SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master of Science
1.6 Study programme / Qualification	Master of Advanced Mathematics

2. Information regarding the discipline

2.1 Name of the discipline A	lgebraic topology		
2.2 Course coordinator	Assoc.Prof.PhD. Cornel Pintea		
2.3 Seminar coordinator Assoc.Prof.PhD. Cornel Pintea			
2.4. Year of study 1 2.5 Semes	ter 2 2.6. Type of evaluation E 2.7 Type of discipline Compulsory		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:				hours	
Learning using manual, course support, bibliography, course notes				40	
Additional documentation (in libraries, on electronic platforms, field documentation)				44	
Preparation for seminars/labs, homework, papers, portfolios and essays			50		
Tutorship				10	
Evaluations				14	
Other activities:			-		
3.7 Total individual study hours 158					
3.8 Total hours per semester	3.8 Total hours per semester 200				
3.9 Number of ECTS credits 8					

4. Prerequisites (if necessary)

4.1. curriculum	Elementary abstract algebra		
4.2. competencies	Competencies of logic reasonings and in using the knowledges		
	of the above mentioned curricula.		

5. Conditions (if necessary)

5.1. for the course	• The classroom should be gifted with a board and video		
	projector. The attendance is strongly recommended.		
5.2. for the seminar /lab activities	• The classroom should be gifted with a board and . The		
	attendance is strongly recommended.		

6. Specific competencies acquired

Professional competencies	 Description of concepts, theories and models used in the application field Identification of adequate models and methods for solving real problems

Transversal competencies	• Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups
7. Objectives of t	he discipline (outcome of the acquired competencies)
7.1 General objective of the discipline	• To introduce the basic notions and results of Algebraic Topology as well as some of its applications
7.2 Specific objective of the discipline	• To present some applications of Algebraic Topology to various fields of Mathematic s

8. Content

8.1 Course	Teaching methods	Remarks
1. Elementary homotopy theory	Exposure: description,	
1.1 Homotopy of paths1.2 The fundamental group	explanation, examples	
1.3 The fundamental group of the circle and applications1.4 The Fundamental Theorem of Algebra (seminar)1.5 Brower fixed point Theorem (seminar)	Exposure: description, explanation, examples	
 1.6 The fundamental group of higher dimensional spheres 1.7 The Borsuk-Ulam Theorem 1.8 The Seifert-VanKampen theorem (seminar) 	Exposure: description, explanation, examples	
 1.9 Homotopy of maps 1.10 Covering spaces 1.11 A lifting criterion 1.12 Fibrations. Examples 1.11.1 Serre/Weak fibrations 	Exposure: description, explanation, examples	1

1.11.2 Hurewicz fibrations	
1.11.3 Locally trivial fibrations	
1.12 Higher order homotopy groups1.13 Higher order relative homotopy groups	Exposure: description, explanation, examples,
1.14 The boundary operator	proofs, debate, dialogue
1.15 The induced group homomorphisms	
1.16 The exact sequence of a triplet	
1.17 The exact sequence of a fibration	
2. Singular homology theory	Exposure: description,
2.1 Affine preliminaries	explanation, examples, proofs, debate,
2.2 Singular theory	dialogue
2.3 Chain complexes	
2.4 Homotopy invariance of Homology	
2.5 The Relation between π_1 and H_1	Exposure: description,
2.6 Relative homology	explanation, examples.
2.7 The exact homology sequence	
2.8 The excision Theorem	Exposure: description,
2.9 The Mayer-Vietoris exact sequence	explanation, examples, proofs
2.10 The Jordan-Brower separation Theorem	
3. Orientation and duality of manifolds	Exposure: description,
3.1 Orientation on manifolds	explanation, examples, proofs
3.2 Singular cohomology	
3.3 Cup and Cap products	Exposure: description, explanation, examples, proofs
3.4 Algebraic limits	Exposure: description, explanation, examples, proofs
3.5 Poincare duality	Exposure: description, explanation, examples, proofs
4 The homology and cohomology of products of spaces	Exposure: description,
4.1 The Kuneth formula	explanation, examples, proofs
4.1 The universal coefficient Theorem	Exposure: description, explanation, examples, proofs
Bibliography	

- 1. D.Andrica, C.Pintea, Elemente de teoria omotopiei cu aplicatii la studiul punctelor critice, Editura MIRTON, Timisoara, 2002.
- 2. 2. D.Andrica, I.N.Casu, Grupuri Lie, aplicatia exponentiala si mecanica geometrica, Presa Universitara Clujeana, 2008.
- 2. A.Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- 3. M.J.Greenberg, J.R.Harper, Algebraic Topology.A first course, Addison-Wesley, 1981.
- 4. C.Godbillon, Elements de topologie algebrique, Hermann, Paris, 1971.
- 5. A. Hatcher, Algebraic topology, Cambridge University Press, 2002.
- 6. S-T. Hu, Homotopy Theory, Academic Press, New York and London, 1959.
- 7. D. Husemoller, Fibre Bundles (Third Edition), 1994 Springer-Verlag.
- 8. W.S.Massey, Algebraic Topology: An Introduction, Harcourt, Brace&World, 1967.
- 9. I.Pop, Topologie algebrica, Editura Stiintifica, Bucuresti, 1990.
- 10. E.Spanier, Algebraic Topology, McGraw Hill, 1966.

10. E.Spanici, Aigebraic Topology, Weedraw Tini, 1900.	m 11 1 . 1	
8.2 Seminar	Teaching methods	Remarks
The Fundamental Theorem of Algebra The Brower fixed point Theorem	Explation, dialogue, solving problems	One tutorial
The fundamental group of higher dimensional spheres The Borsuk-Ulam Theorem	Dialogue, debate, examples, solving problems	Two tutorials
The fundamental groups of surfaces	Dialogue, debate, case studies, examples, solving problems	Two tutorials
The fundamental groups of classical Lie groups	Dialogue, debate, case studies, examples, solving problems	Two tutorials
Higher order homotopy grouops of classical Lie groups	Dialogue, debate, examples, solving problems	Two tutorials
Differential manifolds	Dialogue, debate, examples, solving problems	Two tutorials
Differential forms	Dialogue, debate, examples, solving problems	One tutorial
The DeRham cohomology	Dialogue, debate, examples, solving problems	Two tutorials

Bibliography

- 1. D.Andrica, C.Pintea, Elemente de teoria omotopiei cu aplicatii la studiul punctelor critice, Editura MIRTON, Timisoara, 2002.
- 2. D.Andrica, I.N.Casu, Grupuri Lie, aplicatia exponentiala si mecanica geometrica, Presa Universitara Clujeana, 2008.
- 3. M.J.Greenberg, J.R.Harper, Algebraic Topology.A first course, Addison-Wesley, 1981.
- 4. C.Godbillon, Elements de topologie algebrique, Hermann, Paris, 1971.
- 5. W.S.Massey, Algebraic Topology: An Introduction, Harcourt, Brace&World, 1967.
- 6. Pintea C., Geometrie. Geometrie diferențialăGeometrie riemanniană. Grupuri și algebra Lie, Presa

Universitară Clujeană, 2006.

7. Pintea, C., The size of critical and tangency sets, Presa Universitară Clujeană, 2021.

8. I.Pop, Topologie algebrica, Editura Stiintifica, Bucuresti, 1990.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The contents is oriented towards applications of Algebraic Topology to mathematical research. **10. Evaluation**

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	The students are expected to understand the notions and the results by typical examples or counterexamples. To be able to present the main ideas in the proof of the theoretical results.	Written final exam consisting in theoretical questions alongside applications and problems.	50%	
	To develop a specific subject by reading the bibliography.	Report	35%	
10.5 Seminar	Solving problems skills the classroom	Quiz versus active participation in the classroom	15%	
10.6 Minimum performance standards				
At least grade 5 (from a scale of 1 to 10) at the final exam and the grade for tutorial component.				

DateSignature of course coordinatorSignature of seminar coordinator20.04.2021Assoc.Prof.PhD. Cornel PINTEAAssoc.Prof.PhD. Cornel PINTEADate of approvalSignature of the head of department

.....

Prof. Octavian AGRATINI