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Abstract. We recall a version of the Osofsky-Smith theorem in
the context of a Grothendieck category and derive several conse-
quences of this result. For example, it is deduced that every locally
finitely generated Grothendieck category with a family of com-
pletely injective finitely generated generators is semisimple. We
also discuss the torsion-theoretic version of the classical Osofsky
theorem which characterizes semisimple rings as those ring whose
every cyclic module is injective.

1. Introduction

In the late 1960s B. Osofsky showed her classical result which asserts
that a ring is semisimple if and only if every cyclic module is injective
[8, Theorem], [9, Corollary]. Among the categorical generalizations
of the Osofsky Theorem, we mention the version established by J.L.
Gómez Pardo, N.V. Dung and R. Wisbauer [6]. They showed that
if C is a locally finitely generated Grothendieck category and M is
a finitely presented object of C which is completely (pure-)injective
and has a von Neumann regular endomorphism ring S, then S is a
semisimple ring [6, Theorem 1]. In the early 1990s, B. Osofsky and
P.F. Smith established a module counterpart of the original Osofsky
Theorem. They proved that if M is a cyclic module with the property
that every cyclic submodule of M is completely extending, then M is
a finite direct sum of uniform modules [10]. As a consequence, if M
is a module with every quotient of a cyclic submodule injective, then
M is semisimple. In the same paper, B. Osofsky and P.F. Smith noted
that their result still holds in a more general categorical setting.

The purpose of this paper is to discuss some categorical version of
the Osofsky-Smith Theorem and to give several applications. We first
consider the setting of a locally finitely generated Grothendieck cate-
gory C and we deduce that if C has a family of completely injective
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finitely generated generators, then C is semisimple. As an application,
we give a positive partial answer to the following question raised by M.
Teply: does the torsion-theoretic version of the Osofsky Theorem hold?
In other words, if τ is a hereditary torsion theory such that every cyclic
module is τ -injective, does it follow that every module is τ -injective?
Finally, we show that a ring is semisimple if and only if every cyclic
module is τ -injective τ -complemented.

2. Locally finitely generated Grothendieck categories

Definition 2.1. Let C be a Grothendieck category. Then an object C
of C is called completely injective if for every object M of C and every
morphism f : C →M , Im(f) is an injective object.

Remark. As an immediate consequence of the existence of an injective
hull for every object in C, an object C of C is completely injective
if and only if for every injective object M of C and every morphism
f : C →M , Im(f) is an injective object.

We begin with a property that will be needed later.

Proposition 2.2. Let C be a Grothendieck category and (Ui)i∈I a fam-
ily of completely injective objects of C. Then every finite direct sum of
Ui’s is completely injective.

Proof. Consider a finite direct sum of Ui’s, say U1 ⊕ · · · ⊕ Un, and let
f : U1 ⊕ · · · ⊕ Un → M be a morphism in C. We show that Im(f) is
an injective object. We prove it for n = 2, the general case following
by induction. Let f : U1 ⊕ U2 → M be a morphism in C. Denote by
i1 : U1 → U1 ⊕ U2 and i2 : U2 → U1 ⊕ U2 the inclusion morphisms.
Also, put f1 = f ◦ i1 and f2 = f ◦ i2. Then it is easy to see that
Im(f) = Im(f1) + Im(f2). Denote X = Im(f1), Y = Im(f2), and let
g : U1 → X/(X ∩ Y ) be the composition of the natural epimorphisms
U1 → X and X → X/(X∩Y ). Then (X+Y )/Y ∼= X/(X∩Y ) ∼= Im(g)
is an injective object by hypothesis. But Y is also injective, and so
Im(f) = X + Y is an injective object. �

Recall that a Grothendieck category C is called locally finitely gen-
erated if it has a family of finitely generated generators [12].

Corollary 2.3. Let C be a locally finitely generated Grothendieck cate-
gory with a family of completely injective finitely generated generators.
Then every finitely generated object in C is injective.

Example 2.4. The conclusion of Proposition 2.2 does not hold for
an infinite family. Indeed, let us consider an infinite family of fields
(Ki)i∈I and denote R =

∏
i∈I Ki. Then R is a commutative von Neu-

mann regular ring, that is, a V -ring, and so every simple R-module is
injective. Now let (ei)i∈I be the family of primitive orthogonal idem-
potents in R. Clearly, each Si = Rei is a simple R-module, and so
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injective. Then each Si is actually completely injective. Also, we have⊕
i∈I Si = Soc(R). Clearly,

⊕
i∈I Si is not injective, because otherwise

this would imply that R = Soc(R). Now if we take M =
⊕

i∈I Si

and f to be the identity homomorphism, it follows that C = M is not
completely injective.

Example 2.5. If R is a right hereditary ring, then it is clear that the
class of completely injective objects in the category Mod-R of right
R-modules coincides with the class of injective objects in Mod-R.

In order to be able to state the Osofsky-Smith Theorem, we need the
definition of an extending object in a Grothendieck category, which is
the same as for modules.

Definition 2.6. Let C be a Grothendieck category. An object M of
C is called extending if every subobject of M is essential in a direct
summand of M . Equivalently, M is extending if and only if every
essentially closed subobject of M is a direct summand of M .

An object M of C is called completely extending if for every object
M of C and every morphism f : C →M , Im(f) is an extending object.

Let C be a Grothendieck category. For a class P of objects of C, by
a P-subobject we mean a subobject belonging to P . Let P be a class
of finitely generated objects in C with the following properties:

(P1) P is closed under quotients;
(P2) If X ∈ P and Y is a P-subobject of a quotient object of X,

then there is a P-subobject Z of X that projects onto Y .
Some examples of such classes P in C are the following: the class of

all finitely generated objects, the class of finitely generated semisimple
objects, any class of finitely generated objects closed under subobjects
and quotients.

Now basically the same proof of the basic theorem for modules (see
[7] or [10]) works in our categorical context. This has also been noted
in the original paper of B. Osofsky and P.F. Smith [10].

Theorem 2.7. Let C be a Grothendieck category. Let P be a class of
finitely generated objects in C satisfying (P1) and (P2) and let M ∈ P
be such that every P-subobject of M is completely extending. Then M
is a finite direct sum of uniform objects.

The next two corollaries are obtained as [10, Corollaries 1 and 2].

Corollary 2.8. Let C be a Grothendieck category such that every
finitely generated object is extending. Then every finitely generated
object is a finite direct sum of uniform objects.

Corollary 2.9. Let C be a Grothendieck category. Let M be an object
of C such that every quotient of every finitely generated subobject of M
is injective. Then M is semisimple.
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Recall that a Grothendieck category C is called semisimple if ev-
ery object of C is semisimple [12]. Now Corollaries 2.3 and 2.9 yield
the Osofsky-Smith Theorem in locally finitely generated Grothendieck
categories, stated as follows.

Theorem 2.10. Let C be a locally finitely generated Grothendieck cate-
gory with a family of completely injective finitely generated generators.
Then C is semisimple.

By Corollary 2.3, the property of complete injectivity of the finitely
generated generators of a locally finitely generated Grothendieck cat-
egory passes to each finitely generated object. Now we immediately
have the following consequences of Theorem 2.10.

Corollary 2.11. [8, Theorem] Let R be a ring with identity such that
every cyclic (finitely generated) module is injective. Then R is semisim-
ple.

Corollary 2.12. [4, Corollary 7.14] Let R be a ring with identity, M
a module and σ[M ] the category of M-subgenerated modules. Suppose
that every cyclic (finitely generated) module in σ[M ] is M-injective.
Then M is semisimple.

Corollary 2.13. Let R be a ring with enough idempotents such that
every cyclic (finitely generated) module is injective. Then R is semisim-
ple.

Recall that a Grothendieck category C is called spectral if every ob-
ject of C is injective. It is well known that C is semisimple if and only
if it is locally finitely generated and spectral [12]. This suggests us
to raise the following natural question, whose positive answer would
generalize the Osofsky-Smith Theorem 2.10.

Question 1. If C is a Grothendieck category with a family of completely
injective generators, does it follow that C is spectral?

3. Applications to torsion theories

Throughout this section, R is a ring with identity, all modules are
unitary right R-modules, and M is a module. Also, Mod-R denotes the
category of unitary right R-modules, σ[M ] denotes the full subcategory
of Mod-R consisting of M -subgenerated modules, and τ = (T ,F) is
a hereditary torsion theory in Mod-R. Recall that a submodule B of
a module A is called τ -dense (respectively τ -closed) in A if A/B is
τ -torsion (respectively τ -torsionfree). Also, a module M is called τ -
injective if for every module B and every τ -dense submodule A of B,
every homomorphism A → M extends to a homomorphism B → M .
For further background on torsion theories the reader is referred to [5]
or [12].
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Now we have the following consequence of the categorical Osofsky-
Smith theorem for torsion theories.

Corollary 3.1. Suppose that every cyclic τ -torsion module is τ -
injective. Then every τ -torsion module is τ -injective.

Proof. Note that T is generated by the modules of the form R/I for
the τ -dense right ideals I of R. Each factor of such an R/I is cyclic
τ -torsion, hence τ -torsion τ -injective by hypothesis, and so injective
in T . Thus, each such generator R/I is completely injective in T .
Now by Theorem 2.10, T is semisimple, and so spectral. Then every
τ -torsion module is injective in T , that is, every τ -torsion module is
τ -injective. �

A related question is the following one, which was raised by M. Teply:

Question 2. If every cyclic module is τ -injective, does it follow that
every module is τ -injective?

Remark. Note that, by Corollary 3.1, if every cyclic τ -torsion module is
τ -injective, then every τ -torsion module is τ -injective, and so every τ -
torsion module is semisimple by [5, Proposition 8.15]. Hence Question
2 reduces to the case of a specialization of the Dickson torsion theory
[3]. Recall that the Dickson torsion theory is the hereditary torsion
theory generated by all simple modules. Its torsion class consists of
all semiartinian modules, whereas its torsionfree class consists of all
modules with zero socle.

In what follows we shall obtain a positive answer in case τ is of
finite type. Recall that a torsion theory is called of finite type if its
Gabriel filter contains a cofinal subset of finitely generated left ideals.
A module is called τ -finitely generated if it has a finitely generated
τ -dense submodule. We need the following lemma.

Lemma 3.2. Suppose that every cyclic module is τ -injective. Then
every τ -finitely generated module is τ -injective.

Proof. First we show that every finitely generated module is τ -injective.
Let M be a finitely generated module, say M = Rx1 + · · ·+Rxn. Use
induction on n. For n = 1 it is clear. Suppose that every module
generated by n − 1 elements is τ -injective. Then M/(Rx1 + · · · +
Rxn−1) ∼= Rxn/((Rx1 + · · ·+Rxn−1)∩Rxn) is cyclic, and so τ -injective.
But Rx1 + · · ·+Rxn−1 is also τ -injective, so that M is τ -injective.

Now let M be a τ -finitely generated module, hence M has some τ -
dense finitely generated submodule N . Then N is τ -injective by the
argument given in the previous paragraph. Clearly M/N is τ -torsion,
and hence τ -injective by Corollary 3.1. Thus it follows that M is τ -
injective. �

Theorem 3.3. Let τ be of finite type and suppose that every cyclic
module is τ -injective. Then every module is τ -injective.
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Proof. Let I be a τ -dense left ideal of R. Then there exists a finitely
generated left ideal J ⊆ I and we have I/J τ -torsion. Then J is τ -
injective by Lemma 3.2, hence it is a direct summand of R, and so a
direct summand of I, say I = J⊕J ′. But J ′ ∼= I/J is τ -torsion, hence τ -
injective. It follows that I is τ -injective, hence I is a direct summand of
R. Therefore, every module is τ -injective by [5, Proposition 8.10]. �

There are situations when the condition that every cyclic τ -torsion
module is τ -injective assures that every module is τ -injective. We
present one based on the recent result stating that every Baer module
over a commutative domain is projective [1, Theorem 3.4]. Recall that
a module M is called τ -projective if Ext1

R(M,T ) = 0 for every τ -torsion
module T . If R is a commutative domain and τ is the usual torsion
theory in Mod-R, then a τ -projective module is called Baer. We need
the following easy lemma.

Lemma 3.4. Every τ -torsion module is τ -injective if and only if every
τ -torsion module is τ -projective.

Corollary 3.5. Let R be a commutative domain and τ the usual torsion
theory in Mod-R. The following are equivalent:

(i) Every cyclic τ -torsion module is injective;
(ii) Every τ -torsion module is injective;
(iii) Every τ -torsion module is Baer;
(iv) Every module is injective;
(v) R is a field.

Proof. Recall that a module is τ -torsion if and only if every non-zero
element x ∈ M is annihilated by a non-zero ideal. Since R/I is τ -
torsion for every non-zero ideal of R, τ -injectivity coincides with usual
injectivity.

(i)⇒(ii) By Corollary 3.1.
(ii)⇒(iii) By Lemma 3.4.
(iii)⇒(iv) By Lemma 3.4, every τ -torsion module is Baer, and so

projective by [1, Theorem 3.4]. Then every module is τ -injective [5,
Proposition 8.10], and so injective.

(iv)⇒(v) In this case R is semisimple, and so R must be a field.
(v)⇒(i) Clear. �

In what follows, we establish a characterization of semisimple mod-
ules using certain relative injective modules. Let τ be a hereditary
torsion theory in the category σ[M ]. Recall that a module N ∈ σ[M ]
is called (M, τ)-injective if N is injective with respect to every exact
sequence 0 → K → L in σ[M ] with L/K τ -torsion. We consider the
following notion which generalizes that of complemented module with
respect to a hereditary torsion theory in Mod-R from [11]. A module
N ∈ σ[M ] is called (M, τ)-complemented if every submodule of N is
τ -dense in a direct summand of N .
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Theorem 3.6. The following are equivalent:
(i) M is semisimple;
(ii) Every module in σ[M ] is (M, τ)-injective (M, τ)-complemented;
(iii) Every cyclic module in σ[M ] is (M, τ)-injective (M, τ)-

complemented;
(iv) Every cyclic module in σ[M ] is injective in σ[M ].

Proof. (i) ⇒ (ii) Suppose that M is semisimple. Then every module
in σ[M ] is injective in σ[M ] [14, 20.3], hence (M, τ)-injective. Also,
every module in σ[M ] is semisimple in σ[M ] [14, 20.3], hence (M, τ)-
complemented.

(ii)⇒ (iii) Clear.
(iii) ⇒ (iv) Let C be the smallest closed subcategory of σ[M ] con-

taining the (M, τ)-complemented modules. Then C = σ[N ] for some
module N ∈ σ[M ], and a family of finitely generated generators for
C consists of the modules R/I with R/I ∈ σ[N ]. Each such R/I is
(M, τ)-complemented, and so an object of C. Thus C = σ[M ]. By an
easy adaptation of [13, Lemma 2] in σ[M ], it follows that τ is a general-
ization of the Goldie torsion theory, hence (M, τ)-injectivity coincides
with injectivity.

(iv)⇒(i) By Corollary 2.12. �

Now we have the following characterization of semisimple rings.

Corollary 3.7. R is semisimple if and only if every cyclic module is
τ -injective τ -complemented.

The classical Osofsky theorem is obtained by taking τ = τG, i.e.
the Goldie torsion theory, or τ = χ, i.e. the torsion theory with all
modules torsion. Note that a module is τG-injective τG-complemented
if and only if it is injective. Also, every module is χ-complemented.

In [2] it has been shown that the class of τ -injective τ -complemented
modules is strictly contained in the class of quasi-injective modules.
Now recall the following result.

Theorem 3.8. [7, Theorem 6.83] The following are equivalent:
(i) R is semisimple;
(ii) Every module is quasi-injective;
(iii) Every finitely generated module is quasi-injective.

The condition that every cyclic module is quasi-injective is, in
general, weaker than those in the previous theorem. For instance,
R = Q[x]/(x2) is self-injective, and every cyclic module is quasi-
injective, but R is not semisimple [7]. Hence Corollary 3.7 may be
seen as a refinement of Theorem 3.8 for cyclic modules.
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