(F (−), F (−)) defined
by FC,C′(f) = F (f) for every morphism f : C → C ′ in C. The functor F is called
separable if F splits as a natural transformation, that is, there is a natural trans-
formation L : HomD(F (−), F (−))→ HomC(−,−) such that L ◦ F = 1HomC(−,−).

Lemma 2.5. Let F : C → D be a covariant full and faithful functor between additive
categories with A and F (A) full subcategories of C and D respectively. If F (A) is
covering in D, then A is covering in C.

Proof. A direct proof is straightforward. Alternatively, note that every full and
faithful functor is separable, hence the result basically follows by [22, Proposition 2],
which holds in arbitrary additive categories. �

Theorem 2.6. Let C be a finitely accessible category and A a class of objects of C
closed under direct limits and pure epimorphic images. Then A is covering.

Proof. The equivalence between C and the full subcategory of (fp(C)op,Ab) con-
sisting of the flat objects is induced by the covariant Yoneda functor H : C →
(fp(C)op,Ab), which sends an object Z of C to the functor HZ = Hom(−, Z)|fp(C),
and a morphism f : X → Y in C to the natural transformation Hf = Hom(−, f) :
HX → HY [6, 1.4 Theorem]. Recall that we have an equivalence between the cat-
egories (fp(C)op,Ab) and Mod(A) of unitary right modules over the functor ring
A of C. Since H is full and faithful, in the light of Theorem 2.4 and Lemma 2.5,
it suffices to show that H(A) has the same closure properties in (fp(C)op,Ab) as
those assumed of A in C. Note that H(A) is closed under direct limits, because
H commutes with direct limits. Let 0 → K → HY → N → 0 be a pure exact
sequence in (fp(C)op,Ab) with Y ∈ A. Then both K and N have to be flat (e.g.,
see [32, Proposition 5.9] and [36, 36.1]), and so K ∼= HX and N ∼= HZ for some
objects X and Z of C. Since H is full we have the induced pure exact sequence
0 → X → Y → Z → 0 in C [6]. By hypothesis, we have Z ∈ A, hence N ∈ H(A).
Therefore, H(A) is closed under pure epimorphic images. �

Now let C be a finitely accessible category with products and let D be a definable
subcategory of C. Note that definable subcategories need not be finitely accessible:
for instance, the category of divisible abelian groups is a definable subcategory of
the category Ab of abelian groups, but it is not finitely accessible [32, Example 10.3].
Nevertheless, we may establish our covering result in such a context because of the
good behaviour with respect to purity, namely: purity in a definable subcategory
is just the restriction of purity in the larger category (see, e.g., [32] for details).

Theorem 2.7. Let D be a definable subcategory of a finitely accessible category
with products and A a class of objects of D closed under direct limits and pure
epimorphic images. Then A is covering.

Proof. Note that D may be seen as a definable subcategory of a functor category
[32, Proposition 10.1]. Now a proof like that for Theorem 2.6 works. �

Recall that the definable categories - those which are, up to equivalence, defin-
able subcategories of finitely accessible additive categories with products - are ([32,
Proposition 11.1]) precisely the exactly definable categories in the sense of [28],
meaning those equivalent to the category Ex(Bop,Ab) of exact additive functors
from a skeletally small abelian category Bop to Ab.
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3. Applications

Throughout this section C will be a finitely accessible additive category. We
begin by considering notions of flatness and absolute purity in C, which generalize
flatness and absolute purity in the sense of Stenström [35], given in finitely accessible
Grothendieck categories.

Definition 3.1. An object Z of C is said to be flat if every epimorphism Y → Z
in C is pure. An object X of C is said to be absolutely pure if every monomorphism
X → Y in C is pure.

Example 3.2. Let us observe that our notions of flatness and purity are different
from those considered in [19] for modules over a sheaf of rings on a topological
space; indeed those notions as usually defined for sheaves of modules are not the
categorically defined ones.

Let K be a field and consider the path algebra KA2 where A2 is the quiver
1 α−→ 2 (thus KA2 may be regarded as the ring of upper-triangular 2 × 2 matrices
over K). The category of right KA2-modules is equivalent to the category of
K-representations of A2; it is also equivalent to the category Mod-O where O is
the ringed space defined as follows. Take the topological space to be T = {1, 2}
equipped with the topology which has T , {2}, ∅ as open sets. Define O by O(T ) =
K, O({2}) = K and with the restriction map being the identity map 1K . It is
easy to see (e.g., [33, Ex. 2.1]) that every presheaf of O-modules is a sheaf and
that the category Mod-O is equivalent to Mod-KA2, in particular is locally finitely
presented.

If we take the usual, pointwise, definitions of purity and flatness for sheaves of
modules then it is immediate that every sheaf is flat and every embedding is pure
under those definitions, simply because that is the case in the category Mod-K.
Yet the embedding of the representation 0 0−→ K into K

1−→ K is not pure in the
category Mod-KA2, nor is the representation K 0−→ 0 a flat object of that category.

The point is that if O is a sheaf of rings then there are two natural tensor
product structures on the category Mod-O of O-modules. The “sheaf” definition
is to use the pointwise monoidal structures (that is, the pointwise tensor product)
on the categories of modules over the stalks of O. On the other hand, to every
definable category D is associated a “dual” definable category, Dd, such that one
may define a tensor product D × Dd → Ab (see [32, §9]). If D = Mod-R for some
ring R (with enough idempotents) then the dual category Dd is just R-Mod and
we have the usual tensor product. If, however, D is a category of sheaves, even of
commutative rings, then the dual construction, “reverses” the topology, as can be
seen in the example above, and so the categorical tensor product, defined using the
dual category, is in general different from that defined for sheaves.

The next result extends [10, Theorem 2.6] to locally finitely presented additive
categories. Recall that an additive category is locally finitely presented if it is
finitely accessible and cocomplete (i.e., has all colimits), or equivalently, if it is
finitely accessible and complete (i.e., has all limits) [32].

Corollary 3.3. Let C be a locally finitely presented category. Then the class of flat
objects of C is covering. In particular, the class of flat objects in a finitely accessible
Grothendieck category is covering.

Proof. The existence of pullbacks (and kernels) in C allows one to show as for
modules (e.g., see [36, 36.1]) that the class of flat objects of C is closed under direct
limits and pure epimorphic images. Then use Theorem 2.6. �
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Let us recall that there are finitely accessible Grothendieck categories not having
enough flat objects and even without any non-zero flat object. For instance, if Q
is the infinite quiver • → • → . . . , if K is a field, and RepK(Q) denotes the
Grothendieck K-category of all K-linear representations of Q, then the full K-
subcategory of RepK(Q) consisting of all locally finite dimensional representations
(that is, directed unions of finite dimensional representations) has no non-zero flat
object [10, Example 2.10].

Now we are able to extend the existence of flat covers for comodules over a
semiperfect coalgebra [10, Theorem 3.9] (also see [8, Corollary 2.5]) to comodules
over an arbitrary coalgebra provided the category of comodules is finitely acces-
sible Grothendieck. In particular, this applies to the, locally finitely presented
Grothendieck, category of right C-comodules, when C is a coalgebra over a field k
[11].

Corollary 3.4. Let K be a field and C a coalgebra over K. Then the class of flat
right C-comodules is covering.

The following result generalizes [30, Theorem 2.6].

Corollary 3.5. Let C be a locally coherent category. Then the classes of absolutely
pure objects of C and of absolutely pure flat objects of (fp(C)op,Ab) are covering.

Proof. Since C is locally coherent, the functor ring A of C is two-sided panoramic
[20, Proposition 2.4], in the sense that the additive categories of flat unitary right
modules and flat unitary left modules over the functor ring A of C are abelian
[21]. In particular, A is right and left locally coherent [21, Corollary 2.11]. Then,
see [32, Proposition 5.8], the class of absolutely pure objects of C is definable, so
closed under direct limits, and is, moreover, closed under pure epimorphic images.
Also, note that absolutely pure objects in C are in one-to-one correspondence with
absolutely pure flat objects of (fp(C)op,Ab) by the proof of [9, Proposition 2.1].
Now use Theorem 2.6. �

4. Preenvelopes

In a similar way one shows the following result of a dual flavour, which generalizes
a module-theoretic property considered by Rada and Saoŕın [34, Corollary 3.5].

Theorem 4.1. If C is a finitely accessible additive category with products and A
is a class of objects of C closed under products and pure subobjects, then A is a
preenveloping class.

Proof. We only sketch the proof. First, one shows that, over a ring with enough
idempotents R, any class of unitary right R-modules closed under products and
pure submodules is preenveloping. This follows in the same way as the similar
result over a ring with identity [34, Corollary 3.5], which in turn is based on the
basically categorical proof of [34, Theorem 3.3]. Secondly, note that if F : C → D is
a covariant full and faithful functor between additive categories with A and F (A)
full subcategories of C and D respectively, and F (A) is preenveloping in D, then
A is preenveloping in C. Finally, as in Theorem 2.6, one considers the covariant
Yoneda functor H : C → (fp(C)op,Ab). Note that if C has products, then C, which
is equivalent to the full subcategory of flat objects of (fp(C)op,Ab), may be viewed
as being closed under products in (fp(C)op,Ab) [6, Theorem 2.1]. Then it follows
that H(A) is closed under products. Arguments like those used in the proof of
Theorem 2.6 for proving closure under pure epimorphic images allow one to show
that H(A) is closed under pure subobjects. Now the result follows. �
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In particular, the classes of absolutely pure objects in a locally finitely presented
additive category and of flat objects in a locally coherent category are closed under
products and pure subobjects (see Propositions 5.8 and 5.9, and Theorem 6.1 from
[32]). Then we obtain the following generalization of [18, Proposition 6.2.4] and
[18, Proposition 6.5.1].

Corollary 4.2. The classes of absolutely pure objects in a locally finitely presented
additive category and of flat objects in a locally coherent category are preenveloping.
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[1] J. Adámek and J. Rosický, Locally presentable and accessible categories, London Math. Soc.,
Lecture Note Ser. 189, Cambridge University Press, 1994.
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