
International Electronic Journal of Algebra
Volume 2 (2007) 54-70

SUBGROUP LATTICE ALGORITHMS RELATED TO
EXTENDING AND LIFTING ABELIAN GROUPS

Septimiu Crivei and �tefan �uteu Szöll®si
Received: 1 November 2006; Revised: 16 February 2007

Communicated by Sait Hal�c�o§lu

Abstract. We develop algorithms for determining properties of �nite abelian
groups related to the notions of extending and lifting groups. Thus, we give ef-
�cient methods, on one hand to check the properties of being direct summand,
essential, super�uous, coessential, complement (closed), supplement (coclosed)
subgroup, and on the other hand to determine all subgroups with the men-
tioned properties of a given �nite abelian group.

Mathematics Subject Classi�cation (2000): 20K01, 20E15, 68R99
Keywords: Subgroup lattice, essential subgroup, super�uous subgroup, com-
plement, supplement, extending abelian group, lifting abelian group.

1. Introduction

Extending and lifting modules have been intensively investigated in the last
two decades due to their important applications to ring and module theory. The
reader is referred to the monographs Dung et al. [4] and Clark et al. [2] for
more information on them. A number of generalizations have been considered (for
instance, see [5], [6], [9]) and their study is still developing. Establishing their
structure and classifying them have been di�cult tasks, even in special cases such
as abelian groups. The structure of abelian groups that are extending or lifting is
determined, but this is still to be done in the case of most of their generalizations.

From the computational point of view, a useful tool - still far from being used
at its full capacity - is the computer algebra system GAP (Groups, Algorithms,
and Programming) [10], able (among many other things) to compute the subgroup
lattice of a �nitely generated group. This is the framework where we develop al-
gorithms for determining special subgroups of a �nite abelian group, that are the
bricks of working with extending groups, lifting groups and some of their generaliza-
tions. More precisely, we give e�cient methods, on one hand to check the properties
of being direct summand, essential, super�uous, coessential, complement (closed),
supplement (coclosed) subgroup, and on the other hand to determine all subgroups
with the mentioned properties of a given �nite abelian group. Moreover, GAP has

This work was supported by the grant CNCSIS-AT 72/2006.

SUBGROUP LATTICE ALGORITHMS 55

an optional package, called XGAP, able to visualize the generated subgroup lattice,
and the results of our algorithms can be easily spotted out in XGAP. We believe
that such algorithms, together with their implementation in GAP, will be useful
tools both for easily obtaining examples as well as for testing some conjectures,
before proving them rigorously.

Throughout G is a �nite abelian group, unless speci�ed otherwise. We denote
by A ≤ G the fact that A is a subgroup of G. The de�nitions of the notions used
in the paper are mainly taken from [2] and [4].

2. The subgroup lattice

Let us start by recalling a few elementary things on the subgroup lattice of a
�nite abelian group.

Proposition 2.1. The set S(G) of subgroups of G with respect to the inclusion is
a modular self-dual lattice.

De�nition 2.2. Let (L,≤) be a lattice with 0. An element 0 6= a ∈ L is called an
atom if the interval [0, a] consists only of 0 and a. The lattice L is called atomic if
for every 0 6= a ∈ L, the interval [0, a] has at least one atom.

One also has the notions of dual atom and dually atomic lattice when considering
the notions of atom and atomic lattice in the dual lattice of (L,≤).

Proposition 2.3. (i) The atoms of S(G) are the simple subgroups of G and the
dual atoms of S(G) are the maximal subgroups of G.

(ii) S(G) is atomic and dually atomic.

We are going to see the subgroup lattice of an abelian group as a directed graph
(digraph) with arcs always pointing �upwards�. As usual, for two elements a and b

of a lattice, a < b means a ≤ b and a 6= b. If a < b and there is no element c in
the lattice such that a < c < b, we denote this by a ≺ b. We construct the directed
graph ~Γ = (V, E, ~G), where V is a nonempty set of vertices, E is a set of arcs and
~G : E → V × V . In our construction e = (x, y) ∈ E ⇐⇒ ax ≺ by, if ax and by are
the corresponding elements from S(G).

Denote by f : S(G) → V the bijection between the subgroups of G (elements
of S(G)) and the corresponding vertices in the digraph. Also, denote by δ(k) the
number of divisors of k ∈ N. Let us increasingly order the divisors di of |G| and
de�ne, for each i ∈ {1, . . . , δ(|G|)}, level(i) := {H ∈ S(G)| |H| = di}. Note that if
e = (f(A), f(B)) ∈ E, then nA < nB , where A ∈ level(nA), B ∈ level(nB). Also
(level(i))1≤i≤δ(|G|) is a partition of S(G).

Recall now the de�nition of neighborhood(s) of a vertex y in a digraph ~Γ:

N in
~Γ

(y) = {x ∈ V |~G(x, y) 6= ∅}, Nout
~Γ

(y) = {x ∈ V |~G(y, x) 6= ∅}.

56 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

Remark. In general, we shall try to minimize references to GAP functions in order
to allow the reader to follow just the description of our algorithms and not their
implementation. But sometimes we shall mention the existence of some appropriate
functions. For instance, we should note that one can build the subgroup lattice of G

in GAP by using for example the built-in function LatticeSubgroups(G). In GAP
the subgroup lattice is a data structure allowing tests for minimality/maximality
relations for each subgroup (i.e. we can check the condition a ≺ b with built-
in functions). After the subgroup lattice of G is constructed, this information
can be retrieved from GAP in numerous ways (one is to use the built-in func-
tions MaximalSubgroupsLattice(L) and MinimalSubgroupsLattice(L)). In the
description of algorithms throughout the paper we shall consider this information
already known.

3. Direct summands

Many of the notions de�ned here and in the next sections are related to direct
summands. So that, we begin by presenting some fast ways to test if a given
subgroup of G is a direct summand, and to �nd out all the pairs of direct summands
of G.

Let A, B ∈ S(G) be such that G = A⊕B. Then it is easy to see that |G| = |A| ·
|B| = |G : A| · |G : B|. Moreover, since the lattice S(G) is self-dual, we immediately
have the following result.

Proposition 3.1. Let A,B ∈ S(G). Then G = A ⊕ B if and only if |G| =
|G : A| · |G : B| and A ∩B = 0.

In other words, Proposition 3.1 tells us that if A ∈ S(G), then we should look
for a direct summand B of G such that G = A ⊕ B only among the subgroups of
G of order |G : A|.
Remark. We mention that after the construction of S(G) it is easy in GAP to
retrieve all the subgroups of G with the same index.

Our functions IsDirectSummand(G,A) to check if a given subgroup A of G is
a direct summand, and DirectSummands(G) to determine all pairs of direct sum-
mands of G are described in Algorithms 1 and 2. In Algorithm 2 we use the idea
from Algorithm 1 put in terms of levels in the subgroup lattice.

Now let us consider separately the two properties involved in the writing G =
A⊕B, namely A ∩B = 0 and A + B = G. They will be important later on when
we work with complements and supplements.

Denote ZA = {B ∈ S(G) | A ∩B = 0}. Clearly, every subgroup of G containing
A or contained in A does not belong to ZA. We slightly modify the construction

SUBGROUP LATTICE ALGORITHMS 57

Algorithm 1 IsDirectSummand(G,A)
Input : G �nite abelian group, A ≤ G

Output : e = TRUE if A is a direct summand of G; e = FALSE otherwise
n := δ(|G|), e := FALSE

for all B ∈ {H ∈ S(G) | |H| = |G : A|} do
if A ∩B = 0 then

e := TRUE

break
end if

end for
return e

Algorithm 2 DirectSummands(G)
Input : G �nite abelian group
Output : the set D of all pairs (A,B) of subgroups with A⊕B = G

n := δ(|G|), D := ∅
for i:=1 to dn/2e do
for all A ∈ level(i) do
for all B ∈ level(n + 1− i) do
if A ∩B = 0 then
D := D ∪ {(A,B)}

end if
end for

end for
end for
return D

of our digraph ~Γ = (V, E, ~G). Thus we de�ne a digraph ~Γ′ = (V, E′, ~G′), where
the only di�erence with respect to the initial one is that we �reverse� the arcs
between the vertices corresponding to subgroups of A. Hence, if D � A, then
(f(C), f(D)) ∈ E′ ⇐⇒ (f(C), f(D)) ∈ E, and if D ≤ A, then (f(C), f(D)) ∈
E′ ⇐⇒ (f(D), f(C)) ∈ E.

Proposition 3.2. Let A,B, C ∈ S(G). If A ∩ B = C, then there exists a path
pAB : f(A) = a0, . . . , ac = f(C), . . . , am = f(B) in ~Γ′ such that ni > ni+1 for
every 0 ≤ i < c and nj < nj+1 for every c ≤ j < m, where f−1(ak) ∈ level(nk),
0 ≤ k ≤ m.

Proof. Let A,B,C ∈ S(G) be such that A ∩ B = C. Since C ⊆ A and C ⊆ B,
there are chains C ≺ H1 ≺ . . . ≺ Hr ≺ A and C ≺ K1 ≺ . . . ≺ Ks ≺ B of
subgroups of G, hence there exist paths pAC : f(A) = a0, . . . , ac = f(C) and

58 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

pCB : f(C) = ac, . . . , am = f(B) in ~Γ′. Obviously, the concatenation of pAC and
pCB leads to a path between f(A) and f(B) passing through f(C). ¤

Corollary 3.3. Let A,B ∈ S(G). Suppose there is a path pAB between f(A) and
f(B) in ~Γ′ such that f(0) /∈ pAB. Then A ∩B 6= 0.

First let us solve the subproblem of computing the set ZA, based on the previous
corollary. In practice we may proceed as follows:

• After the usual construction of the subgroup lattice and digraph ~Γ, we
isolate (i.e. remove all incoming and outgoing arcs) the vertex correspond-
ing to the trivial subgroup (f(0)) and all the vertices v ∈ V such that
A < f−1(v).

• �Reverse� the arcs for the vertices corresponding to subgroups of A.
• Determine all B ∈ S(G) such that there is a path pAB . Since we have

removed the trivial subgroup, for all these subgroups we have A ∩ B 6= 0.
For the remaining vertices f(B′) a path would have existed only through
f(0), hence A ∩B′ = 0. Also, A ∩ 0 = 0.

We wrap this method in Algorithm 3, function NullIntersectors(G,A). Before
running the main part of the algorithm, we could check if A is essential in G (see
the corresponding section). If it is so, then clearly ZA = {0}.

Given a subgroup A of G, we have an algorithm dual to Algorithm 3 for �nding
the set FA = {B ∈ S(G)|A + B = G}. For later use, let us call this function
FullSummands(G,A).

4. Essential subgroups

De�nition 4.1. A subgroup A ≤ G is called essential in G if for every B ≤ G the
equality A ∩B = 0 implies B = 0. Notation: A E G.

De�nition 4.2. The socle of G is the sum of all simple subgroups of G, or equiv-
alently, the intersection of all essential subgroups of G. Notation: Soc(G). By
convention, we take Soc(G) = 0 if G has no simple subgroup.

In the case of (not necessarily �nite) abelian groups we have the following char-
acterization.

Theorem 4.3. [1, Ex. S10.10] Let A ≤ G. Then A E G if and only if Soc(G) ⊆ A

and the quotient group G/A is torsion.

The fact that a group is torsion can be described by the property that its sub-
group lattice is atomic [1, Ex. M10.2], which holds if the group is �nite.

The �rst function of this section checks whether a given subgroup H is essential
in G or not and it is based on Theorem 4.3. GAP has a function Socle(G) that
can be used.

SUBGROUP LATTICE ALGORITHMS 59

Algorithm 3 NullIntersectors(G,A)
Input : G �nite abelian group, A ≤ G

Output : ZA = {B ≤ G|A ∩B = 0}
if IsEssential(G,A) then
ZA := {0}

else
{reverse the arcs for all subgroups of A}
SA := {A}, S ′ := SA

repeat
S ′ := {B ∈ S(G)|f(B) ∈ N in

~Γ
(f(H)),H ∈ S ′}, SA := SA ∪ S ′

until 0 ∈ SA

Old := ∅, New := ∅
for all e = (f(A), f(B)) ∈ E such that A, B ∈ SA do

Old := Old ∪ {e}
New := New ∪ {(f(B), f(A))}

end for
E := E \Old

E := E ∪New

{determine the set EA of all proper extensions of A}
EA := {A}, E ′ := EA

repeat
E ′ := {B ∈ S(G)|f(B) ∈ Nout

~Γ
(f(H)),H ∈ E ′}, EA := EA ∪ E ′

until G ∈ EA

EA := EA \ {A}
{isolate the vertices in EA and 0}
E := E \ ({(a, b) ∈ E|f−1(b) ∈ EA} ∪ {(a, b) ∈ E|f−1(a) ∈ EA})
E := E \ ({(f(0), b) ∈ E} ∪ {(a, f(0)) ∈ E})
{compute the set C̄A of all subgroups B such that A ∩B 6= 0}
C̄A := {A}, C̄′ := C̄A

repeat
C̄′ := {B ∈ S(G)|f(B) ∈ Nout

~Γ
(f(H)),H ∈ C̄′}, C̄A := C̄A ∪ C̄′

until C̄A is not modi�ed anymore
ZA := S(G) \ (EA ∪ C̄A

)

end if
return ZA

However, if one is interested in obtaining all the essential subgroups in a given
subgroup lattice, the repeated use of the previous function turns out to be ine�cient.
With the method presented in our Algorithm 5 we can spot out all the essential

60 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

Algorithm 4 IsEssential(G,A)
Input : G �nite abelian group, A ≤ G

Output : e = TRUE if A E G; e = FALSE otherwise
if Socle(G) ⊆ A then

e := TRUE

else
e := FALSE

end if
return e

subgroups of G. We use the classical FIFO data structure of a queue. Recall that
a queue Q is described by the following operations:

• empty(Q) returns an empty queue
• push(Q,el) returns a queue consisting of the elements of Q and el (inserted

at the end)
• pop(Q) if Q is not empty, returns a queue consisting in all but the �rst

element of Q
• top(Q) returns the �rst element of the queue Q (if it is not empty)

We use the classical idea of breadth-�rst traversal of the digraph. For keeping track
of the already visited vertices, we use a boolean-valued list as a marker.

An important notion connected to essential subgroups is the following one.

De�nition 4.4. G 6= 0 is called uniform if for every 0 6= A, B ≤ G we have
A ∩B 6= 0, or equivalently, every non-zero subgroup of G is essential in G.

We should note that the structure of uniform abelian groups is well-known, the
uniform �nite abelian groups being exactly those isomorphic to cyclic groups Zpn

for some prime p and natural number n. Nevertheless, one may write a simple
function IsUniform(G) to determine if a given �nite abelian group is uniform or
not, based on the following observation. If A and B are two di�erent atoms in the
lattice S(G), then A ∩ B = 0 implies A 5 G and G is not uniform. However, if A

is the only atom of S(G), then A = Soc(G) ⊆ H for every H ≤ G, so that G is
uniform.

5. Super�uous subgroups

De�nition 5.1. A subgroup A ≤ G is called super�uous in G if for every B ≤ G

the equality A + B = G implies B = G. Notation: A << G.

De�nition 5.2. The radical of G is the intersection of all maximal subgroups of
G, or equivalently, the sum of all super�uous subgroups of G. Notation: Rad(G).
By convention, we take Rad(G) = G if G has no maximal subgroup.

SUBGROUP LATTICE ALGORITHMS 61

Algorithm 5 EssentialSubgroups(G)
Input : G �nite abelian group
Output : the set E of all essential subgroups of G

E := ∅, u := f(Socle(G));
for all v ∈ V do

marked[v] := FALSE

end for
Q := empty(Q)
Q := push(Q,u)
marked[u] := TRUE

while Q is not empty do
x := top(Q), Q := pop(Q)
for all y ∈ {z ∈ Nout

~Γ
(x)|marked[z] = FALSE} do

Q := push(Q, y)
marked[x] := TRUE

end for
end while
for all v ∈ V do
if marked[v] = TRUE then
E := E ∪ {f−1(v)}

end if
end for
return E

The basic characterization of super�uous subgroups of an (not necessarily �nite)
abelian group is the following one.

Theorem 5.3. [1, Ex. D10.5] Let A ≤ G. Then A << G if and only if A ⊆ Rad(G)
and A has no divisible quotient groups.

The fact that a group is divisible can be described by the property that its lattice
subgroup has no dual atoms [1, Ex. S10.9]. Since divisible groups are in�nite, note
that the condition on divisible quotient groups from the previous theorem is satis�ed
by any �nite abelian group. In the same setting, now it is clear that super�uous
subgroups in the lattice S(G) are just the essential subgroups in the dual lattice of
S(G). Hence the algorithms for deciding if a given subgroup A of G is super�uous or
not (called IsSuperfluous(G,A)), and for �nding all the super�uous subgroups of
G (called SuperfluousSubgroups(G)) are easily dualized from those in the section
on essential subgroups. Because of duality it is reasonable to �mirror� the digraph:
e = (y, x) ∈ E ⇐⇒ ax ≺ by, if ax and by are the corresponding elements from
S(G), i.e. the arcs point �downwards�.

62 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

A dual notion to that of uniform group is the following one.

De�nition 5.4. G 6= 0 is called hollow if for every A,B < G we have A + B < G,
or equivalently, every proper subgroup of G is super�uous in G.

By the self-dual property of S(G), it is easy to see that a �nite abelian group
is hollow if and only if it is uniform. Hence, one can use the same function
IsUniform(G) to test both these properties.

6. Coessential subgroups

A notion related to super�uous subgroups is that of coessential subgroup.

De�nition 6.1. Let B ≤ A ≤ G. Then B is called a coessential subgroup of A in
G if A/B << G/B.

GAP is able to work with factor groups, so that Algorithm 6 (for checking if a
given subgroup B is a coessential subgroup of A in G or not) follows immediately.

Algorithm 6 IsCoessential(G,A,B)
Input : G �nite abelian group, B ≤ A ≤ G

Output : e = TRUE if B is a coessential subgroup of A in G;
e = FALSE otherwise
e := IsSuperfluous(G/B, A/B);
return e

However, if we are interested in �nding all the coessential subgroups of a given
subgroup in G, another method is required. We develop such a method based on
the following theorem. In the case of a �nite group we have:

Theorem 6.2. [2, 3.2] Let B ≤ A ≤ G. Then A = B + S for some S << G if and
only if B is a coessential subgroup of A in G.

We proceed as follows.

• �rst determine the set S′
A = {S ≤ A|S << G}

• compute Q = {S ≤ A|S << G and S not super�uous in A} (clearly, for
any C ∈ {S ≤ A|S << G and S << A} we cannot have C + B = A for
some B < A)

• CA :=
⋃

S∈Q{B ≤ A|B + S = A} ∪ {A}
A formal description is given in Algorithm 7.

SUBGROUP LATTICE ALGORITHMS 63

Algorithm 7 CoessentialSubgroups(G,A)
Input : G �nite abelian group, A ≤ G

Output : the set CA of all coessential subgroups of A in G

CA := {A}
S′

A := SuperfluousSubgroups(G)
SA := {A}, S ′ := SA

repeat {compute all subgroups of A}
S ′ := {B ∈ S(G)|f(B) ∈ Nout

~Γ
(f(H)),H ∈ S ′}

SA := SA ∪ S ′
until 0 ∈ SA

S′
A := S′

A ∩ SA

SA := SuperfluousSubgroups(A)
Q := S′

A \SA

CA := ∅
for all S ∈ Q do

ζS := FullSummands(A, S)
CA := CA ∪ ζS

end for
return CA

7. Complement and closed subgroups

A notion generalizing direct summands is that of complement subgroup.

De�nition 7.1. Let A ≤ G. A subgroup B of G is called a:
(i) complement of A in G if it is maximal in the set of subgroups C of G with

A ∩ C = 0.
(ii) complement if there is A ≤ G such that B is a complement of A in G.

Theorem 7.2. (i) [4, p.6] Every subgroup of G has a complement.
(ii) Every direct summand of G is a complement subgroup.

Strongly related to complement subgroups are the closed subgroups.

De�nition 7.3. A subgroup A ≤ G is called closed in G if A has no proper essential
extension in G.

Theorem 7.4. [4, p.6] Let A ≤ G. Then A is a complement subgroup if and only
if A is closed in G.

We �rst determine if a given subgroup A of G is a complement (closed) subgroup.
Afterwards, we compute all its complements in G, and �nally we determine all the
complement (closed) subgroups of G.

64 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

In order to check if a subgroup is closed, note that if A,B ∈ S(G) with A ⊆ B,
then A E B if and only if A and B contain the same atoms in S(G). Hence a
subgroup A of G is closed if and only if it has no extension containing the same
atoms as A. So, if A is not closed, then it must have a minimal extension containing
the same atoms as A.

Algorithm 8 IsClosed(G,A)
Input : G �nite abelian group, A ≤ G

Output : e = TRUE if A is a complement (closed) subgroup of G;
e = FALSE otherwise
if A = G then

e := TRUE

return e

end if
if |{a ∈ Nout

~Γ
(f(0)) | f−1(a) ⊆ A}| < min{|{a ∈ Nout

~Γ
(f(0)) | f−1(a) ⊆

f−1(b)}| | b ∈ Nout
~Γ

(f(A))} then
e := TRUE

else
e := FALSE

end if
return e

According to De�nition 7.1, we have to build up the set of all subgroups C ≤ G

with A ∩ C = 0. The description of Complements(G,A) is given in Algorithm 9
and makes use of Algorithm 3. The breadth-�rst traversal of the digraph can be
implemented using the method in Algorithm 5, with a queue data structure.

Algorithm 9 Complements(G,A)
Input : G �nite abelian group, A ≤ G

Output : the set CA of all complements of A in G

{determine the set ZA}
ZA := NullIntersectors(G, A)
{the elements of CA are the maximal elements of ZA}
CA := {B ∈ ZA|Nout

~Γ
(f(B)) ⊆ {f(N)|N ∈ S(G) \ ZA}}

return CA

The function ClosedSubgroups(G), which determines the closed (complement)
subgroups of G, is presented in Algorithm 10. The construction of the digraph and
the notations are the same as in Section 4. We use again the idea from Algorithm
8, using also the fact that if a subgroup of G contains a certain set of atoms of

SUBGROUP LATTICE ALGORITHMS 65

S(G), then any of its extensions contains at least those atoms. For a vertex v ∈ V ,
we denote by atm[v] the set of all vertices a ∈ V such that f−1(a) is an atom of
S(G) contained in f−1(v).

Algorithm 10 ClosedSubgroups(G)
Input : G �nite abelian group
Output : the set C of all closed subgroups of G

if G = 0 then
C := {0}
return C

end if
C := ∅
for all v ∈ V do

marked[v] := FALSE

atm[v] := ∅
end for
for all a ∈ Nout

~Γ
(f(0)) do

atm[a] := {a}
end for
Q := empty(Q)
Q := push(Q, f(0))
while Q is not empty do

x := top(Q)
Q := pop(Q)
for all y ∈ Nout

~Γ
(x) do

atm[y] := atm[y] ∪ atm[x]
if marked[y] = FALSE then

Q := push(Q, y)
marked[y] := TRUE

end if
end for

end while
C := {H ∈ S(G)||atm[f(H)]| < min{|atm[y]||y ∈ Nout

~Γ
(f(H))}}

return C

Now let us recall the de�nition of a closure of a subgroup in a group.

De�nition 7.5. Let A ≤ G. A subgroup C of G such that A ⊆ C is called a
closure of A in G if C is a maximal essential extension of A in G, or equivalently,
A E C and C is closed in G.

66 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

Theorem 7.6. [4, p.6] Every subgroup of G has a closure in G.

As an application, one can easily write a function Closures(G,A) to get all the
closures in G of a subgroup A of G by using the functions ClosedSubgroups(G)
and IsEssential(G,A).

8. Supplement and coclosed subgroups

Another notion generalizing direct summands, dual to a complement subgroup,
is that of supplement subgroup.

De�nition 8.1. Let A ≤ G. A subgroup B of G is called a:
(i) supplement of A in G if it is minimal in the set of subgroups C of G with

A + C = G.
(ii) supplement if there is A ≤ G such that B is a supplement of A in G.

We have the following result, whose �rst part holds because G is �nite.

Theorem 8.2. (i) Every subgroup of G has a supplement.
(ii) Every direct summand of G is a supplement subgroup.

De�nition 8.3. A subgroup A of G is called coclosed in G if there is no proper
coessential subgroup of A in G.

We have the following result for a not necessarily �nite abelian group G.

Theorem 8.4. [2, 20.3] If G is weakly supplemented (i.e. every subgroup of G has
a supplement), then a subgroup A of G is a supplement if and only if it is coclosed
in G.

Note that every supplement subgroup of a (not necessarily �nite) abelian group
is a complement subgroup [7, Theorem 4.1.4]. Since every �nite abelian group is
clearly weakly supplemented, we can use [7, Theorem 4.3.1] to get the following
stronger result.

Theorem 8.5. The following are equivalent for a subgroup A of G:
(i) A is a complement.
(ii) A is closed in G.
(iii) A is a supplement.
(iv) A is coclosed in G.

Of course, if a subgroup A of G is a complement for a subgroup B of G, this
does not mean that A is a supplement for the same subgroup B of G. Hence
one needs a function Supplements(G,A) to determine all supplements of A in G,
dual to Complements(G,A). But the function IsClosed(G,A) checks also if A is a

SUBGROUP LATTICE ALGORITHMS 67

supplement (coclosed) subgroup of G, whereas the function ClosedSubgroups(G)
gives also the set of all supplement (coclosed) subgroups of G.

Now let us recall the de�nition of a coclosure of a subgroup in a group.

De�nition 8.6. Let A ≤ G. A subgroup C of G such that C ⊆ A is called a
coclosure of A in G if C is a minimal coessential subgroup of A in G, or equivalently,
C is a coessential subgroup of A in G and C is coclosed in G.

For a �nite group we have the following result.

Theorem 8.7. Every subgroup of G has a coclosure in G.

One can easily write a function Coclosures(G,A) to determine all the coclosures
in G of a subgroup A of G, dual in some sense to Closures(G,A).

9. Extending groups and lifting groups

Now let us make a few considerations on extending and lifting abelian groups.

De�nition 9.1. G is called extending if every subgroup of G is essential in a direct
summand of G.

Proposition 9.2. G is extending if and only if every complement subgroup of G

is a direct summand of G.

De�nition 9.3. G is called lifting if every proper subgroup A of G contains a
direct summand D of G such that A/D << G/D (i.e. D is a coessential subgroup
of A in G).

Proposition 9.4. [2, 22.3] G is lifting if and only if it is amply supplemented (i.e.
for every subgroups A,B of G with A + B = G there is a supplement C of A with
C ⊆ B) and every supplement subgroup is a direct summand.

Note that every �nite abelian group is clearly amply supplemented, so that we
have the following consequence.

Corollary 9.5. A �nite group G is lifting if and only if every supplement subgroup
of G is a direct summand.

The structures of extending and lifting abelian groups are well-known. Having in
mind also Theorem 8.5, it should not be surprising to get the following consequence,
which shows, together with their structure, that for a �nite abelian group the
extending and lifting properties coincide.

Theorem 9.6. [8, p.19 and p.98] A �nite abelian group G is extending if and only
if it is lifting if and only if each p-component of G is isomorphic to a direct sum
(
⊕

I Zpn)
⊕

(
⊕

J Zpn+1), where p is a prime, n = n(p) is a natural number and the
cardinals I, J may be zero.

68 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

Even if the structure of extending and lifting abelian groups is known, one
can also easily check with a function IsExtending(G) if G is extending (and
also lifting) by comparing the results of the functions ClosedSubgroups(G) and
DirectSummands(G).

10. Implementation

All the algorithms presented or just mentioned here have been implemented using
the programming language of GAP [3]. Here it is the list of implemented functions,
where G is a �nite abelian group and A,B are subgroups of G:

• IsDirectSummand(G)
• DirectSummands(G)
• NullIntersectors(G,A) / FullSummands(G,A)
• IsEssential(G,A) / IsSuperfluous(G)
• EssentialSubgroups(G) / SuperfluousSubgroups(G)
• IsUniform(G)
• IsCoessential(G,A,B)
• CoessentialSubgroups(G,A)
• IsClosed(G,A)
• Complements(G,A) / Supplements(G,A)
• ClosedSubgroups(G)
• Closures(G,A) / Coclosures(G,A)
• IsExtending(G)

11. An example

Let us consider the abelian group Z4 ⊕ Z2 ⊕ Z2, that is, the abelian group G

with the presentation

G = 〈a, b, c | 4a = 0, 2b = 0, 2c = 0〉.

It has 27 subgroups, which are the following (listed in the order given by GAP):

H1 = 0 H10 = 〈2a, b〉 H19 = 〈c + b, 2a + b〉
H2 = 〈b〉 H11 = 〈b, 2a + c〉 H20 = 〈2a, b, c〉
H3 = 〈c〉 H12 = 〈2a, b + 3a〉 H21 = 〈a, b〉
H4 = 〈2a〉 H13 = 〈c, 2a + b〉 H22 = 〈2a, b, c + 3a〉
H5 = 〈b + c〉 H14 = 〈a〉 H23 = 〈a, c〉
H6 = 〈2a + b〉 H15 = 〈2a, b + 3a〉 H24 = 〈2a, b + 3a, c〉
H7 = 〈2a + c〉 H16 = 〈2a, c + 3a〉 H25 = 〈a, c + b〉
H8 = 〈2a + b + c〉 H17 = 〈2a, c + b〉 H26 = 〈2a, b + 3a, c + 3a〉
H9 = 〈b, c〉 H18 = 〈2a, a + b + c〉 H27 = G

SUBGROUP LATTICE ALGORITHMS 69

Instead of listing here the respective GAP commands and their output, we con-
sider only the associated abstract mathematical objects. A detailed description of
the GAP functions is given in [3]. Among our implemented functions, we consider
only those which produce a list of subgroups with one of the previously mentioned
properties. The results given by the other functions, which decide whether a given
subgroup has a certain property, are basically included in these ones.

Let us start with functions having the group G as their only input parameter.
The function DirectSummands(G) produces a list of 57 pairs of direct summands
of G. For instance, we obtain the following pairs of direct summands involving the
subgroup H9 = 〈b, c〉: (H9,H14), (H9,H15), (H9,H16), (H9,H18). Also, one can
see that G has 22 direct summands, namely H1, H2, H3, H5, H6, H7, H8, H9,
H11, H13, H14, H15, H16, H18, H19, H21, H22, H23, H24, H25, H26, H27. Using the
functions EssentialSubgroups(G) and SuperfluousSubgroups(G), one can �nd
out the essential subgroups of G, namely H20 and H27, and the super�uous ones,
namely H1 and H4. The list of all closed (hence also coclosed) subgroups of G is
given by the function ClosedSubgroups(G) and is the same as the list of direct
summands of G.

We can immediately check using the corresponding functions that our group
is not uniform (hence also not hollow), but it is extending (hence also lifting). If
someone does not know the structure of extending abelian groups (i.e., our previous
Theorem 9.6), but wants to state a conjecture concerning the structure of these
abelian groups, the function IsExtending(G) can be used for some (or even all)
abelian groups of reasonable large orders (using also the GAP library of small
groups, see [10]), in order to help him to �nd the correct statement.

Now take the subgroup H10 = 〈2a, b〉. The subgroups of G having zero inter-
section with H10, respectively having sum G with H10 are given by the functions
NullIntersectors(G,H10) and FullSummands(G,H10). These subgroups are H1,
H3, H5, H7 and H8, respectively H23, H24, H25, H26 and H27. Using the corre-
sponding functions, we obtain that the coessential subgroups of H10 in G are H2,
H6 and H10, the complements of H10 in G are H3, H5, H7 and H8, the supplements
of H10 in G are H23, H24, H25 and H26, the closures of H10 in G are H21 and H22,
and the coclosures of H10 in G are H2 and H6.

Finally, regarding computer speed, let us note that the results of our functions
are obtained fast, practically instantaneous for a group as G = Z4 ⊕ Z2 ⊕ Z2.
Moreover, the subgroups determined by them may be visualized in the lattice of
subgroups by using the GAP package XGAP.

Acknowledgements. The authors would like to thank the referee for the com-
ments and suggestions, which improved the presentation of the paper.

70 SEPTIMIU CRIVEI AND �TEFAN �UTEU SZÖLL�SI

References

[1] G. C lug reanu, S. Breaz, C. Modoi, C. Pelea and D. V lcan, Exercises in
Abelian group theory, Kluwer Texts in the Mathematical Sciences, 25, Dor-
drecht, Kluwer, 2003.

[2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules. Supplements
and projectivity in module theory. Frontiers in Mathematics, Birkhäuser, Basel,
2006.

[3] S. Crivei, G. Olteanu and �. �uteu Szöll®si, ELISA. A collec-
tion of GAP algorithms related to extending and lifting abelian
groups. (http://www.gap-system.org/Packages/undep.html)
(http://math.ubbcluj.ro/~crivei/GAP_project).

[4] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules,
Pitman Research Notes in Mathematics Series, 313, Longman Scienti�c and
Technical, 1994.

[5] A. Harmanc�, D. Keskin and P.F. Smith, On ⊕-supplemented modules, Acta
Math. Hungar., 83 (1999), 161�169.

[6] D. Keskin andW. Xue, Generalizations of lifting modules, Acta Math. Hungar.,
91 (2001), 253�261.

[7] E. Mermut, Homological approach to complements and supplements, Ph.D.
thesis, Dokuz Eylül University, Izmir, 2004.

[8] S.H. Mohamed and B.J. Müller, Continuous and discrete modules, London
Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge,
1990.

[9] P.F. Smith and A. Tercan, Generalizations of CS modules, Comm. Algebra,
21 (1993), 1809�1847.

[10] The GAP Group, GAP � Groups, Algorithms, and Programming, Version
4.4.7 ; 2006, (http://www.gap-system.org).

Septimiu Crivei * and �tefan �uteu Szöll®si **
Faculty of Mathematics and Computer Science,
Babe³-Bolyai University,
Str. M. Kog lniceanu 1, 400084 Cluj-Napoca, Romania
E-mails: * crivei@math.ubbcluj.ro, ** szollosi@gmail.com

