CasL: The Common
Algebraic Specification Language !

Egidio Astesiano?®, Michel Bidoit ”, Hélene Kirchner ©,
Bernd Krieg-Briickner 9, Peter D. Mosses ¢, Donald Sannellaf
and Andrzej Tarlecki®

& Dipartimento di Informatica e Scienze dell’Informazione,
Universitd di Genova, Italy

PLSV, CNRS and Ecole Normale Supérieure de Cachan, France
¢ LORIA-CNRS, Nancy, France

dBremen Institute of Safe Systems, Department of Computer Science,
Universitat Bremen, Germany

*BRICS and Department of Computer Science,
University of Aarhus, Denmark

£ Laboratory for Foundations of Computer Science
University of Edinburgh, UK

& Institute of Informatics, Warsaw University and
Institute of Computer Science, PAS, Warsaw, Poland

Abstract

The Common Algebraic Specification Language CASL is an expressive language
for the formal specification of functional requirements and modular design of soft-
ware. It has been designed by COFI, the international Common Framework Initia-
tive for algebraic specification and development. It is based on a critical selection
of features that have already been explored in various contexts, including subsorts,
partial functions, first-order logic, and structured and architectural specifications.
CAsL should facilitate interoperability of many existing algebraic prototyping and
verification tools.

This paper gives an overview of the CASL design. The major issues that had
to be resolved in the design process are indicated, and all the main concepts and
constructs of CASL are briefly explained and illustrated—the reader is referred to the
CAsL Language Summary for further details. Some familiarity with the fundamental
concepts of algebraic specification would be advantageous.

Preprint submitted to Elsevier Preprint 19 August 2002

1 Background

Algebraic specification is one of the most extensively-developed approaches in
the formal methods area. The most fundamental assumption underlying al-
gebraic specification is that programs are modelled as many-sorted algebras
consisting of a collection of sets of data values together with functions over
those sets. This level of abstraction is commensurate with the view that the
correctness of the input/output behaviour of a program takes precedence over
all its other properties. Another common element is that specifications of pro-
grams consist mainly of logical azioms, usually in a logical system in which
equality has a prominent role, describing the properties that the functions
are required to satisfy—often just by their interrelationship. This property-
oriented approach is in contrast to so-called model-oriented specifications in
frameworks like VDM [36] which consist of a simple realization of the re-
quired behaviour. However, the theoretical basis of algebraic specification is
largely in terms of constructions on algebraic models, so it is at the same
time much more model-oriented than approaches such as those based on type
theory (see e.g. [58]), where the emphasis is almost entirely on syntax and
formal systems of rules, and semantic models are absent or regarded as of
secondary importance. The past 25 years has seen a great deal of research
on the theory and practice of algebraic specification. Overviews of this mate-
rial include [3,9,13,41,68,69,76]. Developments on the foundational side have
been balanced by work on applications, but despite a number of success sto-
ries, industrial adoption has so far been limited. The current proliferation of
algebraic specification languages is seen as a significant obstacle to the dis-
semination and use of these techniques. Despite extensive past collaboration
between the main research groups involved and a high degree of agreement
concerning the basic concepts, the field has given the appearance of being
extremely fragmented, with no de facto standard specification language, let
alone an international standard. Moreover, although many tools supporting
the use of algebraic techniques have been developed in the academic commu-
nity, none of them has gained wide acceptance, at least partly because each
tool uses a different specification language.

The dozens of algebraic specification languages that have been developed all
support the basic idea of using axioms to specify algebras, but differ in design
choices concerning syntax (concrete and abstract) and semantics.

The COFT Initiative: Why not agree on a common framework? This was
the provocative question asked at a WADT/COMPASS meeting in Santa

1 This research was supported by the ESPRIT-funded CoFI Working Group 29432.
2 Corresponding Author: Bernd Krieg-Briickner

Margherita, 1994. At least the main concepts to be incorporated were thought
to be clear—although it was realized that it might not be so easy to agree on
a common language to express these concepts.

The Common Framework Initiative for algebraic specification and develop-
ment, COFT [18], started in September 1995 [40,53]. The aims and scope were
formulated as follows.

The aims of COFT are to provide a common framework:

by a collaborative effort

for algebraic specification and development

attractive to researchers as well as for use in industry

providing a common specification language with uniform, user-friendly syn-
tax and straightforward semantics

e able to subsume many previous frameworks

e with good documentation and tool support

e free—but protected (cf. GNU [28])

The scope of COFT is:

specification of functional requirements

formal development and verification of software

relation of specifications to informal requirements and implemented code
prototyping, theorem-proving, formal testing

libraries, reuse, evolution

tool interoperability

The specification language developed by COFI is called CASL: the Common
Algebraic Specification Language. Its main features are:

a critical selection of known constructs

expressive, simple, pragmatic

for specifying requirements and design for conventional software packages
restrictions to sublanguages

extensions to higher-order, state-based, concurrent, etc.

The CASL design effort started in September 1995, as a common effort of the
COMPASS Working Group [40] and IFIP WG1.3 (Foundations of System
Specification). An initial design was proposed [19] in May 1997 (with a lan-
guage summary, abstract syntax, formal semantics, but no agreed concrete
syntax) and tentatively approved by IFIP WG1.3. The report of the IFIP
referees [26] on the initial CASL design proposal suggested reconsideration of
several points in the language design, and requested some improvements to
the documents describing the design; the response by the language designers
to the referees [20] indicates the improvements that were made in the revised

language design and its documentation. Apart from a few details, the design
was finalized in April 1998, with a complete draft language summary available,
including concrete syntax. CASL version 1.0 [21] was released in October 1998;
the formal semantics given for the proposed design has also been updated to
reflect the changes [24]. CASL has now been approved by IFIP WG 1.3.

CASL subsumes many previous languages for the formal specification of func-
tional requirements and modular software design. Tools for CASL are inter-
operable, i.e. capable of being used in combination rather than in isolation.
CASL interfaces to existing tools extend this interoperability.

Even though the intention was to base the design of CASL on a critical selec-
tion of concepts and constructs from existing specification languages, it was
not easy to reach a consensus on a coherent language design. A great deal of
careful consideration was given to the effect that the constructs available in
the language would have on such aspects as the methodology and tools. A
complete formal semantics for CASL was produced in parallel with the later
stages of the language design (in fact CASL had a formal semantics even before
its concrete syntax was designed [23]), and the desire for a relatively straight-
forward semantics was one factor in the choice between various alternatives in
the design.

2 Overview

CASL represents a consolidation of past work on the design of algebraic spec-
ification languages. With a few minor exceptions, all its features are present
in some form in other languages but there is no language that comes close
to subsuming it. Designing a language with this particular novel collection of
features required solutions to a number of subtle problems in the interaction
between features.

It was clear from the start that no single language could suit all purposes.
On the one hand, sophisticated features are required to deal with specific pro-
gramming paradigms and special applications. On the other hand, important
methods for prototyping and reasoning about specifications only work in the
absence of certain features: for instance, term rewriting requires specifications
with equational or conditional equational axioms.

CAsL is therefore the heart of a family of languages. Some tools will make use
of well-delineated sub-languages of CASL obtained by syntactic or semantic
restrictions [49], while extensions of CASL are being defined to support various
paradigms and applications. The design of CASL took account of some of the
planned extensions, particularly one that involves higher-order functions [50],

and this had an important impact on decisions concerning details of abstract
syntax.

CASL consists of several major parts, which are quite independent and may
be understood (and used) separately:

basic specifications: declarations, definitions, axioms

structured specifications: translations, reductions, unions, extensions,
freeness, named specifications, generic specifications, views
architectural specifications: implementation units, composition
specification libraries: local, distributed

The above division of CASL into parts is orthogonal to taking sublanguages
of CAsSL. The CASL language design integrates several different aspects, which
are here explained separately:

e pragmatic issues: methodology, tools, aesthetics

e semantic concepts: institutions, environments, expansions, scopes

e language constructs: abstract syntax (structure, annotations); concrete
syntax (input format, display format)

In the sequel, each part of CASL is presented in turn, in a kind of guided tour,
considering all the aspects listed above before proceeding to the next part.

3 Basic Specifications

A CAsL basic specification denotes a class of CASL models, which are many-
sorted partial first-order structures: algebras where the functions are partial or
total, and where also predicates are allowed. These are classified by signatures,
which list sort names, partial and total function names, and predicate names,
together with profiles of functions and predicates. The sorts are pre-ordered by
a subsorting relation, which is interpreted in models using embeddings (rather
than set-theoretic inclusions) required to commute with overloaded functions.

A CASL basic specification includes declarations, to introduce components of
signatures, and axioms, to give properties of those structures that are to be
considered as the models?®of the specification. Axioms are written in first-
order logic (potentially using quantifiers and all the usual logical connectives)
built over atomic formulae which include strong and existential equalities,

3 We inherit from the theory of institutions the usual somewhat ambiguous use of
the term ‘model’: either as an arbitrary CASL model over a given signature, or as a
model of a specification. When the ambiguity may be dangerous, however, we use
the term ‘structure’ in the former case.

definedness formulae, and predicate applications; generation constraints are
allowed too.

The interpretation of formulae is as in classical two-valued first-order logic, in
contrast to some other frameworks that accommodate partial functions, e.g.,
VDM [36]. Concise syntax is provided for subsort, operation, and predicate
definitions, and for specifications of ‘datatypes’ with constructor and selector
functions.

3.1 Pragmatic Issues

Partial and Total Functions: (CASL specifications may involve both par-
tial and total functions. Partiality is a particularly natural and simple way of
treating errors such as division by zero, and error propagation is implicit, so
that whenever any argument of an operation is undefined, the result is unde-
fined too. CASL also includes subsorts and error supersorts, and thus allows
specification of exception handling when this is relevant. Totality is of course
an important property, and CASL allows it to be declared along with the types
of functions, rather than relegating it to the axioms. The domain of definition
of a partial function may be made explicit by introducing it as a subsort of
the argument sort and declaring the function to be total on it.

For instance, consider the familiar operations on (possibly-empty) lists: the
list constructor cons would be declared as total, whereas the list hd and %l
selectors could be partial, being undefined on the empty list.

free type List ::= nil | cons(hd :7Elem; tl :7 List)

Alternatively, the domain of definition of the selectors may be made explicit
by introducing the subsort NeList of non-empty lists, and declaring the hd
and ¢/ selectors to be total functions on that subsort (more on subsorts below).

free types List ::= nil | sort NeList;
NeList ::= cons(hd : Elem;tl : List)

In the presence of partiality, equations may require definedness: so-called ‘ex-
istential’ equations require it, ‘strong’ equations do not.* In general, it is
appropriate to use existential equations in conditions (since properties do not
usually follow from undefinedness) but strong equations when defining partial

4 An existential equation between two terms of the same sort holds when both
terms are defined and equal; a strong equation holds additionally when they are
both undefined.

functions inductively. So CAsL allows both kinds of equations.

Definedness assertions can also be expressed directly. In fact definedness of a
term is equivalent to existential equality of the term to itself—it could also
be regarded as a unary predicate. Existential equality is equivalent to the
conjunction of a strong equality and two definedness assertions; strong equality
is equivalent to the conjunction of two conditionals involving only existential
equality.

Logic and Predicates: CASL is based on classical two-valued first-order
logic. It supports user-declared predicates, which have some advantages over
the (total) Boolean functions that were used instead of predicates in most
previous algebraic specification languages. For example, predicates hold mini-
mally in initial models. This allows to specify only positively where a predicate
holds and to omit the negative cases, which are automatically determined by
initial (or free) semantics. When any argument of a predicate is undefined, the
predicate application never holds.

CASL provides the standard universal and existential quantification and logi-
cal connectives, as in ordinary first-order predicate logic. The motivation for
this departure from the most traditional algebraic approaches is expressive-
ness: restricting to conditional equations sometimes requires quite contrived
specifications. For instance, it is a straightforward exercise to specify when
a string is a permutation of another using quantifiers, and negation provides
the complementary property; but the latter is quite awkward to specify using
only (positive) conditional equations.

Equational and conditional equational specification frameworks are however
provided as sublanguages of CASL, simply by restricting the use of quantifiers
and logical connectives [45].

Classes of Models: CAsL adopts so-called loose semantics for basic spec-
ifications: all structures satisfying the axioms are taken as models of a basic
specification. This is appropriate for its intended use as a requirements speci-
fication language, where the class of models (i.e., potential implementations)
should be as large as possible, so as to leave the implementor room for design
decisions and to avoid overspecification. It is also possible in CASL to specify
the restriction of models to the class of generated models (only expressible
values are included, hence no ‘junk’ data are allowed and properties may be
proved by induction) or to the class of initial or free models (providing mini-
mal satisfaction of atomic formulae, thus in particular preventing ‘confusion’
between data). Of course, neither generated nor initial/free models need ex-
ist if arbitrary first-order axioms are used—the class of models may even be

empty. ®

Overloading: In a CASL specification the same symbol may be declared
with various profiles (i.e., list of argument and result sorts), e.g. ‘+’ may
be declared as an operation on integers, reals, and strings. When such an
overloaded symbol is used, the intended profile is to be determined by the
context. Explicit disambiguation can be used when needed, by specifying the
profile (or result sort) in an application.

Subsorts: It is appropriate to declare a sort as a subsort of another when the
values of the subsort are regarded a special case of those in the other sort. For
instance, the positive integers and the positive odd integers are best regarded
as subsorts of the sort of natural numbers, which is itself a subsort of the
integers. In contrast to most previous frameworks, CASL interprets subsorts
using embeddings between carriers—not necessarily inclusions. This allows,
e.g., models where values of sort integer are represented differently from values
of sort real (as in most computers), even though integers are meaningfully
regarded as a subsort of reals. CASL still allows the models where the subsort
happens to be a subset of the supersort. The extra generality of embeddings
seems to be useful, and does not complicate the foundations too much.

Subsort embeddings commute with overloaded functions, so the values are
independent of which profiles are used: 2 + 2 = 4, regardless of whether the
‘+’ is that declared for natural numbers or integers.

CASL does not impose any conditions of ‘regularity’; ‘coherence’; or ‘sensible-
ness’ on the relationship between overloading and subsorts [14]. This is partly
for simplicity (no such conditions are required for the semantics of CASL),
partly because most such conditions lack modularity (which is a disadvantage
in connection with structured specifications). Note that overloaded constants
are allowed in CASL (e.g., empty may be declared to be a constant of various
sorts of collections).

Datatype Constructors/Selectors: Specifications of ‘datatypes’ with con-
structor and (possibly also) selector operations are frequently needed: they
correspond to (unions of) record types and to enumeration types in program-
ming languages. CASL provides special constructs for datatype declarations
to abbreviate the usual rather tedious declarations and axioms for construc-
tors and selectors. Datatypes may be loose (all models are allowed), generated

> Of course, specifications in purely equational frameworks may also have empty
model classes, in the presence of hierarchical or data constraints.

(only models generated by the constructors are taken, but the same data may
be constructed in different ways), or free (only models where the declared
sorts are freely generated by the constructors are taken, which captures the
standard datatypes found in programming languages; cf. free type above).

3.2 Semantic Concepts

The essential semantic concepts for basic specifications are well-known: signa-
tures (of declared symbols), models (interpreting the declared symbols), and
sentences (asserting properties of the interpretation), with a satisfaction rela-
tion between models and sets of sentences. Defining these (together with some
categorical structure, and such that translation of symbols preserves satisfac-
tion) provides a so-called institution [30]. A well-formed basic specification in
CASL determines a signature and a set of sentences, and hence the class of all
models over that signature which satisfy all the sentences.

Signatures: X = (S,TF, PF, P,<): A signature X for a CASL specification
consists of a set of sorts .S, disjoint sets T'F', PF of total and partial operation
symbols (for each profile of argument and result sorts), a set of predicate
symbols P (for each profile of argument sorts), and a subsorting pre-order °
< on the set S of sorts. The same symbol may be overloaded, with more than
one profile; there are no restricting conditions on the relationship between
overloading and subsorts (as in some other languages such as OBJ, cf. [31,32]),
and both so-called ad-hoc overloading and subsort overloading are allowed, cf.

[14].

Models: M € Mod(X): A X-model M provides:

a non-empty carrier set for each sort in S,

a total function for each operation symbol in T'F' (for each of its profiles),
a partial function for each operation symbol in PF' (for each of its profiles),
a relation for each predicate symbol in P (for each of its profiles), and

an embedding for each pair of sorts related by <.

Embeddings are arbitrary (total) injections; composition of subsort embed-
dings yields a subsort embedding, and the embedding from any sort to itself
is the identity. They also determine partial projections (from supersorts to
subsorts) and subsort membership predicates (that hold on those values of
a supersort that are in the image of the subsort embedding). Moreover, em-
bedding and overloading have to be compatible: embeddings commute with

6 That is: a reflexive and transitive relation.

overloaded operations. See [24] (and also [14,49]) for the rather obvious formal
statement of these requirements.

The categorical structure of »-models is given by the expected notion of ho-
momorphism. A homomorphism A : M; — M, between models M;, M,y €
Mod(Y) is a total function between their carriers that preserves values of all
operations (including subsort embeddings) and respects predicates (so that if

a predicate holds for some data in M; then it holds for the values of h on these
data in M).

Sentences: ¢ € Sen(X): A Y-sentence ¢ is generally a closed first-order
formula. The atomic formulae in it may be equations (strong or existential),
definedness and (subsort) membership assertions, and predicate applications.
The terms in atomic formulae may be variables, applications of operations to
terms of the sorts determined by the profile of the operation, explicitly-sorted
terms (interpreted using subsort embeddings) or casts to a subsort of a term
of a supersort (interpreted as projection onto the subsort).

Satisfaction: M |= ®: The satisfaction of a closed first-order ¥-formula ® in
a Y-model M is defined as usual regarding quantifiers and logical connectives;
it involves the holding of open formulae, and the values of terms, relative to
assignments of values to variables. The value of a term may be undefined when
the application of a partial operation symbol (or a cast) occurs in it. When
the value of any argument term is undefined, the application of a predicate
does not hold, and the application of an operation is undefined (as usual in
partial algebra). Definedness of terms also affects the holding of other atomic
formulae: an existential equation holds when both terms are defined and equal,

whereas a strong equation holds when they are both defined and equal, or both
undefined.

Sort Generation Constraints: (5, F’) € Sen(X), with (S', F') C (S, F),
where FF' = TF U PF: A sort generation constraint is a further kind of >-
sentence (in general not expressible as a first-order sentence). It is satisfied in
a model when the carriers of sorts in S’ are generated by functions in F” (and
possibly from the carriers of sorts in S\ 57).

Institution: CASL signatures come equipped with signature morphisms. A
signature morphism o : ¥ — 3’ between signatures ¥ = (S, T'F, PF, P, <) and
¥ = (8, TF', PF', P, <) maps sorts S to sorts S’ so that the subsorting pre-
order is preserved, operation symbols TF U PF' to operation symbols TF" U
PF’ so that the profiles, overloading and totality of operation symbols are

10

preserved, and predicate symbols P to predicate symbols P’ so that their
profiles and overloading are preserved. With the obvious composition and
identities, this defines the category Sign of CASL signatures.

A signature morphism o : ¥ — Y’ determines a translation of sentences
Sen(o) : Sen(X) — Sen(Y') defined as usual (by substituting symbols from
Y for symbols from ¥ as determined by o), and a reduct functor Mod(o) :
Mod(¥') — Mod(X), given in the usual manner as well. These mappings are
functorial, defining functors Sen : Sign — Set and Mod : Sign®” — Cat.”
Translation along signature morphisms preserves satisfaction: given o : ¥ —
¥, M' € Mod(Y') and ® € Sen(X), M’ |= Sen(o)(®) iff Mod(o)(M') | ©.
Thus, the above definitions determine the CASL institution [30].

In fact, the subsorted CASL institution outlined above may be reduced to an or-
dinary many-sorted CASL institution without subsorting, by replacing subsort
pre-orders by explicit embeddings. A CASL signature ¥ = (S, TF, PF, P, <)
reduces to a many-sorted first-order theory with the signature & = (S,TF U
Emb, PF U Proj, P U Memb), where Emb = {emb,y | s < s’} is a set of
total operation symbols for subsort embeddings, and the sets Proj (of pro-
jections onto subsorts) and Memb (of subsort membership predicates) are
defined similarly, and a set of first-order axioms that express the required
properties of subsort embeddings and their interrelations with projections,
subsort memberships and overloaded operations. Then CASL Y-models coin-
cide with many-sorted models of the resulting theory, and CASL Y-sentences
may be directly replaced by the corresponding S-sentences. It can be easily
verified that this defines a simple map [42] between the two CASL institutions
considered (with and without subsorting, respectively), see [49].

Semantic Functions: In the CASL institution, applications of predicates
and operations in atomic formulae and terms are fully qualified by their pro-
files, so there is no overloading at that level. In contrast, basic specifications
in the CASL language allow these profiles to be omitted, since they are usually
evident from the context. In general, there may be many ways—but possibly
none at all—of expanding an atomic formula in CASL by inserting profiles
to give a well-sorted fully-qualified atom for constructing a sentence of the
underlying institution. The atomic formula is well-formed when its expansion
is unique (up to the commuting of embeddings with overloaded operations);
the axioms of a well-formed basic specification determine a set of sentences of
the CASL institution.

The semantics of a well-formed basic specification in CASL is given by a sig-

7 As usual, Set and Cat denote the categories of all sets and of all categories,
respectively.

11

nature Y together with the class of those models M € Mod(X) that satisfy
all the sentences determined by the specification.

3.3 Language Constructs

This section provides examples that illustrate the CASL language constructs
for use in basic specifications: declarations and definitions (of sorts, operations,
predicates, and datatypes), sort generation constraints, and axioms (involving
variable declarations, quantifiers, connectives, atomic formulae, and terms).
The examples are shown in display format; for input, a suggestive (ASCII or
ISO Latin-1) plain text approximation is used, e.g., ‘—’ is input as ‘=>’, and
‘v’ is input as ‘forall’. Note that CAsL allows declarations to be interspersed
with definitions and axioms. Visibility is linear: symbols have to be declared
before they can be used (except within datatype declarations, where non-
linear visibility allows mutually-recursive datatypes—e.g., List and NelList in
Sect. 3.1 above).

Sorts: Several sorts may be declared at once, possibly as subsorts of some
other sort (written ‘<’):

sorts FElem, List
sorts Nat, Neg < Int

The values of a subsort may also be defined by a formula, e.g.:
sort Pos={n:Nat en> 0}

This corresponds to declaring Pos < Nat and asserting that a value n in Nat
is the embedding of some value from Pos iff the formula n > 0 holds.

Operations: Operations may be declared as total (using ‘—’) or partial (us-
ing ‘—7’) and given familiar attributes (for example, assoc for associativity):

ops 0 : Nat;
suc : Nat — Pos;

__— __: Nat x Nat —? Nat,
—_+ __: Nat X Nat — Nat, assoc, comm, unit

The declaration of a partial function

op pre: Nat —7 Nat

12

allows terms such as pre(pre(suc(z))) to be well-formed. Whether or not this
term denotes a value depends on the value of z (and on the model considered);
it may sometimes be possible to infer from the axioms and declarations in
a given specification that the value of a term involving partial functions is
defined in all the models of the specification.

On the other hand, the declaration of pre as a total function
op pre: Pos — Nat;

enables subsort analysis and automatic propagation of definedness: a term
such as pre(suc(0)) is well-formed whereas pre(0) and pre(pre(suc(0))) are ill-
formed. The term pre(pre(suc(suc(0)))) is ill-formed as well, but inserting an
appropriate cast (written using the reserved word ‘as’) makes it well-formed:
pre(pre(suc(suc(0))) as Pos). Note that both declarations of pre may coexist;
the composition of the subsort embedding from Pos to Nat with the partial
pre operation is then required to be the same function as the total pre opera-
tion, so that the value of pre(suc(z)) is independent of overloading resolution
[14,51]. Operations may also be written with explicit qualification, e.g., pre(n)
may be written as (op pre : Nat —?7 Nat)(n). Sorted terms (interpreted
as explicit applications of the appropriate subsort embeddings) are written
straightforwardly, e.g. suc(suc(n) : Nat). However, suc(suc(n)) is well-formed
here as well, as the required subsort embedding can unambiguously be added
by the subsort analysis.

So-called muzfix notation is allowed: place-holders for arguments are written as
pairs of underscores (single underscores are treated as letters in identifiers). All
symbols should be input in the ISO Latin-1 character set, but annotations®
may cause them to be displayed differently, e.g., as mathematical symbols.
In simple cases, operations may also be defined at the same time as they are
declared:

ops 1 : Nat = suc(0);
dbl(n : Nat) : Nat =n+n

Predicates: Predicate declarations resemble operation declarations, but there
is no result sort:

preds odd : Nat;
< __: Nat x Nat

They too may be defined at the same time as they are declared:

8 An annotation is an auxiliary part of a specification, for use by tools, and not
affecting the semantics of the specification.

13

preds even(n : Nat) < —odd(n);
< _(myn:Nat)&m<nVm=n

Datatypes: A datatype declaration looks like a context-free grammar in a
variant of BNF. It declares the symbols on the left of ‘::=" as sorts, and for
each alternative on the right it declares a constructor—possibly with some
selectors. Such a declaration does not introduce any constraints other than
the expected relationship between constructors and selectors.

type Collection ::= empty | just(Elem) | join(Collection; Collection)

However, when datatypes are declared as ‘free’, the sorts declared freely extend
those introduced earlier: distinct constructor terms of the same sort yield
distinct values, and each declared sort is generated by its constructors. In the
example of Pair below, left and right are declared as selectors yielding the
respective arguments of the constructor pair.

free type Bit := 0| 1
free type Pair ::= pair(left, right : Elem)

When there is more than one alternative in a datatype declaration, selectors
are usually partial and then they should be declared as such, by inserting ‘?’: °

free type Nat ::= 0 | suc(pre :?Nat)

Subsorts in Datatype Declarations: The explicit introduction of sub-
sorts in datatype declarations avoids partial selectors, as in the following al-
ternative declaration of Nat, where pre is a total function from Pos to Nat,
cf. the discussion above:

free types Nat ::= 0 | sort Pos;
Pos ::= suc(pre : Nat)

The example also illustrates non-linear visibility within a list of datatype dec-
larations: Pos is used before it is declared. Using subsorts such as Pos, other
functions can now also be declared as total, such as:

op __diw__: Nat x Pos — Nat

9 Constructors can also be declared to be partial, by inserting ‘?” after the list of
argument sorts.

14

Overloading of functions (and predicates) can be used to extend existing def-
initions, as in:

free types Int ::=sort Nat | sort Neg;

Neg ::= —__(Pos)
ops __+ __:Int x Int — Int,assoc,comm, unit 0;
__div__: Int x Pos — Int;
_diw__: Int X Neqg — Int

The subsort Neg is freely constructed by the unary (prefix) constructor oper-
ation —__: Pos — Neg (the inverse operation): so, for each n € Pos we have a
distinct —n € Neg. Then, Int consists of Nat, i.e. elements of the subsort Pos
and the constant 0, and the subsort Neg. For div, the use of proper subsorts
excludes 0 and thus avoids partiality; the proper profile is chosen or, in case
of 0, erroneous application is flagged by static analysis.

Sort Generation Constraints: The CASL syntax also allows datatypes to
be declared as ‘generated’, so that the sorts are constrained to be generated
by their constructors (and subsort embeddings):

generated type Collection ::= empty | add(Elem; Collection)
forall z,y : Elem; c : Collection o add(z,(add(y,c)) = add(y, (add(z, c))

In the case of a generated type (in contrast to a free type), axioms such as
that above may still be added (thus forcing ‘confusion’ between constructor
terms, which is not excluded by generation constraints); in both cases there
are no values beyond those generated (no ‘junk’).

More generally, any group of signature declarations can be subject to a sort
generation constraint, e.g.:

generated
{ sorts Pos < Nat;
ops 0 : Nat; suc: Nat — Pos }

Axioms: Variables for use in axioms may be declared ‘globally’, in advance:

vars m,n : Nat;p : Pos
axioms 0 < n; =(p < 0); suc(m) < suc(n) & m<n;...

Variables may also be declared locally to an ‘itemized’ list of formulae:

forall z,y,z : Elem

15

. r<=z % (reflexivity) %
e z<yANy<z=z<2 % (transitivity) %

or within a formula using explicit quantification:

Vn : Nat « Am : Nat e n < m
Vp: Pos e« dln : Nat « suc(n) =p %% exists uniquely

CasL allows to annotate axioms by labels. Take for instance the label ‘%(re-
flexivity)%’ in the above example. It is also possible to write comments,
e.g. ‘%% exists uniquely’.

The logical connectives have their usual interpretation:
even(n) < — odd(n)
m<<n&m<nVm=n
m<n=-n=0
even(m + n) if odd(m) A odd(n) %% reverse implication

In addition to the use of if as syntactic sugar for reverse implication, there is
a conditional construct for terms:

abs(x) = —x when x < 0 else

Atomic Formulae: Definedness assertions can be explicit using def as in
def pre(suc(n)) A = def pre(0)

or implicit in existential equations, which are distinguished from strong equa-
tions by writing ‘=’ (input as ‘=e=") instead of ‘=":

def pre(n) = suc(pre(n)) = pre(suc(n))
Strong equations can be used to define partial functions inductively:

op ! _:List x Nat —7? Elem;
forall n: Nat; L : List;x : Elem
. = def nilln

. cons(z,)10 =z

. cons(z, L)!succ(n) = Lin

Subsort membership assertions are written suggestively using ‘€’ (input as
‘in’):

n € Pos < def pre(n)

16

Applications of predicates are written in the same way as those of operations,
possibly using mixfix notation.

Further examples of basic specification constructs may be found in the appen-
dices of the CASL Summary [21] and in [64,52,62]; see also Section 7.

4 Structured Specifications

The structuring features of CASL do not depend on the details of the features
for basic specifications, so this part of the design is orthogonal to the rest. An
important consequence of this is that sub-languages and extensions of CASL
can be defined by restricting or extending the language of basic specifications
(under certain conditions) without the need to reconsider or change the rest
of the language.

CASL provides ways of building complex specifications out of simpler ones
(the simplest ones being basic specifications) by means of various specification-
building operations. These include translation, hiding, union, and both free and
loose forms of extension. A structured specification denotes a class of CASL
models over a signature determined by the specification, as with basic specifi-
cations. Thus the structure of a specification is not reflected in its models: it
is used only to present the specification in a modular style.

Structured specifications may be named and a named specification may be
generic, meaning that it declares some parameters that need to be instanti-
ated when the specification is (re)used. Instantiation is a matter of providing
an appropriate argument specification together with a fitting morphism from
the parameter to the argument specification. Fitting may also be accomplished
by the use of named wviews between specifications. Generic specifications cor-
respond to what is known in other specification languages as (pushout-style)
parametrized specifications [71].

4.1 Pragmatic Issues

Imposing No Structure on Models: The task of structuring requirement
specifications at the early stages of development is quite different from speci-
fying the architecture of an implementation: typically, rather small fragments
or individual properties are put together. The crucial point is that structuring
a specification at this stage does not impose any specific way of building its
models. The models of structured specifications are of exactly the same kind
as for basic specifications, just interpreting the symbols declared so that all

17

the asserted properties are satisfied. Consequently, they do not in any direct
way reflect the structure of the specification.

For example, consider a specification of the integers. One might choose to
structure it as an extension of a specification of natural numbers (as in an
example above), or to give it as a single basic specification. This choice does
not affect the semantics of the specification, which in either case determines
the same class of CASL models over the same signature: neither the signature
nor the models reflect the structure of the extension.

Section 5 explains the ‘architectural’ specifications of CASL, which do allow
one to prescribe the way the models are to be built from other models, thus
specifying the ‘structure-in-the-large’ of models.

Names of Symbols: A general principle underlying the CASL design is
‘same name, same thing’. Thus when one sees two occurrences of the same
sort in the same basic specification, one may be sure that they are always
interpreted as the same carrier set. For operations and predicates, the situation
is a little more subtle: the ‘name’ of an operation (or predicate) includes its
profile of argument and result sorts, so there need be no relationship at all
between say, ‘+’ on integers and ‘4’ on lists or sets, at least in the absence of
subsorting.

The ‘same name, same thing’ principle applies also in unions and extensions—
but not between named specifications in libraries: the same sort may be used
in different named specifications in the same library, with entirely different
interpretations; similarly for operations or predicates with the same profiles.

When named specifications are combined in the same structured specification
(by references to their names—perhaps indirectly via other named specifica-
tions), several meanings for the same name may come together; any unin-
tended clashes can be eliminated by translating the symbols used in them to
new ones. From a methodological point of view, it seems indeed appropriate
for the writer of a specification to avoid accidental use of the same sort or
(qualified) symbol for different purposes, since it could confuse readers. (The
same argument does not apply to overloading: for example, use of the ‘<’ pred-
icate for partial orders on different sorts is conventional and nicely emphasises
their common properties.)

Another point is that in CASL, it is easy to hide auxiliary symbols, i.e., sym-
bols that are not inherent to what is to be specified. For example, to specify
addition and subtraction on the integers it is common practice to introduce
successor and predecessor operations, but they may be regarded as auxiliary
and hidden afterwards—they can in any case be recovered using addition and

18

subtraction of 1.

Generic Specifications: A specification definition names a specification,
allowing reuse by reference to the name. For example, INT might refer to a
specification of the integers. In CASL, a named specification may also have
parameters, intended to vary between references; the specification body is an
extension of what is specified in the parameters, and the named specification is
called generic. Each reference to a generic specification requires instantiation
of all its parameters. For example (cf. the paragraph on Generic Specifications
and Parameters in Section 4.3 below), LIST might refer to a specification that
extends a parameter specification named ELEM; any reference to LIST has to
provide an argument specification that ‘fits’ ELEM.

Note that generic specifications in CASL are not intended for defining arbitrary
functions on specifications, unlike in some other frameworks such as ASL [70]—
the CASL user is expected to express the structure of specifications directly
using the CASL language constructs that are provided for that purpose.

4.2 Semantic Concepts

Institution Independence: The semantics of structured specifications in-
herits the notions of signature and class of models from the CASL institution
as presented for basic specifications. However, the structuring part of CASL
is independent of the details of basic specification: the same structuring may
be used regardless of whether basic specifications are restricted in a sublan-
guage (e.g., by eliminating partial functions, subsorts, predicates, or explicit
quantifiers) or extended (e.g., to allow higher-order functions). The semantics
of CASL specification-building operations may essentially be given in an arbi-
trary institution, so the specification structuring mechanisms of CASL make
sense as long as the semantics of basic specifications is based on an institu-
tion. This is much as in earlier approaches to specifications in an arbitrary
institution, cf. [67], where the semantics of specification-building operations is
given in terms of the constructions available in an arbitrary institution (with
a prominent role played by reduct functors induced by signature morphisms,
and by the categorical structure of model classes).

The only exception in CASL to strict institution-independence is the way
names and their maps (forming signature morphisms) are handled. The stan-
dard notion of an institution of [30], and consequently the specification-building
operations described e.g. in [67], take signature morphisms for granted. With
the emphasis in CASL on the use of names of symbols (the ‘same name, same
thing’ principle discussed above) this is not sufficient. Therefore, we work with

19

institutions with symbols [47], which are institutions additionally equipped
with a proper concept of symbol name: essentially, the category of signatures
is provided with a functor to Set that assigns to each signature the set of
its symbols and turns signature morphisms into symbol maps. This is used in
CASL to analyze symbol lists and symbol maps, and to build signature mor-
phisms out of them. Once this is done, the standard institution-independent
semantic constructs are employed. Consequently, the semantics of CASL struc-
turing mechanisms is independent from the particular institution with symbols
in use.

Local Environments and Closed Specifications: In a specification, the
so-called local environment records the symbol declarations that are cur-
rently visible. For basic specifications, visibility is linear (except within lists
of datatype declarations) so the local environment merely grows as one pro-
ceeds through the declarations. For structured specifications, however, the
local environments at different places may be completely unrelated. In fact,
CASL structured specifications are always ‘specification extensions’ in princi-
ple, built over some local environment modelled as a signature that provides
declarations external to the specification. Well-formed specifications that are
built over the empty environment, which are therefore self-contained in the
sense that they contain declarations of all the components (sorts, operation
and predicate symbols) that they use, are called closed.

Semantic Functions: Structured specifications can have arbitrarily deep
structure, and a compositional semantics is appropriate: the denotation of
a construct is determined entirely by the denotations of its components. The
denotation of a closed specification is a signature and a class of models for that
signature. The denotation of a specification extension is a (partial) function
from signatures to their extensions, and from corresponding model classes to
model classes over the extended signature.

4.8 Language Constructs

This section provides examples that illustrate the CASL language constructs
for use in structured specifications: translation, reduction, union, extension,
free extension, local specifications, named and generic specifications, instanti-
ation, views, and compound identifiers.

Translation and Reduction: Translation of declared symbols to new sym-
bols is specified straightforwardly by giving a list of ‘maplets’ of the form

20

old — new.
NaT with Nat — Natural, suc — succ__

Identity maplets old +— old may be abbreviated to old, or simply omitted
altogether. Optionally, the nature of the symbols concerned (sorts, operations,
predicates) may be indicated by inserting the corresponding keywords.

NAT with op __+ __+ plus, pred __ < __+— [t

Reduction means removing symbols from the signature of a specification, and
removing the corresponding items from models. When a sort is removed, so are
all operations and predicates whose profiles include that sort. CASL provides
two ways of specifying a reduction: by listing the symbols to be hidden, or by
listing those to be left visible, i.e., revealed. In the latter case, (some of) the
revealed symbols may also be translated to new symbols.

NAT hide Pos, suc

NAT reveal Nat, 0, _+ _, < __+— 1t

Unions and Extensions: The signature of a union of two (or more) spec-
ifications is the union of their signatures (defined componentwise, except that
the union of the subsorting pre-orders must be further transitively closed).
Given models over component signatures, the unique model over the union
signature that extends each of these models is called their amalgamation; a
tuple of models is called compatible if their amalgamation exists. Clearly, not
all tuples of models over component signatures amalgamate: an obvious neces-
sary condition is that the models coincide on the common symbols (including
subsort embeddings) of the component signatures. However, even then it may
be impossible to build their amalgamation; the trouble is that newly emerged
(by transitive closure) subsort embeddings need not in general be compatible
with each other and with the overloaded operations in the sense sketched in
Sect. 3.2. Devising ‘static’ conditions that are as weak as possible but ensure
compatibility of models is a topic of current research; the CASL semantics
provides some such conditions—see [24] for details.

The models of a union are all amalgamations of the models of the component
specifications. There are two extremes: when the specifications have disjoint
signatures, the models of their union are essentially all tuples of the mod-
els of the component specifications; when they have the same signature, the
union provides the intersection of the model classes, giving all models that
satisfy both the specifications at once. For example, the signatures of NAT
and STRING might be disjoint, so models of

21

NAT and STRING

would consist of models of NAT and of STRING, whereas the signatures of
MonNoID and COMMUTATIVE might be the same, so models of

MonoID and COMMUTATIVE

would be those that are simultaneously models of MoONOID and of CoMMU-
TATIVE (i.e., commutative monoids).

Eztensions may specify new symbols (known as enrichment):

NAT then
sort Nat < Int;
ops __+ __: Int x Int — Int;

or merely require further properties of old ones:

COLLECTION then
forall c: Collection « join(c,c)=c

Extensions can be classified by their effect on the model class specified. For
instance, an extension is called conservative when no models are lost: every
model of the specification being extended is a reduct of some model of the
extended specification. CASL provides annotations %implies , %def |, and
%cons to denote that the model class is not changed, that each model of the
specification can be uniquely extended to a model of the extended specifi-
cation, or that the extension is conservative, respectively. It is important to
note that these annotations have no effect on the semantics of a specification:
a specifier may use them to express his intentions, tools may use them to
generate proof obligations. Discharging these proof obligations increases the
trustworthiness of a specification.

Free Specifications: The simplest case of a free specification is when the
specification constrained to be interpreted freely is closed. The signature of the
specification is unchanged, but the models are restricted to (the isomorphism
class of) its initial models. For instance, the only models of the following
specification are the standard models of Peano’s axioms:

free
{ sort Nat; ops 0 : Nat; suc: Nat — Nat }

The conciseness and perspicuity of such specifications may account for the
popularity of frameworks that support initiality. When axioms are restricted to

22

positive conditional existential equations, initial models of basic specifications
always exist. More generally, a free specification may be a free extension, e.g.:

sort Elem then
free
{ type Set =:={} | {__}(Elem) | _U __(Set; Set)
op __U__: Set x Set — Set,assoc,comm,idem, unit {} }

Note that free specifications are especially useful for inductively-defined pred-
icates, since only the cases where the predicates hold need be given: all other
cases are automatically false. Similarly for partial operations in a free specifi-
cation, which are as undefined as possible in all its models.

Named Specifications: Only closed specifications can be named—the local
environment for a named specification is always empty. Named specifications
are intended for inclusion in libraries, see Sect. 6. Subsequent specifications in
the library (or in other libraries) may include a copy of the named specification
by referring to its name, e.g.:

spec PARTIALORDER =
sort FElem
pred __ < __: Elem x Elem
forall z,y,z : Elem
e <1z % (reflexivity) %
e z=yif t<yAy<z %(antisymmetry)%
e z<zifz<yAy<z % (transitivity) %

spec TOTALORDER =
PARTIALORDER
then
forall z,y : Elem
e z<yVy<z % (comparability) %

Generic Specifications and Parameters: A parameter is a closed sub-
specification—typically a reference to a rather simple named specification such
as ELEM. A generic specification is an extension of all its parameters.

spec ELEM = sort Flem

spec LisT [ELEM| =
free type List ::= nil | cons(Elem; List)

A reference to a generic specification is called an instantiation, and has to
provide an argument specification for each parameter, indicating how it ‘fits’

23

by giving a map from the parameter signature to the argument signature, e.g.:
LisT [NAT fit Elem — Nat]

Given a version of NAT with only a single sort Nat, there is only one possible
signature morphism from ELEM to NAT. Then the fitting may be left implicit,
and the above instantiation may be written simply as LisT [NAT]. As with
translation maps, identity fittings may always be omitted. Of course the map
is required to induce not just a signature morphism but also a specification
morphism: all models of the argument specification when reduced by the fitting
signature morphism must also be models of the parameter specification.

Sharing between parameter symbols is preserved by fitting, so it may be nec-
essary to rename symbols when separate instantiation of similar parameters
is required, e.g.:

spec PAIR [sort Elem1] [sort Elem?2] =
free type Pair ::= pair(Elem1; Elem2)

Note that the ‘same name, same thing’ principle is maintained here. Moreover,
to use the same sort name (say Elem) in both parameters would require some
way of disambiguating the different uses of the name in the body, similar
to an explicit renaming. Sharing of symbols between the body of a generic
specification and its arguments in an instantiation is restricted to explicit
imports, indicated as ‘given’:

spec LISTLENGTH [ELEM]| given NAT =
free type List ::= nil | cons(Elem; List)
op length : List — Nat

Had NAT been merely referenced in the body of LISTLENGTH, an instantiation
such as LISTLENGTH [NAT| would be ill-formed. Well-formed instantiations
always have a ‘push-out’ semantics. The models of such instantiations are
amalgamations of models of the parameters and of the generic specification
translated by the appropriate extension of the fitting morphism (see [24] for
details).

Compound Identifiers: Suppose that two different instantiations of LisT
are combined, e.g.,

LisT [NAT fit Elem +— Nat] and LiST [CHAR fit Elem — Char|

With the previous definition of LIST, an unintentional name clash arises: the
sort List is declared by both instantiations, but clearly should have different

24

interpretations. To avoid the need for explicit renaming in such circumstances,
compound identifiers such as List[Elem] may be used:

spec LisT [ELEM] =
free type List|Elem| ::= nil | cons(Elem; List[Elem])

Now when this LIST is instantiated, the translation induced by the fitting mor-
phism is applied to the component Elem also where it occurs in List[Elem], so
the sorts in the above instantiations are now distinct: List[Nat] and List|Char].

Local Specifications: CASL also facilitates the hiding of auxiliary symbols
by allowing the local scope of their declarations to be indicated. For instance,
insert below is an auxiliary symbol for use in specifying order. The exam-
ple illustrates a complete structured specification definition. FElem and the
predicate __ < __ are declared in TOTALORDER above; __ < __is used in
the compound identifier order[__ < _] to allow instantiations with a particu-
lar order such as order|lexicographicOrder] later on. To show an alternative
notation, the list constructor is declared as an infix operator __::__.

spec LISTWITHORDER [TOTALORDER| =
free type List[Elem| := nil | __:: __(Elem; List|Elem))
then
local
op insert : Elem x List|Elem| — List[Elem];
forall x,y : Elem; [: List|Elem)|
o insert(z,nil) = z :: nil;
o insert(xz,y :: 1) = x ::insert(y,l) when z <y
else y :: insert(z, ()
within
op order|__ < _]: List[Elem] — List[Elem)|
forall z : Elem;! : List[Elem]
o order[_ < _|(nil) = nil;
o order[_ < _J(x:: 1) =insert(z, order[-- < _|(I))

end

Ideally, the operations and predicates of interest are specified directly by their
properties, without the introduction of auxiliary symbols that have to be hid-
den. However, there are classes of models that cannot be (finitely) specified
without the use of auxiliary symbols; in other cases (as here) auxiliary symbols
may lead ‘merely’ to increased conciseness and perspicuity.

25

Views: To allow reuse of fitting ‘views’, specification morphisms (from pa-
rameters to arguments) may themselves be named, e.g.:

view TO_IN_NAT : TOTALORDER to NAT =
sort Elem +— Nat,pred < __+— <

The syntax for referencing a named specification morphism, e.g.:
LisTWITHORDER [view TO_IN_NAT)]

makes it clear that the argument is not merely a named specification with an
implicit fitting map, which would be written simply LISTWITHORDER [NAT].
The rules regarding omission of ‘evident’” maps in explicit fittings apply to
named specification morphisms too.

A more extended example may be found in section 7.

5 Architectural Specifications

Architectural specifications in CASL are for describing the modular structure
of software, in contrast to structured specifications where the structure is only
for specification presentation purposes. Architectural specifications are proba-
bly the most novel aspect of CASL; they are not entirely new, but they have no
counterpart in most algebraic specification languages. An architectural specifi-
cation consists of a list of unit declarations, indicating the component modules
required with specifications for each of them, together with a unit expression
that describes the way in which these modules are to be combined. *°

As the above terminology indicates, we have chosen to avoid the overloaded
term ‘module’ and its direct connotations with various constructs of program-
ming languages, using in CASL the term ‘unit’ instead. Units in CASL may
be either simple (self-contained, non-generic) and then semantically they are
simply CASL models; or they may be functional (generic). Functional units
are functions which map (tuples of compatible) CASL models to CASL models.
These functions are required to be persistent, meaning that the result model
expands the argument model, which corresponds to the fact that a software
module must use its imports as supplied without altering them.

Of course, the idea is that eventually in the process of systematic development
of modular software from specifications, units are implemented as software

10 There is an unfortunate potential for confusion here: in CASL, the term ‘architec-
ture’ refers to the ‘implementation’ modular structure of the system rather than to
the ‘interaction’ relationships between modules in the sense of [1].

26

modules (or pieces of code encapsulated in one way or another) in some chosen
programming language. However, this step is beyond the scope of specification
formalisms, so in CASL and in this paper we identify units with models and
model functions, as indicated above. The modular structure of the software
system under development, as described by an architectural specification, is
therefore captured here simply as an explicit, structural way to build CASL
models.

5.1 Pragmatic Issues

Reusability: Whereas structuring of specifications into unions, extensions,
instantiations of generic specifications, etc., encourages the reuse of parts of
specifications, it does not affect the models at all, and the monolithic result of
implementing a structured specification—its specific model—is unlikely to be
reusable. Architectural specifications allow the components of such an imple-
mentation to be described separately, supporting reusability at the software
component level.

For a simple example, suppose that one wishes to explicitly structure a model
of LisT [NAT] to include:

e a model N of NAT,
e a function F' extending any such N to a model of LisT [NAT], and
e the obvious way of obtaining the desired result: applying F' to N

The corresponding architectural specification in CASL requires one to provide
the units N and F', and builds their composition (cf. example in section 5.3). If
the model N of NAT is subsequently changed, F' may be reused, and does not
have to be rebuilt. (F may also be changed without changing N, of course.)

Interfaces: These are the explicit assumptions that units make about other
units. In CASL, interfaces for simple units are expressed as ordinary (struc-
tured) specifications, asserting that the symbols declared by the specification
not only have to be implemented, but also have to satisfy all the asserted
properties. A specification of a functional unit involves the specifications of all
its arguments and of its result. It is guaranteed that the results of applying
functional units to argument units meet their target specifications, provided
that the argument units meet their given specifications.

Decomposition/Composition: A crucial aspect of architectural specifi-
cations is that they provide decompositions of possibly large and complex

27

development tasks into smaller sub-tasks—as well as indicating how to com-
pose, or link together, the results of sub-tasks. A unit specification expresses
everything that those who are implementing it (building a model) and those
who are using it (to build further models) need to know.

It is clearly desirable to distinguish between structure of specifications and
specification of the structure of the system (model) under development, so that
for instance specifying INT as an extension of NAT does not require separate
implementations of these two specifications. What may not be quite so obvious
is that the distinction is actually essential, at least if one is using the familiar
specification structuring constructs provided by CAsL. Consider the union of
two specifications with some declared common symbols but different axioms:
if each specification is implemented separately, without taking account of the
properties required by the other specification, it may well happen that the
common symbols have different, incompatible implementations which cannot
be combined.

5.2 Semantic Concepts

Architectural Models: An architectural specification denotes a class of
architectural models which consist of:

e a collection of named units, together with
e the unit resulting from a particular composition of those units.

As mentioned above, units are either CASL models, or functions from CASL
models to CASL models (higher-order units are envisaged but currently not in-
cluded in CASL). The unit functions are always persistent, so that the results
extend the unmodified arguments (the function F' considered above should
clearly not be allowed to ignore the argument implementation /N and incorpo-
rate a different implementation of NAT). When unit functions have more than
one argument, the arguments must be compatible, in particular implementing
any common symbols in exactly the same way—this follows immediately from
the requirement that a function should extend each argument separately.

Unit Specifications: A specification of a simple unit is any structured spec-
ification, with its usual semantics as a class of models; a unit satisfies such a
specification if it belongs to this class. Specifications of functional units pro-
vide a specification of an argument and its extension to a specification of the
result. Its denotation is the class of all persistent functions that map models of
the argument specification to models of the result specification. This extends
naturally to multi-argument functional units: their specification involves a tu-
ple of specifications for the arguments, and the persistent functions in their

28

denotations take compatible tuples of models of these specifications as argu-
ments. As before, a functional unit (which is a function on models) satisfies
such a specification if it belongs to the class of functions the specification
denotes.

The above semantics of specifications of functional units should be contrasted
with the semantics of generic specifications. In CASL, generic specifications
are just (named, closed) structured specifications with an indicated parameter
part. However, via the semantics of their instantiation, they may be viewed
as functions from (argument) specifications to (result) specifications, which
semantically amounts to functions that map classes of models to classes of
models. Of course, as discussed in [65], there are close (Galois) connections
between functions on classes of models and classes of functions on models,
but still, these are quite different mathematical objects. Generic specifications
and specifications of functional units are quite different concepts, occurring at
different levels of CASL, with their different roles in software specification and
development.

Institution Independence: As with structured specifications (cf. Sect. 4.2),
the design of CASL architectural specifications is largely independent from the
underlying CASL institution with symbols. However, some details of their se-
mantics, notably concerning conditions to ensure compatibility of models and
the issues of sharing components between models (see [11]), require additional
information about the signatures and models considered. An appropriate pre-
cise notion of institution with symbols and sharing is currently under develop-
ment to provide a basis for a completely institution-independent semantics of
CAsL architectural specifications.

5.3 Language Constructs

This section provides examples that illustrate the CASL language constructs
for use in architectural specifications: architectural specification definitions,
unit declarations, unit definitions, unit specifications, and unit expressions.

Architectural Specifications: A definition of an architectural specifica-
tion specifies some units and how to compose them, e.g.:

arch spec IMPNATLIST =
units N : NAT ;
F : NAT — LIST [NAT]
result F[N|

29

An architectural model of the above architectural specification consists of:

e a unit N that is a model of NAT;

e a unit function F' that satisfies NAT — LIST [NAT]|, which is a functional
unit specification where NAT specifies arguments and LisT [NAT] specifies
results of the functional units; and

e the unit F[N], which is a model of the structured specification L1sT [NAT].

Unit Declarations and Definitions: A unit declaration names a unit that
is to be developed, and gives its specification, which may be either a structured
specification for simple units, or a specification of functional units, as discussed
above. Some examples of unit declarations:

N : NAaT
F : NAT — LIST [NAT]
L : List [NAT| given N

The form of unit declaration using ‘given’ provides an implicit declaration
of a functional unit that gets applied just once (in this case, to N). If the
declaration of F' in the architectural specification IMPNATLIST given above
were to be replaced by that of L above (letting the result be simply L as well)
then architectural models of the resulting architectural specification would
still provide a functional unit that gives a model of LiST [NAT] extending any
model N of NAT.

A unit definition names a unit that can be constructed from previously intro-
duced units (in the same architectural specification) as determined by a unit
expression:

L = F[N]

L' = FIN fit...] hide. ..

The unit expression on the right-hand side of a unit definition is of the same
form as the result unit of an architectural specification (see below).

Unit Specifications: Unit specifications can be named, allowing them to
be reused. For instance:

unit spec GENLIST = NAT — LisT [NAT]
A unit declaration may then refer to it, as in F' : GENLIST.

Architectural specifications themselves may also be used as unit specifications,
describing the class of units that are the result units in their architectural
models.

30

Unit Expressions: The various forms of unit expression mostly resemble
those of structured specifications:

e amalgamation of compatible simple units: N and C'

e application of functional units to compatible arguments, via a fitting mor-
phism if necessary: F[N], F[N fit...|

e abstraction: AN : NAT e ... N ...

e reduction of simple units: U hide ..., U reveal ...

e translation of simple units: U with ...

However, the semantics of unit expressions involves operations on individ-
ual models, rather than on entire model classes. In particular, amalgamation
of models requires their compatibility (a sufficient static condition to ensure
compatibility, hinted at in Sect. 4.3, is checked). Amalgamation and hence
checking compatibility are also involved in the semantics of application, where
the result amalgamates the argument model with the appropriately translated
result of the direct application of the functional unit to the argument reduced
by the fitting morphism. Thus application here conforms with pushout-style
instantiation of generic specifications. Abstraction builds a functional unit us-
ing A-notation with the usual meaning; this is needed to allow architectural
specifications whose results are unit functions. Reduction of simple units are
direct applications of the model reduct functor determined by the signature
morphism extracted from the given symbol lists and mappings. Translation
is an inverse construction to the reduct, somewhat complicated in case of
non-injective renaming by necessary additional requirements to make it well-
defined, similar to the compatibility of models necessary for amalgamation.

5.4 Ezxample

The following simple example illustrates an architectural specification defi-
nition (referencing ordinary specifications named LIST, CHAR, and NAT, as-
sumed to declare the sorts Elem and List[Elem], Char, and Nat, respec-
tively):

arch spec CN_LisT =
units (' : CHAR ;
N : NAT ;
F : ELEM — LIST|ELEM]
result F[C fit Elem — Char] and F[N fit Elem — Nat]

Further examples of architectural specifications are given in the CASL Sum-
mary [21] and in [11].

31

6 Libraries of Specifications

Libraries in CASL are collections of named closed basic and structured specifi-
cations, their views, architectural specifications, as well as unit specifications.
A specification can refer to an item in a library by giving its name and the
location of the library that contains it. CASL includes direct support for es-
tablishing distributed libraries on the Internet.

6.1 Pragmatic issues

When specifications are collected into libraries, the question of visibility of
symbols between specifications arises. In CASL, the symbols available in a
specification are only those that it declares itself, together with those declared
(and not hidden) in named specifications that it explicitly references. Thus
when a specification in a library is changed, it is straightforward to locate
other specifications that might be affected by the changes.

Another issue concerns visibility of specification names. In CASL, visibility
is linear: a specification may only refer to names of specifications and views
that precede it in the library. The motivation for this restriction is partly
methodological (the library is presented in a bottom-up fashion), partly from
implementation considerations (a library can be processed sequentially), and
partly from the difficulty of giving a satisfactory formal semantics to mutually-
dependent specifications (some of CASL’s specification-building operations are
not monotone w.r.t. the inclusion of model classes, so the usual fix-point se-
mantics would not work in general).

CASL provides direct support for establishing distributed libraries on the In-
ternet. A registered library is given a unique name, which is used to refer
to it from other libraries when ‘downloading’ particular specifications. Name
servers provide the current locations of registered libraries (before a library is
registered, it is referred to by its current URL). Version control is an impor-
tant pragmatic concern, and the names of CASL libraries incorporate version
numbers; however, it is possible to refer to a library without specifying a ver-
sion, which corresponds to using the largest version number that has so far
been registered for the library concerned.

It may happen that the same name is used for specifications in different li-
braries. To avoid confusion between the names of local and downloaded speci-
fications in libraries, a specification that is downloaded from a remote library
may be given a different local name. In fact downloading bears a strong re-
semblance to the FTP command ‘get’, which provides similar possibilities.

32

6.2 Semantic Concepts

The semantics of a library is a global environment that maps names of spec-
ifications, views, architectural and unit specifications (previously declared or
downloaded in the same library) to their denotations.

A directory of registered libraries maps library names to their registered URLs.
Since the names include version numbers, this directory also gives access to
previous versions of libraries.

Finally, the semantics of the whole collection of CASL libraries depends on the
current state of the Internet, associating URLs to the contents of particular
libraries.

6.3 Language Constructs

Local Libraries: The named specifications and views in a self-contained
library are simply listed in a bottom-up order: each name has to be defined
before it is referenced.

library ORDERTHEORY

spec PARTIALORDER =

spec TOTALORDER =
PARTIALORDER
then

Distributed Libraries: Other libraries may refer to specifications in reg-
istered libraries at other Internet sites by including explicit downloadings,
optionally providing a different local name for the remote specification:

library NUMBERS
from ORDERTHEORY get TOTALORDER — ORDER

spec NAT = ...

view ORDER_IN_NAT : ORDER to NAT =
sort FElem +— Nat, pred __ < _+— __ < __

33

Libraries may have different versions, indicated by their names, both when
defining libraries and when downloading specifications from them:

library NUMBERS version 1.2
from ORDERTHEORY version 1.0.1 get TOTALORDER

If the version number is omitted in a library definition, it is implicitly 0. The
default version when referring to a library is the one that has been registered
with the greatest version number (in a lexicographic ordering).

7 Extended Example

The following example shows specifications for the datatypes ‘finite map’ and
‘array’ in CASL. It has been taken from the library STRUCTUREDDATATYPES
of the document on Basic Datatypes for CASL [64] and illustrates a list of
structured specification definitions as they appear in a library. The library
NUMBERS including the specifications NAT and INT is omitted here. The
specification FINITESET is only indicated. The labels of axioms (which may be
introduced as annotations for use with tools) are also omitted. Before present-
ing the specifications, some aspects from the underlying methodology (cf. [63])
are discussed.

Sort Generation: The specification of finite maps from sort S to sort T
is divided into two parts: GENERATEFINITEMAP is concerned only with sort
generation, while FINITEMAP deals with all additional aspects. As generation
of sorts is a rather subtle part of a specification, this style hopefully avoids
reader confusion.

Annotation %implies: The specification of arrays illustrates how to sep-
arate the definition of predicates and operators from the specification of their
desired properties: the annotation %implies in the specification ARRAY in-
dicates that the properties specified after the keyword then should follow—
from the specifier’s point of view—from the previous axioms. For example,
modelling an array by finite maps yields the usual array axioms. Writing an
annotation %implies leads to the generation of proof obligations. Discharging
these obligations (with a verification tool) increases trust in the correctness of
the specification.

library BASIC/STRUCTUREDDATATYPES version 0.4.1
%% authors: M.Roggenbach, T.Mossakowski, L.Schroder, 5.5.00

34

from BAsic/NUMBERS version 0.4.1 get NAT, INT

spec FINITESET [sort Elem] = ... end
spec GENERATEFINITEMAP [sort S| [sort 7] =
free {
type FiniteMap[S, T| ::= || | -_[.-/_](FiniteMap[S, T|; T; S)

forall M : FiniteMap[S, T|;s,s1,s2:S;t1,t2: T

o« Mit1/s][t2/s] = M[t2/s]

o MJt1/s1][t2)s2] = M[t2/s2][t1/s1] if - s1 =s2 }
end

spec FINITEMAP [sort S][sort 7| given NAT =
GENERATEFINITEMAP [sort S|[sort T
and FINITESET [sort S] and FINITESET [sort 7]
then
free type Entry|S, T| == [-/_|(target : T; source : S)
preds
isEmpty : FiniteMap[S, T};
_e__: Entry[S, T| x FiniteMap[S, T1;
i _—> __: FiniteMap[S, T| x FinSet[S] x FinSet[T|
ops
4, — __: FiniteMap|S, T| x Entry[S, T| — FiniteMap|S, T];
dom : FiniteMap[S, T| — FinSet[S];
range : FiniteMap|S, T] — FinSet[T);
A FiniteMap[S, T] x S =7 T;
U __: FiniteMap[S, T] x FiniteMap|S, T| —? FiniteMap|S, T
forall M, N, O : FiniteMap[S, T|;s,s1 : S;t,t1 : T;e: Entry[S, T];
X : FinSet]S]; Y : FinSet|T]
isEmpty(M) < M =[]

—[t/s] el
o [t/s] e M[t1/s1] & ([t/s] = [t1/s1] V [t/s]eM)

e« M:X—>Y < dom(M)=X Arange(M)CY
o M+ 1t/s] = M[t/s]

o J-[t/sl=1l
o (M +[t/s])—[t1/sl] =M — [t1/s1] when [t/s] = [t1/s1]
else(M — [t1/s1]) + [t/s]

o sedom(M) < 3t: T o [t/sleM

o terange(M) < ds: S e [t/s|eM

o —def [|'s

o (M +[t1/s1))ls =t1 when s = s1 else M!s

e« MUN =0 < (Ve: Entry[S, T] « ecO < (eeM V eeN))

35

then %implies
forall s: S; M : FiniteMap[S, T]
o def Mls < sedom(M)

end

spec ARRAY [ops min, maz : Int axiom min < maz| [sort Elem)|
given INT

sort Index = {i: Int « min < i A i < maz}
then
{ FINITEMAP [sort Index][sort Elem]
with sort FiniteMap|[Indez, Elem] — Array[Elem],op [| — empty
then
op ! _:=__: Array[Elem] x Index x Elem — Array|Elem];
forall A : Array[Elem);i : Index; e : Elem
o Ali:=e=Ale/i]
} reveal sort Array|Elem|,ops empty, | 1 = __
then %implies
forall A : Array[Elem];i,j : Index; e, f : Elem
o —def emptyli
o def (Ali:=e)li
e (Alic=¢e)lj=cifi=j
o (Ali=e)lj = Al if —(i =)
end
The example demonstrates overloading in CASL. In the specification FINITEMAP,
the symbol + has different meanings: unary and binary plus on natural num-
bers, and adding an entry to a finite map. For the operator for combining two
finite maps, the symbol U was used instead since it has a slightly different

semantics; technically, + could have been used as well.

The example makes use of several structuring constructs of CASL: in ARRAY,
symbols of FINITEMAP are translated, e.g.

sort FiniteMap|[Index, Elem] — Array[Elem], op [| — empty
or removed, e.g.
reveal sort Array|Elem|,ops empty, | | = _
FINITEMAP is structured as the union of
e GENERATEFINITEMAP[sort S|[sort 71,

e FINITESET[sort S], and
e FINITESET[sort T,

36

which is extended by several predicates and operations in the next step.

GENERATEFINITEMAP[sort S][sort T'| introduces finite maps as a free spec-
ification.

ARRAY is a generic specification. In an instantiation
ARRAY [op n : Int fit ops min — 1, maz — n] [NAT]

the sort name Array[Elem]| is effectively instantiated to Array[Nat]. This in-
stantiation is consistent if 1 < n, i.e. the array bounds fullfill the axiom of the
parameter [ops min, maz : Int axiom min < maz].

8 Other Algebraic Specification Languages

In this section we briefly compare CASL with a few other representative alge-
braic specification languages. One of the design goals of CASL as a common
language was to provide a migration path for users of other languages, hence
we pay special attention to features of these other languages that are not
available in CASL. Further comments are in [49].

8.1 ASL

ASL is a minimalist kernel specification language containing a small number
of simple but powerful constructs. More convenient and user-friendly specifica-
tion constructs could be defined in terms of those supplied, as was done in an
early draft of the semantics of Extended ML [66]. Various versions of ASL have
been used; here we will refer to the institution-independent version defined in
[67] with the extensions for specifying parametrized programs in [65]. Like
CASL, this is an institution-independent specification language; unlike CASL
there is no standard language defined for writing basic specifications, so we
restrict attention to structured specifications and architectural specifications.

With the exception of ASL’s observational abstraction operation, the specification-
building operations in ASL are similar in power to those in CASL but less con-
venient: for instance, union is restricted to combining specifications having the
same signature. Instead of free specifications, ASL provides an operation called
minimal which is not equivalent but can be used to achieve similar aims, and
[67] shows how freeness requirements could easily be added. Pushout-style
generic specifications are not available in ASL although the same effect can
be obtained using union and translation. Instead, parametrized specifications
are formed in ASL by lambda-abstraction, with instantiation being simply

37

beta-reduction; this is a more powerful parametrization mechanism that was
not adopted in CASL for simplicity. Observational abstraction, which closes
the models of a specification under observational equivalence, is not avail-
able in CASL because it greatly complicates the problem of reasoning about
specifications, see e.g. [8], and because it was felt that it was more appropri-
ately embedded in the relationship of specification refinement than provided
in CASL itself, see [10].

ASL’s specifications of parametrized programs (so-called ‘II-specifications’)
correspond to specifications of functional units in CASL architectural spec-
ifications. In ASL, parametrized specifications and Il-specifications (and the
parametrized programs themselves) may be combined in a rather unconstrained
way with no restriction to first-order parametrization. Certain combinations
that are not available in CASL seem useful (see [2] for examples).

8.2 Larch

Larch [33,34] is a family of specification languages. Each Larch specification
has components written in two languages: one designed for a specific pro-
gramming language, the Larch interface language, and another common to
all programming languages, the Larch shared language LSL. The interface
languages provide a way of making assertions about program states, excep-
tions, etc., with the specification features available depending on the features
of the programming language under consideration. LSL specifications define
auxiliary higher-level abstractions from the problem domain for reference by
interface specifications.

This ‘two-tiered’” approach to making the connection between programs and
specifications is the main distinguishing feature of Larch. CASL has been de-
signed to be independent of the programming language used to realize specifi-
cations and so the connection with programming languages is radically differ-
ent. To use a programming language with CASL, it is necessary to provide a
semantics for the language which assigns to each program P its denotation [P]
as a CASL model; then P satisfies SP whenever [P] is a model of SP. (This
semantics may be rather indirect, and would in general involve a non-trivial
abstraction step. It has not yet been attempted for any real programming
language.) There is a further connection at the level of architectural speci-
fications: for each operation used in unit expressions to combine component
units (application of functional units to arguments, etc.), we need to give a
corresponding operation or combination of operations for combining modules
in the programming language.

LSL itself is (by design) a much simpler specification language than CASL.

38

Apart from equational axioms, there are sort generation constraints as in CASL
and a way of asserting that a given list of operations constitutes a complete
set of observers for a given sort. This is not available as a separate construct in
CASL but it is easily expressible as an axiom. It is possible to claim that a given
assertion (or set of assertions, including sort generation constraints etc.) is a
consequence of a given specification, or that the definition of a given operation
is sufficiently complete. The first of these can be expressed in CASL using the
%implies annotation, while the second is an obvious candidate for another
form of CASL annotation. The specification-building operations in LSL are
limited to translation and union with no hiding construct or free specifications.
The parametrization mechanism is merely a convenient syntax for renaming
selected sorts and/or operations of a specification, with the appearance or
non-appearance of parameters having no semantic significance.

8.3 ACT ONE and ACT TWO

ACT [17] is an approach to formal software development that includes a lan-
guage called ACT ONE [16] for writing algebraic specifications with condi-
tional equational axioms, and an extension called ACT TWO [27] for writ-
ing module specifications. ACT ONE has a pure initial algebra semantics in
which specifications denote free functors. Its specification-building operations
are similar to those in CASL, including pushout-style generic specifications
with compound identifiers as in CASL, except that no operation for hiding
is available. Instead, this is provided at the ACT TWO level where module
specifications include import and export interfaces in the form of ACT ONE
specifications extended by permitting first-order axioms. Module-building op-
erations are module-level analogues to specification-building operations.

The most interesting point of comparison between CASL and ACT concerns
the relationship between generic specifications and specifications of functional
units in CASL architectural specifications. In CASL, these are very different:
specification structure (as in generic specifications) is for presentation purposes
only and imposes no structure on the models that are specified, while architec-
tural specifications are precisely about the description of modular structure.
This distinction, which originates in [65], is reflected in the semantics of CASL,
as already explained in Sect. 5.2. Despite appearances, this is not the same as
the distinction between ACT ONE and ACT TWO. But a similar distinction
does arise in the semantics of ACT ONE, which is given at two levels, the
specification level and the model level. The semantics of a generic specifica-
tion at the specification level is the same as in CASL, while its semantics at
the model level is a functor (the initial object in a class of functors), which is
more closely related to the semantics of unit specifications in CASL.

39

8.4 OBJ3

OBJ3 [32] is an executable specification language, also known as an ‘ultra-
high-level” programming language. It is institution-independent in the sense
that it originated as an implementation of Clear [12], which is institution-
independent, for the institution of order-sorted conditional equational logic.
OBJ3’s mixfix notation for operations was the origin of mixfix notation in
CAsL and other languages. The same for views, although the features for
views in OBJ3 differ from those in CASL. In an OBJ3 view, an operation may
be mapped to a ‘derived operation’, for instance

r<y—rx<yVe=y

On the other hand, views in CASL may have parameters to be instantiated
when the view is used (see [21]) and these have been found to be useful in
some circumstances; such parameters are not available in OBJ3 although they
appear to be planned for a future release. The specification-building operations
in OBJ3 are similar to those in CASL, except that no operation for hiding is
provided.

The most interesting point of comparison between OBJ3 and CASL concerns
the treatment of subsorts. Subsorts in algebraic specification originated in
OBJ3, cf. [31], and the approach in OBJ3 influenced the design of CASL, but
the approach taken in CASL is deliberately different, as already indicated in
Sect. 3.1. First, a relatively minor point is that CASL interprets subsorts using
embeddings between carriers rather than inclusions as in OBJ3, with inclusions
being a special case. The difference between these is not significant in most
examples, see Sect. 3.4 of [14]. OBJ3’s approach to subsorts requires signatures
to be ‘regular’ and ‘coherent’, while no such conditions are required in CASL
which is convenient since they are not preserved by structuring operations in
general. This requires a slightly more complicated treatment of overloading
in CAsL’s definition of well-formed term than in OBJ3. Probably the most
important discrepancy is that projection functions from supersorts to subsorts
are regarded as partial functions in CASL. In OBJ3, they are total ‘retract’
functions which yield values that can be viewed as error messages when applied
to values outside the subsort. The pros and cons of the two approaches are
a matter of fierce debate, see [14] and [15] for the CASL point of view and
[29] for the OBJ3 point of view. Some aspects of the semantics of subsorts in
OBJ3 are unclear, see [49] for discussion. On the other hand, development of
good tool support for reasoning about CASL specifications involving subsorts
is still a research issue.

40

9 Foreground

The Common Framework Initiative has task groups on language design, se-
mantics, tools, methodology, and reactive systems. There is a substantial
amount of interaction between the task groups, which is supported by many of
the COFT participants being active in more than one task group. The overall
coordination of these task groups was managed by Peter Mosses (Aarhus) from
the start of COFT in September 1995 until August 1998, and subsequently by
Don Sannella (Edinburgh).

The European Commission has provided funding for the European compo-
nent of COFI as ESPRIT Working Group 29432 for two years starting Octo-
ber 1998, see http://www.dcs.ed.ac.uk/home/dts/CoFI-WG/. The partners
are the coordinating sites of the various COFT task groups (University of
Bremen, Warsaw University, Ecole Normale Supérieure de Cachan, INRIA
Lorraine, University of Genova, University of Aarhus) with the University of
Edinburgh as overall coordinator. Its goals are: to coordinate the completion
of and disseminate the Common Framework; to demonstrate its practical ap-
plicability in industrial contexts; and to establish the infrastructure needed
for future European collaborative research in algebraic techniques. Before Oc-
tober 1998, COFI relied on unfunded efforts by its participants, with initial
support from the ESPRIT COMPASS Working Group 3264/6112 until that
terminated in March 1996.

9.1 Language Design

The Language Design Task Group is coordinated by Bernd Krieg-Briickner,
Bremen.

Until October 1998, the main language design task was finalization of the
CAsL design. The documentation of the final design is given by the CASL
Language Summary [21]; a (now slightly outdated) rationale for the language
design was published in 1997 [55]. The semantics, tools, and methodology
task groups have all provided essential feedback regarding language design
proposals.

Recent work on syntactic issues regarding mixfix parsing and syntactic exten-
sions for literals to be used with Basic Datatypes for CASL [64,52,62] has now
been completed.

Various interesting sublanguages of CASL, e.g., total, many-sorted, equational—
mostly corresponding closely to embeddings of the specification languages of
other frameworks into CASL [44-46,49]—have been defined. The logic under-

41

lying CASL has been translated to first-order logic (or second-order logic when
sort generation constraints are considered). This allows the re-use of first-order
and higher-order theorem provers for CASL [48,49]. Some extensions are now
being investigated, in particular for higher-order [50] and object-oriented spec-
ifications. Possible extensions for specification of reactive systems are treated
in a separate task group.

9.2 Semantics

The Semantics Task Group is coordinated by Andrzej Tarlecki, Warsaw.

The formal semantics of CASL, which is complete but whose presentation still
requires some polishing, is given in [24]. The semantics is divided into the same
parts as the language definition (basic specifications, structured specifications,
etc.); each part is split further into static semantics and model semantics.

The static semantics checks well-formedness of phrases and produces a ‘syn-
tactic’ object as result, failing to produce any result for ill-formed phrases. For
example, for a basic specification the static semantics yields a theory presen-
tation containing the sorts, function symbols, predicate symbols and axioms
that belong to the specification. (Actually it yields an enrichment: when a
basic specification is used to extend an existing specification it may refer to
sorts, functions and predicates from the local environment.) A phrase may be
ill-formed because it makes reference to non-existent identifiers or because it
contains a sub-phrase that fails to type check.

The model semantics provides the corresponding model-theoretic part of the
semantics, and is intended to be applied only to phrases that are well-formed
according to the static semantics. A statically well-formed phrase may still be
ill-formed according to the model semantics: for example, if a generic specifi-
cation is instantiated with an argument specification that has an appropriate
signature but which has models that fail to satisfy the axioms in the param-
eter specification, then the result is undefined. The judgements of the static
and model semantics are defined inductively by means of rules in the style of
Natural Semantics.

The orthogonality of basic specifications in CASL with respect to the rest of
the language is reflected in the semantics by the use of a variant of the notion
of institution [30] called an institution with symbols [47]. The semantics of
basic specifications introduces a particular institution with symbols, and the
rest of the semantics is based on an arbitrary institution with symbols.

The semantics provides a basis for the development of a proof system for CASL.
As usual, at least three levels are needed: proving consequences of sets of

42

axioms; proving consequences of structured specifications; and finally, proving
the refinement relation between structured specifications. The semantics of
CASL gives a reference point for checking the soundness of each of the proposed
proof systems and for studying their completeness.

Apart from polishing the full semantics of CASL and from consideration of
the semantics of sublanguages and extensions of CASL, the development of
a proof system for CASL is the main work remaining for the semantics task

group.

9.3 Methodology

The Methodology Task Group is coordinated by Michel Bidoit, Cachan.

The original motivation for work on algebraic specification was to enable the
stepwise development of correct software systems from specifications with ver-
ified refinement steps. CASL provides good support for the production of spec-
ifications both of the problem to be solved and of components of the solution,
but it does not incorporate a specific notion of refinement. Architectural spec-
ifications go some way towards relating different stages of development but
they do not provide the full answer. Other methodological issues concern the
‘endpoints’ of the software development process: how the original specifica-
tion is obtained in the first place (requirements engineering), and how the
transition is made from CASL to a given programming language. Finally, the
usual issues in programming methodology are relevant here, for instance: veri-
fication versus testing; software reuse and specification reuse; software reverse
engineering; software evolution.

CASL has been designed to accommodate multiple methodologies. Various
existing methodologies and styles of use of algebraic specifications have been
considered during the design of CASL to avoid unnecessary difficulties for
users who are accustomed to a certain way of doing things. For example, the
methodology in [68] is being adapted to CASL.

The major task at the moment is the production of a user’s guide for CASL.
Moreover, various case studies are to be coordinated within this task group.

9.4 Tools

The Tools Task Group is coordinated by Hélene Kirchner, Nancy.

The aims of this task group are threefold:

43

e To provide a minimal but widely available set of tools for CASL, including
syntax and static semantics checkers, library support, Emacs and IKXTEX
modes.

e To take advantage of and to reuse existing tools developed in the com-
munity for prototyping, testing, checking properties of programs, verifying
the correctness of a specification or of a refinement step. Many of these are
specialized, that is only applicable to a particular sub-language and its asso-
ciated logics. Collaboration with the developers of tools for other languages
will usually be needed to enable the use of CASL specifications with those
tools.

e Ultimately to achieve a coherent and efficient integration of sub-languages
and related tools. This raises the issue of combining and embedding different
logics.

The CASL tool set (CATS, [48]) is an integrated set of tools combining a
parser, a static checker, a KTEX pretty printer and facilities for printing sig-
natures of specifications and structure graphs of CASL specifications, with
links to various verification and development systems. In addition, we plan to
provide a structure editor, an Emacs mode, and a graphical interface to dis-
play the structure graphs. To experiment with CASL specifications, the CATS
system provides different user interfaces: a Web-based interface, and a com-
pact stand-alone version. A repository with successfully and unsuccessfully
parsed specifications is under development.

CAsL offers a flexible syntax including mizfix notation, which requires ad-
vanced parsing technology. ASF+SDF was used to prototype the CASL syn-
tax in the course of its design, and several other parsers have been developed
concurrently with the concrete syntax, which had the advantage of helping to
detect ambiguities and inconsistencies in the syntax, cf. [73], [72], [51].

A IXTEX package for formatting CASL specifications has been developed [56].
This package is aimed at facilitating the pretty-printing and the uniform for-
matting of CASL specifications, and the easy combination of parts of docu-
ments written by different authors. An automatic conversion from EIEX to
HTML provides another widely available format for exchanging specifications
through the Web.

Interoperability of CASL and existing tools is a major goal of the Tools group.
The first step has been to propose an interchange (or interoperability) format
that can be accepted as input and output by every tool. The starting idea was
to adopt basically abstract syntax trees with annotations providing specific
information to communicate with various tools (parsers, rewrite engines, proof
tools, etc.). The Annotated Term (ATerm) Format described in [74] has been
chosen as a common interchange format for COFI tools. Work is in progress
to also provide XML as an external interchange format. Based on either of

44

these low-level formats, several high-level formats such as CasFix [75] (for
abstract syntax trees of CASL specifications), CasEnv (for global environments
containing signature information etc.) and FCasEnv (a flattened version of
CasEnv, for use with tools that do not support structured specifications) have
been developed. Formats for storing proofs and developments will follow.

Existing rewrite engines embedded in OBJ, ASF+SDF and ELAN provide a
good basis for prototyping (parts of) CASL specifications. For instance, the
ELAN compiler [43] efficiently supports many-sorted conditional rewrite rules
with associative commutative functions. A first prototype has been realised
that reads in the FCasEnv format, and translates it into EFix format (ATerms
for ELAN) which can then be executed by the ELAN interpreter or compiled
to produce C code [38].

The standalone version of CATS also contains an encoding into several other
logics. The encoding transforms a CASL specification into second-order logic
step by step. First, partiality is encoded via error elements living in a super-
sort; second, subsorting is encoded via injections; and third, sort generation
constraints are expressed via second-order induction axioms. It is possible
to stop after the first or second step if one wants to use a tool supporting
subsorting or sort generation constraints directly. For details, see [49], where
alternative encodings are also described. In this way, CATS allows to interface
CAsL with a large number of first- and higher-order theorem provers.

The HOL-CASL system, being built on top of CATS, uses the encoding of
CASL into second-order logic to connect CASL to the Isabelle [59] theorem
prover and the generic graphical user interface IsaWin. This approach to en-
coding CASL in proof systems such as Isabelle or PVS allows verification and
program transformation [51,49].

Various verification tools have already been developed for algebraic specifica-
tions, and can be reused for specific subsets of CASL: equational, conditional,
full first-order logic with total functions, total functions with subsorts, partial
functions, etc. The system INKA 5.0 [5] provides an integrated specification
and theorem proving environment for a sub-language of CASL that excludes
partial functions (with the encoding provided by CATS, it will also be useable
with full CAsL); a similar adaptation of the KIV [60] system is under way.

Currently, CATS is connected to the development graph management compo-
nent of the INKA theorem proving system [5]. Structured CASL specifications
in the CasEnv format are translated to development graphs [6]. The develop-
ment graph supports the management of theories and proof obligations that
arise from CASL specifications in a theorem prover-independent way. More-
over, it provides an efficient way of managing change, allowing re-use of those
parts of proofs that are not affected by the change of a specification.

45

The next step is the integration of other existing tools, especially for prototyp-
ing and verification. Participants of the Tools group already have experience
with tool integration, with Corba-IDL [37], the Tool Bus [7] developed in
Amsterdam, and the UniForM Workbench [39] developed in Bremen.

All tools developed in the COFT Tools group are made available to the commu-
nity, after validation by the Tools group. A Web page for tools [25] describes
on-going work and interests, giving access to available tools, and giving guide-
lines on how to propose a new tool.

9.5 Reactive Systems

The Reactive Systems Task Group is coordinated by Egidio Astesiano, Gen-
ova, and Heinrich Hussmann, Dresden.

An area of particular interest for applications is that of reactive, concurrent,
distributed and real-time systems. There is considerable past work in algebraic
specification that tackles systems of this kind, but nonetheless the application
of CASL to such systems is speculative and preliminary in comparison with the
rest of COFI. The aim here is to propose and develop one or more extensions
of CASL to deal with systems of this kind, and to study methods for develop-
ing software from such specifications. Extensions in three main categories are
currently being considered:

e Combination of formalisms for concurrency (e.g. CCS, Petri nets, CSP) with
CasL for handling classical (static) data structures;

e Formalisms built over CASL, where processes are treated as special dynamic
data; and

e Approaches where CASL is used for coding, at the meta-level, some formal-
ism for concurrency, as an aid to reasoning.

Since object-oriented methods have a dominant role in concrete developments,
the group will address OO aspects insofar they are needed for reaching the
above goals, but object orientation is not addressed as an independent topic
in itself.

Work in this area begun only after the design of CASL was complete and so

it is still in its early stages. Presently, the work is organized in two tracks:
autonomous and coordinated extensions.

Autonomous Extensions: Proposals for such extensions are autonomously
submitted to the Group; they are required to follow a suggested submission

46

procedure, and are subject to approval [22]. Currently a number of proposals
have been announced.

Coordinated Effort: It has been decided to start an effort centered around
UML, the Unified Modeling Language. We are pursuing two tracks.

e The basic idea is to adopt CASL, or an extension of it, for annotating UML,
thus possibly replacing OCL (work led by Heinrich Hussmann, Dresden).

e We have joined the activity of the free group Precise UML; the goal is to
provide a formal/rigorous underpinning of UML, possibly exploiting COFI-
related techniques. A sketchy proposal for a general approach to the problem
has been presented at a workshop at OOPSLA’98 [4]. Two other draft papers
are available, one relating the ADT approach to UML [35] and the other
proposing an underlying model for UML state machines [61].

9.6 Eaxternal Relations

The External Relations Task Group is coordinated by Peter Mosses, Aarhus.

The design of CASL is based on a (critical) selection of constructs from existing
languages, and it should be possible to translate specifications from other
languages into (sublanguages or extensions) of CASL. The translation of a
number of well-known algebraic specification languages to CASL at the level
of specification in-the-small, namely Larch, ACT, OBJ3 [44], CafeOBJ [57],
ASF+SDF [54], and HEP-theories, has been described [49]. Libraries and case
studies that have been developed for these languages can be re-used in CASL,
once the translations have been implemented. COFI does not currently have
adequate resources to study and implement translations of other languages
into CASL, and must depend on attracting the interest and collaboration of
those who have the necessary expertise.

The design of CASL has been sponsored by IFIP WG1.3 (on Foundations
of System Specification), which also provided expert referees to review the
proposed design in June 1997 [26,20]. The ongoing work in COFT is of great
interest to WG1.3, and Peter Mosses (chairman of WG1.3 since 1998) is re-
sponsible for liaison between COFI WG and WG1.3.

All CoF1 task groups welcome new participants. Please contact the coordina-
tors via the COFI web pages [18]. There is a moderated mailing list for each
task group, with open subscription, administered by the Majordomo program
(majordomo@brics.dk). All COFI participants are requested to subscribe to
a further mailing list, cofi-1ist@brics.dk (very low-volume, for major an-

47

nouncements only). All COFI documents are available via the COFI web
pages [18].

Acknowledgements: This paper has been written by the coordinators of
the COFI Working Group. We acknowledge the significant contributions by
members of the COFI Task Groups to the design of CASL, in particular Hu-
bert Baumeister, Didier Bert, Mark van den Brand, Maura Cerioli, Christine
Choppy, Joseph Goguen, Radu Grosu, Magne Haveraaen, Anne Haxthausen,
Kolyang, Till Mossakowski, Fernando Orejas, Olaf Owe, Gianna Reggio, Horst
Reichel, Giuseppe Scollo, Frédéric Voisin, Martin Wirsing, Markus Roggen-
bach, Axel Schairer, and Bjarke Wedemeijer. In addition, we gratefully ac-
knowledge the contribution of the IFIP WG 1.3 referees Hartmut Ehrig (co-
ordinator), José Meseguer, Ugo Montanari, Fernando Orejas, Peter Padawitz,
Francesco Parisi-Presicce, Martin Wirsing, and Uwe Wolter for their recom-
mendations and suggestions for improving the initial proposed design.

References

[1] Robert Allen, David Garlan. A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology, Volume 6,
Number 3, pages 213-249, July 1997.

[2] David Aspinall. Type Systems for Modular Programs and Specifications. Ph.D.
thesis, Dept. of Computer Science, Univ. of Edinburgh, 1997.

[3] Egidio Astesiano, Hans-Jorg Kreowski, and Bernd Krieg-Briickner (eds.).
Algebraic Foundations of System Specification. IFIP State-of-the-Art Reports,
Springer 1999.

[4] Egidio Astesiano and Gianna Reggio. UML as Heterogeneous Multiview
Notation: Strategies for a Formal Foundation. In Proc. of OOPSLA’98
Workshop ‘Formalizing UML. Why? How?’ Technical report, Universidade
Nova de Lisboa, 1998.

[6] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. INKA 5.0:
a logic voyager. Proc. 16th Intl. Conference on Automated Deduction, Trento.
LNAI volume 1632, pages 207-211. Springer, 1999. (For the INKA system see
also http://www.dfki.de/vse/systems/inka/.)

[6] Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards an
Evolutionary Formal Software Development Using CASL. In Christine Choppy,
Didier Bert, and Peter Mosses (eds.): Recent Developments in Algebraic
Development Techniques, 14th International Workshop, WADT’99, Chateau
de Bonas, France. LNCS volume 1827, pages 73-88. Springer, 2000.

48

[7] Jan Bergstra and Paul Klint. The discrete time ToolBus: A software
coordination architecture. Science of Computer Programming, Volume 31,
Number 2-3, pages 205-229. 1998.

[8] Michel Bidoit, Maria Victoria Cengarle and Rolf Hennicker. Proof Systems for
Structured Specifications and Their Refinements. Chapter 11 of [3].

[9] Michel Bidoit, Hans-Jorg Kreowski, Pierre Lescanne, Fernando Orejas, and
Donald Sannella (eds.). Algebraic System Specification and Development: A
Survey and Annotated Bibliography, LNCS volume 501. Springer 1991.

[10] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Behavioural
Encapsulation. Note L-28, in [18], 1996.

[11] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural
specifications in CASL. In Proc. 7th Intl. Conference on Algebraic Methodology
and Software Technology (AMAST’98), LNCS volume 1548, pages 341-357.
Springer, 1998.

[12] Rod Burstall and Joseph Goguen. Putting Theories Together to Make
Specifications. Proc. 5th Intl. Joint Conference on Artificial Intelligence,
Cambridge (USA), pages 1045-1058 (1977).

[13] Maura Cerioli, Martin Gogolla, Héléne Kirchner, Bernd Krieg-Briickner,
Zhenyu Qian, and Markus Wolf (eds.). Algebraic System Specification
and Development: Survey and Annotated Bibliography. 2nd edition, 1997.
Monographs of the Bremen Institute of Safe Systems 3. ISBN 3-8265-4067-0.
Aachen: Shaker, 1998.

[14] Maura Cerioli, Anne Haxthausen, Bernd Krieg-Briickner and Till Mossakowski.
Permissive Subsorted Partial Logic in CAsL. In: Michael Johnson (ed.)
Proc. 6th Intl. Conference on Algebraic Methodology and Software Technology
(AMAST’97), LNCS volume 1349, pages 91-107. Springer, 1997.

[15] Maura Cerioli, Till Mossakowski and Horst Reichel. From Total Equational to
Partial First-Order Logic. Chapter 3 of [3].

[16] Ingo Clalen. Revised ACT ONE: Categorical Constructions for an Algebraic
Specification Language. Proc. Workshop on Categorical Methods in Computer
Science with Aspects from Topology, Berlin. LNCS volume 393, pages 124-141.
Springer, 1989.

[17] Ingo ClaBen, Hartmut Ehrig and Dietmar Wolz. Algebraic Specification
Techniques and Tools for Software Development. AMAST Series in Computing,
World Scientific (1993).

[18] COFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible by WWW
at http://www.brics.dk/Projects/CoFI.

[19] COFI Language Design Task Group. CAsL — The COFI Algebraic Specification
Language — Design Proposal. Documents/CASL/Proposal, in [18], May 1997.

49

[20] COFT Language Design Task Group. Response to the Referee Report on CASL.
Documents/CASL/RefereeResponse, in [18], August 1997.

[21] COFT Language Design Task Group. CASL — The COFI Algebraic Specification
Language — Summary (version 1.0). Documents/CASL/Summary, in [18],
October 1998 (adjusted July 1999).

[22] COFT Reactive Systems Task Group. Pattern for proposals of CASL extensions
for Reactive Systems. Reactive/Pattern/, in [18].

[23] COFI Semantics Task Group. CAsL — The COFI Algebraic Specification
Language (version 0.97) — Semantics. Note S-6, in [18], July 1997.

[24] COFT Semantics Task Group. CAsL — The COFI Algebraic Specification
Language — Semantics (version 1.0). Note S-9, in [18], 2000.

[25] COFI Tools Task Group. The COFI Tools Group Home Page. http://www.
loria.fr/~hkirchne/CoFI/Tools/index.html

[26] IFIP WG 1.3. Referee Report on CASL. Documents/CASL/RefereeReport, in
[18], June 1997.

[27] Werner Fey. Pragmatics, Concepts, Syntax, Semantics, and Correctness Notions
of ACT TWO: An Algebraic Module Specification and Interconnection
Language. Ph.D. thesis, Report 88/26, Technische Universitéit Berlin (1988).

[28] GNU project. htpp://www.gnu.org/.

[29] Joseph Goguen. Stretching first order equational logic: proofs with partiality,
subtypes and retracts. Available from http://www-cse.ucsd.edu/users/
goguen/pubs/. Submitted for publication (1998).

[30] Joseph Goguen and Rod Burstall. Institutions: abstract model theory for
specification and programming. Journal of the Assoc. for Computing Machinery
39:95-146 (1992).

[31] Joseph Goguen and José Meseguer. Order-sorted algebra I: equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science 105, pages 217-273 (1992).

[32] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi and Jean-
Pierre Jouannaud. Introducing OBJ. In: Software Engineering with OBJ:
Algebraic Specification in Action (J. Goguen and G. Malcolm, eds.). Kluwer
Academic (2000).

[33] John Guttag and Jim Horning. Report on the Larch shared language. Science
of Computer Programming 6:103—134 (1986).

[34] John Guttag and Jim Horning. Larch: Languages and Tools for Formal
Specification. Springer (1993).

[35] Heinrich Hufimann, Maura Cerioli, Gianna Reggio, and Frangoise Tort.
Abstract Data Types and UML Models. Technical report, DISI — Universita di
Genova, DISI-TR-99-15, 1999.

20

[36] Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall,
1986.

[37] Einar W. Karlsen. Interoperability of CASL tools using CORBA. Note T-5, in
[18], October 1997.

[38] Hélene Kirchner and Christophe Ringeissen. Executing CASL Equational
Specifications with the ELAN Rewrite Engine. Note T-9, in [18], October 1999.

[39] Bernd Krieg-Briickner, Jan Peleska, Ernst-Riidiger Olderog, and Alexander
Baer. The UniForM Workbench, a Universal Development Environment for
Formal Methods. In: J. M. Wing, J. Woodcock, and J. Davies (eds.): FM’99,
Formal Methods. Proceedings, Vol. II. LNCS Volume 1709, pages 1186-1205.
Springer, 1999. (for the UniForM Workbench tools see also http://www.
informatik.uni-bremen.de/ uniform)

[40] Bernd Krieg-Briickner. Seven Years of COMPASS. In 11th Workshop on
Specification of Abstract Data Types, Joint with the 8th COMPASS Workshop,
Oslo, LNCS volume 1130, pages 1-13. Springer, 1996.

[41] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Abstract
Data Types. Wiley, 1996.

[42] José Meseguer. General Logics. In H.-D. Ebbinghaus, J. Ferndndez-Prida,
M. Garrido, D. Lascar, and M. Rodriguez Artalejo (eds.) Logic Colloquium 87,
pages 275-329. North-Holland, 1989.

[43] Pierre-Etienne Moreau and Hélene Kirchner. A compiler for rewrite programs in
associative-commutative theories. In C. Palamidessi, H. Glaser, and K. Meinke,
editors, Principles of Declarative Programming, LNCS volume 1490, pages 230—
249. Springer, September 1998. Report LORIA 98-R-226.

[44] Till Mossakowski. Translating OBJ3 to CASL: the institution level. Recent
Trends in Algebraic Development Techniques: Selected Papers from WADT 98,
Lisbon. LNCS volume 1589, pages 198-214. Springer, 1999.

[45] Till Mossakowski. Sublanguages of CAsL. Note L-7, in [18], December 1997.
Update in [49].

[46] Till Mossakowski. Two ‘Functional Programming’ Sublanguages of CASL.
Note L-9, in [18], March 1998.

[47] Till Mossakowski. Specifications in an arbitrary institution with symbols. In
Christine Choppy, Didier Bert, and Peter Mosses (eds.): Recent Developments
in Algebraic Development Techniques, 14th International Workshop, WADT’99,
Chateau de Bonas, France. LNCS volume 1827, pages 252-270. Springer, 2000.

[48] Till Mossakowski. CASL: From Semantics to Tools. In S. Graf (eds.) TACAS
2000, LNCS volume 1785, pages 93-108. Springer, 2000.

[49] Till Mossakowski. Relating CASL with Other Specification Languages: the
Institution Level. Theoretical Computer Science, this volume.

o1

[50] Till Mossakowski, Anne Haxthausen, and Bernd Krieg-Briickner. Subsorted
Partial Higher-Order Logic as an Extension of CAsL. In Christine Choppy,
Didier Bert, and Peter Mosses (eds.): Recent Developments in Algebraic
Development Techniques, 14th International Workshop, WADT’99, Chateau
de Bonas, France. LNCS volume 1827, pages 126—145. Springer, 2000.

[51] Till Mossakowski, Kolyang, and Bernd Krieg-Briickner. Static semantic analysis
and theorem proving for CASL. In 12th Workshop on Algebraic Development
Techniques, Tarquinia, LNCS volume 1376, pages 333-348. Springer, 1998. (For
the Bremen COFI Tools see http://www.tzi.de/cofi.)

[52] Till Mossakowski, and Markus Roggenbach. The Datatypes REAL and
COMPLEX in CAsL. Note M-7, in [18], April 1999.

[53] Peter D. Mosses. COFI: The Common Framework Initiative for algebraic
specification. Bull. EATCS, (59):127-132, June 1996.

[54] Peter D. Mosses. CasL for ASF+SDF users. In ASF+SDF’97, 2nd Intl.
Workshop on the Theory and Practice of Algebraic Specifications, volume
ASFSDF-97 of Electronic Workshops in Computing. Springer, 1997. http:
//www.ewic.org.uk/ewic/workshop/view.cfm/ASFSDF-97.

[65] Peter D. Mosses. COFI: The Common Framework Initiative for Algebraic
Specification and Development. In TAPSOFT ’97: Theory and Practice of
Software Development, LNCS volume 1214, pages 115-137. Springer, 1997.

[56] Peter D. Mosses. Formatting CASL specifications using ITEX. Note C-2, in
[18], June 1998.

[67] Peter D. Mosses. CAsL for CafeOBJ Users. In: Kokichi Futatsugi, A. T.
Nakagawa and T. Tamai (eds.): CAFE: An Industrial-Strength Algebraic Formal
Method. pages 121-144, Elsevier, 2000.

[58] Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in Martin-
Léf’s Type Theory: An Introduction. Oxford Univ. Press, 1990.

[59] Larry Paulson. Isabelle: A Generic Theorem Prover. LNCS volume 828.
Springer, 1994.

[60] Wolfgang Reif. The KIV-approach to Software Verification. In KORSO:
Methods, Languages, and Tools for the Construction of Correct Software — Final
Report, LNCS volume 1009, pages 339-368. Springer, 1995. (For the KIV system
see also http://www.informatik.uni-ulm.de/pm/kiv/kiv.html.)

[61] Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich Hufimann.
Making Precise UML Active Classes Modeled by State Charts. Technical report,
DISI — Universita di Genova, DISI-TR-99-14, 1999.

[62] Markus Roggenbach, Lutz Schréder, and Till Mossakowski. Specifying Real
Numbers in CAsL. In Christine Choppy, Didier Bert and Peter Mosses (eds.):
Recent Developments in Algebraic Development Techniques, 14th International
Workshop, WADT’99, Chateau de Bonas, France. LNCS volume 1827, pages
146-161. Springer, 2000.

52

[63] Markus Roggenbach, and Till Mossakowski. Rules of Methodology. Note M-6,
in [18], 2000.

[64] Markus Roggenbach, and Till Mossakowski. Basic Datatypes in CASL. Note L-
12, in [18], March 2000.

[65] Donald Sannella, Stefan Sokotowski and Andrzej Tarlecki. Toward formal
development of programs from algebraic specifications: parameterisation
revisited. Acta Informatica 29, pages 689-736 (1992).

[66] Donald Sannella and Andrzej Tarlecki. Extended ML: an institution-
independent framework for formal program development. Proc. Intl. Workshop
on Category Theory and Computer Programming, Guildford. LNCS volume 240,
pages 364-389. Springer, 1986.

[67] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76, pages 165-210, 1988.

[68] Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic
specification and program development. Formal Aspects of Computing 9, pages
229-269 (1997).

[69] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specifications
and Formal Program Development. Cambridge Univ. Press, to appear.

[70] Donald Sannella and Martin Wirsing. A kernel language for algebraic
specification and implementation. Proc. 1983 Int’l. Conf. on Foundations of
Computation Theory, Borgholm. LNCS Volume 158, pages 413-427. Springer,
1983.

[71] James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Data type
specification: parameterization and the power of specification techniques. ACM
TOPLAS, Volume 4, pages 711-732, 1982.

[72] Christophe Tronche. The Cachan Parser for CASL. http://www.lsv.
ens-cachan.fr/~“tronche/cofi/

[73] Mark G.J. van den Brand. The Amsterdam Parser for CASL. http://adam.
wins.uva.nl/"markvdb/cofi/casl.html

[74] Mark G.J. van den Brand, Hayco A. de Jong, Paul Klint and Pieter A. Olivier.
Efficient Annotated Terms. Software-Practice and Ezperience 30, pp 259-
291, Wiley, 2000. (For the ATerm library see http://www.cwi.nl/projects/
MetaEnv/aterm/.)

[75] Mark G.J. van den Brand and Jeroen Scheerder. Development of Parsing
Tools for CAsL Using Generic Language Technology. In Christine Choppy,
Didier Bert, and Peter Mosses (eds.): Recent Developments in Algebraic
Development Techniques, 14th International Workshop, WADT’99, Chateau
de Bonas, France. LNCS volume 1827, pages 89—105. Springer, 2000.

[76] Martin Wirsing. Algebraic specification. In: J. van Leeuwen, (ed.) Handbook of
Theoretical Computer Science, Volume B, pages 675-788. North-Holland, 1990.

23

