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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

1 Week 1: Vector algebra

1.1 Free vectors

Vectors Let P be the three dimensional physical space in which we can talk about points,
lines, planes and various relations among them. If (A, B) ∈ P × P is an ordered pair, then
A is called the original point or the origin and B is called the terminal point or the extremity of
(A, B).

Definition 1.1. The ordered pairs (A, B), (C, D) are said to be equipollent, written (A, B) ∼
(C, D), if the segments [AD] and [BC] have the same midpoint.

Remark 1.1. If the points A, B, C, D ∈ P are not collinear, then (A, B) ∼ (C, D) if and only
if ABDC is a parallelogram. In fact the length of the segments [AB] and [CD] is the same
whenever (A, B) ∼ (C, D).

Proposition 1.1. If (A, B) is an ordered pair and O ∈ P is a given point, then there exists a unique
point X such that (A,B)∼ (O, X).

Proposition 1.2. The equipollence relation is an equivalence relation on P ×P .

Definition 1.2. The equivalence classes with respect to the equipollence relation are called
(free) vectors.

Denote by
−→
AB the equivalence class of the ordered pair (A, B), that is

−→
AB= {(X, Y) ∈

P × P | (X, Y) ∼ (A, B)} and let V = P × P
/
∼

= {
−→
AB | (A, B) ∈ P × P} be the set of

(free) vectors. The length or the magnitude of the vector
−→
AB, denoted by ‖

−→
AB ‖ or by |

−→
AB |,

is the length of the segment [AB].

Remark 1.2. If two ordered pairs (A, B) and (C, D) are equippllent, i.e. the vectors
−→
AB and

−→
CD are equal, then they have the same length, the same direction and the same sense. In
fact a vector is determined by these three items.

Proposition 1.3. 1.
−→
AB=

−→
CD⇔

−→
AC=

−→
BD.
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2. ∀A, B, O ∈ P , ∃ !X ∈ P such that
−→
AB=

−→
OX.

3.
−→
AB=

−→
A′B′,

−→
BC=

−→
B′C′⇒

−→
AC=

−→
A′C′.

Definition 1.3. If O, M ∈ P , the the vector
−→

OM is denoted by
→
rM and is called the position

vector of M with respect to O.

Corollary 1.4. The map ϕO : P → V , ϕO(M) =
→
rM is one-to-one and onto, i.e. bijective.

1.1.1 Operations with vectors

• The addition of vectors Let
→
a ,
→
b∈ V and O ∈ P be such that

→
a=

−→
OA,

→
b=
−→
AB. The vector

−→
OB is called the sum of the vectors

→
a and

→
b and is written

−→
OB=

−→
OA +

−→
AB=

→
a +

→
b .

Let O′ be another point and A′, B′ ∈ P be such that
−→

O′A′=
→
a ,

−→
A′B′=

→
b . Since

−→
OA=

−→
O′A′

and
−→
AB=

−→
A′B′ it follows, according to Proposition 1.3(3), that

−→
OB=

−→
O′B′. Therefore the vector

→
a +

→
b is independent on the choice of the point O.

Proposition 1.5. The set V endowed to the binary operation V × V → V , (
→
a ,
→
b ) 7→

→
a +

→
b , is

an abelian group whose zero element is the vector
−→
AA=

−→
BB=

→
0 and the opposite of

−→
AB, denoted by

−
−→
AB, is the vector

−→
BA.

In particular the addition operation is associative and the vector

(
→
a +

→
b )+

→
c =
→
a +(

→
b +

→
c )

is usually denoted by
→
a +

→
b +

→
c . Moreover the expression

((· · · (→a 1 +
→
a 2)+

→
a 3 + · · ·+ →

a n) · · · ), (1.1)

is independent of the distribution of paranthesis and it is usually denoted by

→
a 1 +

→
a 2 + · · ·+ →

a n .
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Example 1.1. If A1, A2, A3, . . . , An ∈ P are some given points, then

−→
A1A2 +

−→
A2A3 + · · ·+

−→
An−1An=

−→
A1An .

This shows that
−→

A1A2 +
−→

A2A3 + · · ·+
−→

An−1An +
−→

An A1=
→
0 , namely the sum of vectors

constructed on the edges of a closed broken line is zero.

Corollary 1.6. If
→
a=

−→
OA,

→
b=
−→
OB are given vectors, there exists a unique vector

→
x∈ V such that

→
a +

→
x=
→
b . In fact

→
x=
→
b +(− →a ) =

−→
AB and is denoted by

→
b −

→
a .

• The multiplication of vectors with scalars

Let α ∈ R be a scalar and
→
a=

−→
OA∈ V be a vector. We define the vector α· →a as follows:

α· →a=
→
0 if α = 0 or

→
a=
→
0 ; if

→
a 6=
→
0 and α > 0, there exists a unique point on the half line ]OA

such that ||OB|| = α · ||OA|| and define α· →a=
−→
OB; if α < 0 we define α· →a= −(|α|· →a ). The

external binary operation
R× V → V , (α,

→
a ) 7→ α· →a

is called the multiplication of vectors with scalars.
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Proposition 1.7. The following properties hold:

(v1) (α + β)· →a= α· →a +β· →a , ∀ α, β ∈ R,
→
a∈ V .

(v2) α · (→a +
→
b ) = α· →a +α·

→
b , ∀ α ∈ R,

→
a ,
→
b∈ V .

(v3) α · (β· →a ) = (αβ)· →a , ∀ α, β ∈ R.

(v4) 1· →a=→a , ∀ →a∈ V .

Application 1.1. Consider two parallelograms, A1A2A3A4, B1B2B3B4 in P , and M1, M2, M3,
M4 the midpoints of the segments [A1B1], [A2B2], [A3B3], [A4B4] respectively. Then:

• 2
−→

M1M2=
−→

A1A2 +
−→

B1B2 and 2
−→

M3M4=
−→

A3A4 +
−→

B3B4.

• M1, M2, M3, M4 are the vertices of a parallelogram.

1.1.2 The vector structure on the set of vectors

Theorem 1.8. The set of (free) vectors endowed with the addition binary operation of vectors and the
external binary operation of multiplication of vectors with scalars is a real vector space.

Example 1.2. If A′ is the midpoint of the egde [BC] of the triangle ABC, then

−→
AA′=

1
2
( −→

AB +
−→
AC

)
.
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A few vector quantities:

1. The force, usually denoted by
→
F .

2. The velocity
d
→
rP

dt of a moving particle P, is usually denoted by
→
vP or simply by

→
v .

3. The acceleration
d
→
vP

dt of a moving particle P, is usually denoted by
→
aP or simply by

→
a .

• Newton’s law of gravitation, statement that any particle of matter in the universe attracts
any other with a force varying directly as the product of the masses and inversely as the
square of the distance between them. In symbols, the magnitude of the attractive force F is
equal to G (the gravitational constant, a number the size of which depends on the system
of units used and which is a universal constant) multiplied by the product of the masses
(m1 and m2) and divided by the square of the distance R: F = G(m1m2)/R2. (Encyclopdia
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Britannica)
• Newton’s second law is a quantitative description of the changes that a force can produce
on the motion of a body. It states that the time rate of change of the momentum of a body
is equal in both magnitude and direction to the force imposed on it. The momentum of a
body is equal to the product of its mass and its velocity. Momentum, like velocity, is a vector
quantity, having both magnitude and direction. A force applied to a body can change the
magnitude of the momentum, or its direction, or both. Newtons second law is one of the
most important in all of physics. For a body whose mass m is constant, it can be written in
the form F = ma, where F (force) and a (acceleration) are both vector quantities. If a body
has a net force acting on it, it is accelerated in accordance with the equation. Conversely, if a
body is not accelerated, there is no net force acting on it. (Encyclopdia Britannica)

1.2 Problems

1. Consider a tetrahedron ABCD. Find the the following sums of vectors:

(a)
−→
AB +

−→
BC +

−→
CD.

(b)
−→
AD +

−→
CB +

−→
DC.

(c)
−→
AB +

−→
BC +

−→
DA +

−→
CD.

2. ([4, Problem 3, p. 1]) Let OABCDE be a regular hexagon in which
−→
OA=

→
a and

−→
OE=

→
b .

Express the vectors
−→
OB,

−→
OC,

−→
OD in terms of the vectors

→
a and

→
b . Show that

−→
OA +

−→
OB

+
−→
OC +

−→
OD +

−→
OE= 3

−→
OC.

3. Consider a pyramid with the vertex at S and the basis a parallelogram ABCD whose
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diagonals are concurrent at O. Show the equality
−→
SA +

−→
SB +

−→
SC +

−→
SD= 4

−→
SO.

4. Let E and F be the midpoints of the diagonals of a quadrilateral ABCD. Show that

−→
EF=

1
2

(−→
AB +

−→
CD
)
=

1
2

( −→
AD +

−→
CB
)

.

5. In a triangle ABC we consider the height AD from the vertex A (D ∈ BC). Find the

decomposition of the vector AD in terms of the vectors
→
c =
−→
AB and

→
b=

−→
AC.

6. ([4, Problem 12, p. 3]) Let M, N be the midpoints of two opposite edges of a given
quadrilateral ABCD and P be the midpoint of [MN]. Show that

−→
PA +

−→
PB +

−→
PC +

−→
PD= 0
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7. ([4, Problem 12, p. 7]) Consider two perpendicular chords AB and CD of a given circle
and {M} = AB ∩ CD. Show that

−→
OA +

−→
OB +

−→
OC +

−→
OD= 2

−→
OM .

8. ([4, Problem 13, p. 3]) If G is the centroid of a tringle ABC and O is a given point, show
that

−→
OG=

−→
OA +

−→
OB +

−→
OC

3
.

9. ([4, Problem 14, p. 4]) Consider the triangle ABC alongside its orthocenter H, its cir-
cumcenter O and the diametrically opposed point A′ of A on the latter circle. Show
that:

(a)
−→
OA +

−→
OB +

−→
OC=

−→
OH.

(b)
−→
HB +

−→
HC=

−→
HA′.

(c)
−→
HA +

−→
HB +

−→
HC= 2

−→
HO.
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10. ([4, Problem 15, p. 4]) Consider the triangle ABC alongside its centroid G, its ortho-

center H and its circumcenter O. Show that O, G, H are collinear and 3
−→
HG= 2

−→
HO.

11. ([4, Problem 27, p. 13]) Consider a tetrahedron A1A2A3A4 and the midpoints Aij of
the edges Ai Aj, i 6= j. Show that:

(a) The lines A12A34, A13A24 and A14A23 are concurrent in a point G.

(b) The medians of the tetrahedron (the lines passing through the vertices and the
centroids of the opposite faces) are also concurrent at G.
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(c) Determine the ratio in which the point G divides each median.

(d) Show that
−→

GA1 +
−→

GA2 +
−→

GA3 +
−→

GA4=
→
0 .

(e) If M is an arbitrary point, show that
−→

MA1 +
−→

MA2 +
−→

MA3 +
−→

MA4= 4
−→
MG.
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12. In a triangle ABC consider the points M, L on the side AB and N, T on the side AC

such that 3
−→
AL= 2

−→
AM=

−→
AB and 3

−→
AT= 2

−→
AN=

−→
AC. Show that

−→
AB +

−→
AC= 5

−→
AS,

where {S} = MT ∩ LN.

13. Consider two triangles A1B1C1 and A2B2C2, not necesarily in the same plane, along-

side their centroids G1, G2. Show that
−→

A1A2 +
−→

B1B2 +
−→

C1C2= 3
−→

G1G2.
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2 Week 2: Straight lines and planes

2.1 Linear dependence and linear independence of vectors

Definition 2.1. 1. The vectors
−→
OA,

−→
OB are said to be collinear if the points O, A, B are

collinear. Otherwise the vectors
−→
OA,

−→
OB are said to be noncollinear.

2. The vectors
−→
OA,

−→
OB,

−→
OC are said to be coplanar if the points O, A, B, C are coplanar.

Otherwise the vectors
−→
OA,

−→
OB,

−→
OC are noncoplanar.

Remark 2.1. 1. The vectors
−→
OA,

−→
OB are linearly (in)dependent if and only if they are

(non)collinear.

2. The vectors
−→
OA,

−→
OB,

−→
OC are linearly (in)dependent if and only if they are (non)coplanar.

Proposition 2.1. The vectors
−→
OA,

−→
OB,

−→
OC form a basis of V if and only if they are noncoplanar.

Corollary 2.2. The dimension of the vector space of free vectors V is three.

Proposition 2.3. Let ∆ be a straight line and let A ∈ ∆ be a given point. The set

→
∆= {

−→
AM | M ∈ ∆}

is an one dimensional subspace of V . It is independent on the choice of A ∈ ∆ and is called the
director subspace of ∆ or the direction of ∆.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

Remark 2.2. The straight lines ∆, ∆′ are parallel if and only if
→
∆=

→
∆
′

Definition 2.2. We call director vector of the straigh line ∆ every nonzero vector
→
d∈
→
∆.

If
→
d∈ V is a nonzero vector and A ∈ P is a given point, then there exits a unique straight

line which passes through A and has the direction 〈
→
d 〉. This stright line is

∆ = {M ∈ P |
−→
AM∈ 〈

→
d 〉}.

∆ is called the straight line which passes through O and is parallel to the vector
→
d .

Proposition 2.4. Let π be a plane and let A ∈ π be a given point. The set
→
π= {

−→
AM∈ V | M ∈ π}

is a two dimensional subspace of V . It is independent on the position of A inside π and is called the
director subspace, the director plane or the direction of the plane π.

Remark 2.3. • The planes π, π′ are parallel if and only if
→
π=

→
π
′
.

• If
→
d 1,

→
d 2 are two linearly independent vectors and A ∈ P is a fixed point, then there

exists a unique plane through A whose direction is 〈
→
d 1,
→
d 2〉. This plane is

π = {M ∈ P |
−→
AM∈ 〈

→
d 1,
→
d 2〉}.
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We say that π is the plane which passes through the point A and is parallel to the vectors
→
d 1 and

→
d 2.

Remark 2.4. Let ∆ ⊂ P be a straight line and π ⊂ P be given plane.

1. If A ∈ ∆ is a given point, then ϕO(∆) =
→
r A +

→
∆.

2. If B ∈ ∆ is a given point, then ϕO(π) =
→
r B +

→
π.

Generally speaking, a subset X of a vector space is called linear variety if either X = ∅ or
there exists a ∈ V and a vector subspace U of V, such that X = a + U.

dim(X) =

{
−1 dacă X = ∅
dim(U) dacă X = a + U,

Proposition 2.5. The bijection ϕO transforms the straight lines and the planes of the affine space P
into the one and two dimnensional linear varieties of the vector space V respectively.

2.2 The vector ecuations of the straight lines and planes

Proposition 2.6. Let ∆ be a straight line, let π be a plane, {
→
d } be a basis of

→
∆ and let [

→
d 1,
→
d 2] be

an ordered basis of
→
π.

1. The points M ∈ ∆ are characterized by the vector equation of ∆

→
r M=

→
r A +λ

→
d , λ ∈ R (2.1)

where A ∈ ∆ is a given point.

2. The points M ∈ π are characterized by the vector equation of π

→
r M=

→
r A +λ1

→
d 1 +λ2

→
d 2, λ1, λ2 ∈ R, (2.2)

where A ∈ π is a given point.
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PROOF.

�

Corollary 2.7. If A, B ∈ P are different points, then the vector equation of the line AB is
→
r M= (1− λ)

→
r A +λ

→
r B , λ ∈ R. (2.3)

PROOF.

�

Corollary 2.8. If A, B, C ∈ P are three noncolinear points, then the vector equation of the plane
(ABC) is

→
r M= (1− λ1 − λ2)

→
r A +λ1

→
r B +λ2

→
r C , λ1, λ2 ∈ R. (2.4)

PROOF.

�

Example 2.1. Consider the points C′ and B′ on the sides AB and AC of the triangle ABC such

that
−→
AC′= λ

−→
BC′,

−→
AB′= µ

−→
CB′. The lines BB′ and CC′ meet at M. If P ∈ P is a given point

and
→
r A=

−→
PA,

→
r B=

−→
PB,

→
r C=

−→
PC are the position vectors, with respect to P, of the vertices A,

B, C respectively, show that
→
r M=

→
r A −λ

→
r B −µ

→
r C

1− λ− µ
. (2.5)
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SOLUTION.

�

2.3 Problems

1. ([4, Problem 17, p. 5]) Consider the triangle ABC, its centroid G, its orthocenter H,

its incenter I and its circumcenter O. If P ∈ P is a given point and
→
r A=

−→
PA,

→
r B=

−→
PB,
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→
r C=

−→
PC are the position vectors with respect to P of the vertices A, B, C respectively,

show that:

SOLUTION.

2. Consider the angle BOB′ and the points A ∈ [OB], A′ ∈ [OB′]. Show that

−→
OM= m

1− n
1−mn

−→
OA + n

1−m
1−mn

−→
OA′

−→
ON= m

n− 1
n−m

−→
OA + n

m− 1
m− n

−→
OA′ .

where {M} = AB′ ∩ A′B, {N} = AA′ ∩ BB′,
→
u=

−→
OA,

→
v=

−→
OA′,

−→
OB= m

−→
OA and

−→
OB′=

n
−→

OA′.
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SOLUTION.

3. Show that the midpoints of the diagonals of a complet quadrilateral are collinear
(Newton’s theorem).

SOLUTION.

4. Let d, d′ be concurrent straight lines and A, B, C ∈ d, A′, B′, C′ ∈ d′. If the following
relations AB′ 6‖A′B, AC′ 6 ‖A′C, BC′ 6 ‖B′C hold, show that the points {M} := AB′ ∩
A′B, {N} := AC′ ∩ A′C, {P} := BC′ ∩ B′C are collinear (Pappus’ theorem).

SOLUTION.
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5. Let d, d′ be two straight lines and A, B, C ∈ d, A′, B′, C′ ∈ d′ three points on each line
such that AB′‖BA′, AC′‖CA′. Show that BC′‖CB′ (the affine Pappus’ theorem).

SOLUTION.

6. Let us consider two triangles ABC and A′B′C′ such that the lines AA′, BB′, CC′ are
concurrent at a point O and AB 6 ‖A′B′, BC 6 ‖B′C′ and CA 6 ‖C′A′. Show that the points
{M} = AB ∩ A′B′, {N} = BC ∩ B′C′ and {P} = CA ∩ C′A′ are collinear (Desargues).

SOLUTION.
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3 Week 3: Cartezian equations of lines and planes

3.1 Cartesian and affine reference systems

If b = [
→
u ,
→
v ,
→
w] is an ordered basis of V and

→
x∈ V , recall that the column vector of the

coordinates of
→
x with respect to b is denoted by [

→
x ]b . In other words

[
→
x ]b =

 x1
x2
x3

 .

whenever
→
x= x1

→
u +x2

→
v +x3

→
w. To emphasize the coordinates of

→
x with respect to b, we

shall use the notation
→
x (x1, x2, x3).

Definition 3.1. A cartesian reference system R = (O,
→
u ,
→
v ,
→
w) of the space P , consists in a

point O ∈ P called the origin of the reference system and an ordered basis b = [
→
u ,
→
v ,
→
w] of

the vector space V .

Cornel Pintea Page 20 of 169 © ’Babeş-Bolyai’ University 2016
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Denote by E1, E2, E3 the points for which
→
u=

−→
OE1,

→
v=

−→
OE2,

→
w=

−→
OE3.

Definition 3.2. The system of points (O, E1, E2, E3) is called the affine reference system associ-
ated to the cartesian reference system R = (O,

→
u ,
→
v ,
→
w).

The straight lines OEi, i ∈ {1, 2, 3}, oriented from O to Ei are called the coordinate axes.

The coordinates x, y, z of the position vector
→
r M=

−→
OM with respect to the basis [

→
u ,
→
v ,
→
w]

are called the coordinates of the point M with respect to the cartesian system R written
M(x, y, z). Also, for the column matrix of coordinates of the vector

→
r M we are going to use

the notation [M]R . In other words, if
→
r M= x

→
u +y

→
v +z

→
w, then

[M]R = [
−→

OM]b =

 x
y
z

 .

Remark 3.1. If A(xA , yA , zA), B(xB , yB , zB) are two points, then

−→
AB =

−→
OB −

−→
OA

= xB

→
u +yB

→
v +zB

→
w −(xA

→
u +yA

→
v +zA

→
w)

= (xB − xA)
→
u +(yB − yA)

→
v +(zB − zA)

→
w,

i.e. the coordinates of the vector
−→
AB are being obtained by performing the differences of the

coordinates of the points A and B.

Remark 3.2. If R = (O, b) is a cartesian reference system, where b = [
→
u ,
→
v ,
→
w] is an or-

dered basis of V , recall that ϕO : P −→ V , ϕO(M) =
−→

OM is bijective and ψb : R3 −→ V ,
ψb(x, y, z) = x

→
u +y

→
v +z

→
w is a linear isomorphism. The bijection ϕO defines a unique vec-

tor structure over P such that ϕO becomes an isomorphism. This vector structure depends
on the choice of O ∈ P . Therefore a point M ∈ P could be identified either with its position
vector

→
r M= ϕO(M), or, with the triplet (ψ−1

b ◦ ϕO)(M) ∈ R3 of its coordinates with respect
to the reference system R. If f : X −→ R3 is a given application, then ϕ−1

O ◦ ψb ◦ f : X −→ P
will be denoted by Mf . A similar discussion can be done for a cartesian reference system

R′ = (O′, b′) of a plane π, where b′ = [
→
u
′
,
→
v
′
] is an ordered basis of

→
π.

Example 3.1 (Homework). Consider the tetrahedron ABCD, where A(1,−1, 1), B(−1, 1,−1),
C(2, 1,−1) and D(1, 1, 2). Find the coordinates of:

1. the centroids GA , GB , GC , GD of the triangles BCD, ACD, ABD and ABC1 respectively.

2. the midpoints M, N, P, Q, R and S of its edges [AB], [AC], [AD], [BC], [CD] and [DB]
respectively.

1The centroids of its faces
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SOLUTION.

3.2 The cartesian equations of the straight lines

Let ∆ be the straight line passing through the point A0(x0, y0, z0) which is parallel to the

vector
→
d (p, q, r). Its vector equation is

→
rM=

→
rA0

+λ
→
d , λ ∈ R. (3.1)

Denoting by x, y, z the coordinates of the generic point M of the straight line ∆, its vector
equation (3.1) is equivalent to the following system of relations

x = x0 + λp
y = y0 + λq
z = z0 + λr

, λ ∈ R (3.2)

Indeed, the vector equation of ∆ can be written, in terms of the coordinates of the vectors
→
rM ,

→
rA0

and
→
d , as follows:

x
→
u +y

→
v +z

→
w= x0

→
u +y0

→
v +z0

→
w +λ(p

→
u +q

→
v +r

→
w)

⇐⇒ x
→
u +y

→
v +z

→
w= (x0 + pλ)

→
u +(y0 + qλ)

→
v +(z0 + rλ)

→
w, λ ∈ R

which is obviously equivalent to (3.2). The relations (3.2) are called the parametric equations
of the straight line ∆ and they are equivalent to the following relations

x− x0

p
=

y− y0

q
=

z− z0

r
(3.3)

If r = 0, for instance, the canonical equations of the straight line ∆ are

x− x0

p
=

y− y0

q
∧ z = z0.

If A(xA , yA , zA), B(xB , yB , zB) are different points of the line ∆, then
−→
AB (xB − xA , yB − yA , zB − zA)

is a director vector of ∆, its canonical equations having, in this case, the form

x− xA

xB − xA

=
y− yA

yB − yA

=
z− zA

zB − zA

. (3.4)
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

Example 3.2. Consider the tetrahedrom ABCD, where A(1,−1, 1), B(−1, 1,−1), C(2, 1,−1)
and D(1, 1, 2), as well as the centroids GA , GB , GC , GD of the triangles BCD, ACD, ABD and
ABC2 respectively. Show that the medians AGA , BGB , CGC and DGD are concurrent and find
the coordinates of their intersection point.

SOLUTION. One can easily see that the coordinates of the centroids GA , GB , GC , GD are
(2/3, 1, 0), (4/3, 1/3, 2/3), (1/3, 1/3, 2/3) and (2/3, 1/3,−1/3) respectively. The equations
of the medians AGA and BGB are

(AGA)
x− 1

2/3− 1
=

y + 1
1− (−1)

=
z− 1
0− 1

⇐⇒ x− 1
−1/3

=
y + 1

2
=

z− 1
−1

(BGB)
x + 1

4/3 + 1
=

y− 1
1/3− 1

=
z + 1

2/3 + 1
⇐⇒ x + 1

7/3
=

y− 1
−2/3

=
z + 1
5/3

.

Thus, the director space of the median AGA is
〈(
−1

3 , 2,−1
)〉

= 〈(−1, 6,−3)〉 and the di-

rector space of the median BGB is
〈(7

3 ,−2
3 , 5

3

)〉
= 〈(7,−2, 5)〉. Consequently, the parametric

equations of the medians AGA and BGB are

(AGA)


x = 1− t
y = −1 + 6t
z = 1− 3t

, t ∈ R and (BGB)


x = −1 + 7s
y = 1− 2s
z = −1 + 5s

, s ∈ R.

Thus, the two medians AGA and BGB are concurrent if and only if there exist s, t ∈ R such
that 

1− t = −1 + 7s
−1 + 6t = 1− 2s
1− 3t = −1 + 5s

⇐⇒


7s + t = 2
2s + 6t = 2
5s + 3t = 2

⇐⇒


7s + t = 2
s + 3t = 1
5s + 3t = 2.

This system is compatible and has the unique solution s = t = 1
4 , which shows that the two

medians AGA and BGB are concurrent and

AGA ∩ BGB =

{
G
(

3
4

,
1
2

,
1
4

)}
.

One can similarly show that BGB ∩ CGC = CGC ∩ AGA =
{

G
(

3
4 , 1

2 , 1
4

)}
.

Example 3.3 (Homework). Consider the tetrahedrom ABCD, where A(1,−1, 1), B(−1, 1,−1),
C(2, 1,−1) and D(1, 1, 2), as well as the midpoints M, N, P, Q, R and S of its edges [AB],
[AC], [AD], [BC], [CD] and [DB] respectively. Show that the lines MR, PQ and NS are
concurrent and find the coordinates of their intersection point.

SOLUTION.
2The centroids of its faces
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3.3 The cartesian equations of the planes

Let A0(x0, y0, z0) ∈ P and
→
d 1 (p1, q1, r1),

→
d 2 (p2, q2, r2) ∈ V be linearly independent vectors,

that is

rank
(

p1 q1 r1
p2 q2 r2

)
= 2.

The vector equation of the plane π passing through A0 which is parallel to the vectors
→
d 1

(p1, q1, r1),
→
d 2 (p2, q2, r2) is

→
r M=

→
r A0

+λ1
→
d 1 +λ2

→
d 2, λ1, λ2 ∈ R. (3.5)

If we denote by x, y, z the coordinates of the generic point M of the plane π, then the vector
equation (3.5) is the equivalent to the following system of relations

x = x0 + λ1p1 + λ2p2
y = y0 + λ1q1 + λ2q2
z = z0 + λ1r1 + λ2r2

, λ1, λ2 ∈ R. (3.6)

Indeed, the vector equation of π can be written, in terms of the coordinates of the vectors
→
rM ,

→
rA0

,
→
d 1 and

→
d 2, as follows:

x
→
u +y

→
v +z

→
w= x0

→
u +y0

→
v +z0

→
w +λ1(p1

→
u +q1

→
v +r1

→
w) + λ2(p2

→
u +q2

→
v +r2

→
w)

⇐⇒ x
→
u +y

→
v +z

→
w= (x0 + λ1p1 + λ2p2)

→
u +(y0 + λ1q1 + λ2q2)

→
v +(z0 + λ1r1 + λ2r2)

→
w,

λ1, λ2 ∈ R,

which is obviously equivalent to (3.6). The relations (3.6) characterize the points of the plane
π and are called the parametric equations of the plane π. More precisely, the compatibility of
the linear system (3.6) with the unknowns λ1, λ2 is a necessary and sufficient condition for
the point M(x, y, z) to be contained within the plane π. On the other hand the compatibility
of the linear system (3.6) is equivalent to∣∣∣∣∣∣

x− x0 y− y0 z− z0
p1 q1 r1
p2 q2 r2

∣∣∣∣∣∣ = 0, (3.7)
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which expresses the equality between the rank of the coefficient matrix of the system and
the rank of the extended matrix of the system. The equation (3.7) is a characterization of
the points of the plane π in terms of the Cartesian coordinates of the generic point M and is
called the cartesian equation of the plane π. On can put the equation (3.7) in the form

A(x− x0) + B(y− y0) + C(z− z0) = 0 or (3.8)

Ax + By + Cz + D = 0, (3.9)

where the coefficients A, B, C satisfy the relation A2 + B2 + C2 > 0. It is also easy to show
that every equation of the form (3.9) represents the equation of a plane. Indeed, if A 6= 0,
then the equation (3.9) is equivalent to∣∣∣∣∣∣

x + D
A y z

B −A 0
C 0 −A

∣∣∣∣∣∣ = 0.

We observe that one can put the equation (3.8) in the form

AX + BY + CZ = 0 (3.10)

where X = x− x0, Y = y− y0, Z = z− z0 are the coordinates of the vector
−→

A0M.

Example 3.4. Write the equation of the plane determined by the point P(−1, 1, 2) and the
line (∆) x−1

3 = y
2 = z+1

−1 .

SOLUTION. Note that P 6∈ ∆, as −1−1
3 6= 1

2 6= −3 = 2+1
−1 , i.e. the point P and the

line ∆ determine, indeed, a plane, say π. One can regard π as the plane through the point

A0(1, 0,−1) which is parallel to the vectors
−→
A0P (−1− 1, 1− 0, 2− (−1)) =

−→
A0P (−2, 1, 3)

and
→
d (3, 2,−1). Thus, the equation of π is∣∣∣∣∣∣

x− 1 y z + 1
−2 1 3
3 2 −1

∣∣∣∣∣∣ = 0⇐⇒ x− y + z = 0.

Example 3.5 (Homework). Generalize Example 3.4: Write the equation of the plane deter-
mined by the line (∆) x−x0

p = y−y0
q = z−z0

r and the point M(xM , yM , zM) 6∈ ∆.
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SOLUTION.

Remark 3.3. If A(xA , yA , zA), B(xB , yB , zB), C(xC , yC , zC) are noncollinear points, then the plane
(ABC) determined by the three points can be viewed as the plane passing through the point

A which is parallel to the vectors
→
d 1=

−→
AB,

→
d 2=

−→
AC. The coordinates of the vectors

→
d 1 şi

→
d 2

are
(xB − xA , yB − yA , zB − zA) and (xC − xA , yC − yA , zC − zA) respectively.

Thus, the equation of the plane (ABC) is∣∣∣∣∣∣
x− xA y− yA z− zA
xB − xA yB − yA zB − zA
xC − xA yC − yA zC − zA

∣∣∣∣∣∣ = 0, (3.11)

or, echivalently ∣∣∣∣∣∣∣∣
x y z 1

xA yA zA 1
xB yB zB 1
xC yC zC 1

∣∣∣∣∣∣∣∣ = 0. (3.12)

Thus, four points A(xA , yA , zA), B(xB , yB , zB), C(xC , yC , zC) and D(xD , yD , zD) are coplanar if
and ony if ∣∣∣∣∣∣∣∣

xA yA zA 1
xB yB zB 1
xC yC zC 1
xD yD zD 1

∣∣∣∣∣∣∣∣ = 0. (3.13)

Example 3.6 (Homework). Write the equation of the plane determined by the points M1(3,−2, 1),
M2(5, 4, 1) and M3(−1,−2, 3).

SOLUTION.
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Remark 3.4. If A(a, 0, 0), B(0, b, 0), C(0, 0, c) are three points (abc 6= 0), then for the equation
of the plane (ABC) we have successively:∣∣∣∣∣∣∣∣

x y z 1
a 0 0 1
0 b 0 1
0 0 c 1

∣∣∣∣∣∣∣∣ = 0⇐⇒

∣∣∣∣∣∣∣∣
x y z− c 1
a 0 −c 1
0 b −c 1
0 0 0 1

∣∣∣∣∣∣∣∣ = 0⇐⇒

∣∣∣∣∣∣
x y z− c
a 0 −c
0 b −c

∣∣∣∣∣∣ = 0

⇐⇒ ab(z− c) + bcx + acy = 0⇐⇒ bcx + acy + abz = abc

⇐⇒ x
a
+

y
b
+

z
c
= 1. (3.14)

The equation (3.14) of the plane (ABC) is said to be in intercept form and the x, y, z-
intercepts of the plane (ABC) are a, b, c respectively.

Example 3.7 (Homework). Write the equation of the plane (π) 3x − 4y + 6z − 24 = 0 in
intercept form.

SOLUTION.

3.4 Appendix: The Cartesian equations of lines in the two dimensional
setting

3.4.1 Cartesian and affine reference systems

If b = [
→
e ,
→
f ] is an ordered basis of the director subspace

→
π of the plane π and

→
x∈→π, recall

that the column vector of
→
x with respect to b is being denoted by [

→
x ]b . In other words

[
→
x ]b =

(
x1
x2

)
.

whenever
→
x= x1

→
e +x2

→
f .

Definition 3.3. A cartesian reference system of the plane π, is a system R = (O,
→
e ,
→
f ), where

O is a point from π called the origin of the reference system and b = [
→
e ,
→
f ] is a basis of the

vector space
→
π.

Denote by E, F the points for which
→
e =
−→
OE,

→
f =
−→
OF.

Definition 3.4. The system of points (O, E, F) is called the affine reference system associated to

the cartesian reference system R = (O,
→
e ,
→
f ).
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The straight lines OE, OF, oriented from O to E and from O to F respectively, are called

the coordinate axes. The coordinates x, y of the position vector
→
r M=

−→
OM with respect to the

basis [
→
e ,
→
f ] are called the coordinates of the point M with respect to the cartesian system R

written M(x, y). Also, for the column matrix of coordinates of the vector
→
r M we are going

to use the notation [M]R . In other words, if
→
r M= x

→
e +y

→
f , then

[M]R = [
−→

OM]b =

(
x
y

)
.

Remark 3.5. If A(xA , yA), B(xB , yB) are two points, then
−→
AB =

−→
OB −

−→
OA= xB

→
e +yB

→
f −(xA

→
e +yA

→
f )

= (xB − xA)
→
e +(yB − yA)

→
f ,

i.e. the coordinates of the vector
−→
AB are being obtained by performing the differences of the

coordinates of the points A and B.

3.4.2 Parametric and Cartesian equations of Lines

Let ∆ be a line passing through the point A0(x0, y0) ∈ π which is parallel to the vector
→
d (p, q). Its vector equation is

→
r M=

→
r A0

+t
→
d , t ∈ R. (3.15)

If (x, y) are the coordinates of a generic point M ∈ ∆, then its vector equation (3.15) is
equivalent to the following system{

x = x0 + pt
y = y0 + qt , t ∈ R. (3.16)

The relations are called the parametric equations of the line ∆ and they are equivalent to the
following equation

x− x0

p
=

y− y0

q
, (3.17)

called the canonical equationof ∆. If q = 0, then the equation (3.17) becomes y = y0.

If A(xA, yA) are two different points of the plane π, then
−→
AB (xB − xA , yB − yA) is a

director vector of the line AB and the canonical equation of the line AB is

x− xA

xB − xA
=

y− yA

yB − yA
. (3.18)

The equation (3.18) is equivalent to∣∣∣∣ x− xA y− yA
xB − xA yB − yA

∣∣∣∣ = 0⇐⇒

∣∣∣∣∣∣
x− xA y− yA 1

xB − xA yB − yA 1
0 0 1

∣∣∣∣∣∣ = 0⇐⇒

∣∣∣∣∣∣
x y 1
xA yA 1
xB yB 1

∣∣∣∣∣∣ = 0.

Thus, three poins P1(x1, y1), P2(x2, y2) and P3(x3, y3) are collinear if and only if∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0. (3.19)
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3.4.3 General Equations of Lines

We can put the equation (3.17) in the form

ax + by + c = 0, with a2 + a2 > 0, (3.20)

which means that any line from π is characterized by a first degree equation. Conversely,
such of an equation represents a line, since the formula (3.20) is equivalent to

x + c
a

− b
a

=
y
1

and this is the symmetric equation of the line passing through P0

(
−

c
a
, 0

)
and parallel to

v

(
−

b
a
, 1

)
. The equation (3.20) is called general equation of the line.

Remark 3.6. The lines

(d) ax + by + c = 0 and (∆)
x− x0

p
=

x− x0

q

are parallel if and only if ap + bq = 0. Indeed, we have:

d‖∆ ⇐⇒
→
d=
→
∆⇐⇒ 〈

→
u (p, q)〉 = 〈→v

(
− b

a , 1
)
〉 ⇐⇒ ∃t ∈ R s.t.

→
u (p, q) = t

→
v
(
− b

a , 1
)

⇐⇒ ∃t ∈ R s.t. = −t b
a and q = t⇐⇒ ap + bq = 0.

3.4.4 Reduced Equations of Lines

Consider a line given by its general equation Ax + By + C = 0, where at least one of the
coefficients A and B is nonzero. One may suppose that B 6= 0, so that the equation can be
divided by B. One obtains

y = mx + n (3.21)

which is said to be the reduced equation of the line.

Remark: If B = 0, (3.20) becomes Ax + C = 0, or x = −
C
A

, a line parallel to Oy. (In the same
way, if A = 0, one obtains the equation of a line parallel to Ox).

Let d be a line of equation y = mx + n in a Cartesian system of coordinates and suppose
that the line is not parallel to Oy. Let P1(x1, y1) and P2(x2, y2) be two different points on d
and ϕ be the angle determined by d and Ox (see Figure 1); ϕ ∈ [0, π] \ {π/2}. The points
P1(x1, y1) and P2(x2, y2) belong to d, hence{

y1 = mx1 + n
y2 = mx2 + n,

and x2 6= x1, since d is not parallel to Oy. Then,

m =
y2 − y1

x2 − x1
= tan ϕ. (3.22)

The number m = tan ϕ is called the angular coefficient of the line d. It is immediate that the
equation of the line passing through the point P0(x0, y0) and of the given angular coefficient
m is

y− y0 = m(x− x0). (3.23)
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Figure 1:

3.4.5 Intersection of Two Lines

Let d1 : a1x + b1y + c1 = 0 and d2 : a2x + b2y + c2 = 0 be two lines in E2. The solution of the
system of equation {

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

will give the set of the intersection points of d1 and d2.

1) If
a1

a2
6=

b1

b2
, the system has a unique solution (x0, y0) and the lines have a unique inter-

section point P0(x0, y0). They are secant.

2) If
a1

a2
=

b1

b2
6=

c1

c2
, the system is not compatible, and the lines have no points in common.

They are parallel.

3) If
a1

a2
=

b1

b2
=

c1

c2
, the system has an infinity of solutions, and the lines coincide. They

are identical.

If di : aix + biy + ci = 0, i = 1, 3 are three lines in E2, then they are concurrent if and only if∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = 0. (3.24)

3.4.6 Bundles of Lines ([1])

The set of all the lines passing through a given point P0 is said to be a bundle of lines. The
point P0 is called the vertex of the bundle.

If the point P0 is of coordinates P0(x0, y0), then the equation of the bundle of vertex P0 is

r(x− x0) + s(y− y0) = 0, (r, s) ∈ R2 \ {(0, 0)}. (3.25)
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Remark: Tthe reduced bundle of line through P0 is,

y− y0 = m(x− x0), m ∈ R, (3.26)

and covers the bundle of lines through P0, except the line x = x0. Similarly, the family of
lines

x− x0 = k(y− y0), k ∈ R, (3.27)

covers the bundle of lines through P0, exceptthe line y = y0.
If the point P0 is given as the intersection of two lines, then its coordinates are the solution

of the system {
d1 : a1x + b1y + c1 = 0
d2 : a2x + b2y + c2 = 0 ,

assumed to be compatible. The equation of the bundle of lines through P0 is

r(a1x + b1y + c1) + s(a2x + b2y + c2) = 0, (r, s) ∈ R2 \ {(0, 0)}. (3.28)

Remark: As before, if r 6= 0 (or s 6= 0), one obtains the reduced equation of the bundle,
containing all the lines through P0, except d1 (respectively d2).

3.4.7 The Angle of Two Lines ([1])

Let d1 and d2 be two concurrent lines, given by their reduced equations:

d1 : y = m1x + n1 and d2 : y = m2x + n2.

The angular coefficients of d1 and d2 are m1 = tan ϕ1 and m2 = tan ϕ2 (see Figure 2). One

may suppose that ϕ1 6=
π

2
, ϕ2 6=

π

2
, ϕ2 ≥ ϕ1, such that ϕ = ϕ2 − ϕ1 ∈ [0, π] \ {

π

2
}.

Figure 2:

The angle determined by d1 and d2 is given by

tan ϕ = tan(ϕ2 − ϕ1) =
tan ϕ2 − tan ϕ1

1 + tan ϕ1 tan ϕ2
,

hence
tan ϕ =

m2 −m2

1 + m1m2
. (3.29)
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1) The lines d1 and d2 are parallel if and only if tan ϕ = 0, therefore

d1 ‖ d2 ⇐⇒ m1 = m2. (3.30)

2) The lines d1 and d2 are orthogonal if and only if they determine an angle of
π

2
, hence

d1⊥d2 ⇐⇒ m1m2 + 1 = 0. (3.31)

3.5 Problems

1. Write the equation of the plane which passes through M0(1,−2, 3) and is parallel to
the vectors

→
v 1 (1,−1, 0) and

→
v 2 (−3, 2, 4).

HINT. ∣∣∣∣∣∣
x− 0 y + 2 z− 3

1 −1 0
−3 2 4

∣∣∣∣∣∣ = 0.

2. Write the equation of the line which passes through A(1,−2, 6) and is parallel to

(a) The x-axis;

(b) The line (d1)
x− 1

2
=

y + 5
−3

=
z− 1

4
.

(c) The vector
→
v (1, 0, 2).

SOLUTION.

3. Write the equation of the plane which contains the line

(d1)
x− 3

2
=

y + 4
1

=
z− 2
−3

and is parallel to the line

(d2)
x + 5

2
=

y− 2
2

=
z− 1

2
.
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HINT. ∣∣∣∣∣∣
x− 3 y + 4 z− 2

1 −1 0
2 1 −3

∣∣∣∣∣∣ = 0.

4. Consider the points A(α, 0, 0), B(0, β, 0) and C(0, 0, γ) such that

1
α
+

1
β
+

1
γ
=

1
a

where a is a constatnt.

Show that the plane (A, B, C) passes through a fixed point.

SOLUTION. The equation of the plane (ABC) can be written in intercept form, namely

x
α
+

y
β
+

z
γ
= 1.

The given relation shows that the point P(a, a, a) ∈ (ABC) whenever α, β, γ verifies
the given relation.

5. Write the equation of the line which passes through the point M(1, 0, 7), is parallel to
the plane (π) 3x− y + 2z− 15 = 0 and intersects the line

(d)
x− 1

4
=

y− 3
2

=
z
1

.

6. Write the equation of the plane which passes through M0(1,−2, 3) and cuts the posi-
tive coordinate axes through equal intercepts.

SOLUTION. The general equation of such a plane is x + y + z = a. In this particular
case a = 1 + (−2) + 3 = 2 and the equation of the required plane is x + y + z = 2.

7. Write the equation of the plane which passes through A(1, 2, 1) and is parallel to the
straight lines

(d1)

{
x + 2y − z + 1 = 0
x − y + z − 1 = 0 (d2)

{
2x − y + z = 1
x − y + z = 0.

SOLUTION. We need to find some director parameters of the lines (d1) and (d2). In this
respect we may solve the two systems. The general solution of the first system is x = −1

3 t + 1
3

y = 2
3 t− 2

3
z = t

, t ∈ R

and the general solution of the second system is
x = 1
y = t + 1
z = t

, t ∈ R

and these are the parametric equations of the lines (d1) and (d2). Thus, the direction
of the line (d1) is the 1-dimensional subspace〈(

−1
3

,
2
3

, 1
)〉

= 〈(−1, 2, 3)〉,
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and the direction of the line (d2) is the 1-dimensional subspace 〈(0, 1, 1)〉.
Consequently, some director parameters of the line (d1) are p1 = −1, q1 = 2, r1 = 3
and some director parameters of the line (d2) are p2 = 0, q2 = r2 = 1. Finaly, the
equation of the required plane is∣∣∣∣∣∣

x− 1 y− 2 z− 1
−1 2 3
0 1 1

∣∣∣∣∣∣ = 0.

The computation of the determinant is left to the reader.

A few questions in the two dimensional setting ([1])

8. The sides [BC], [CA], [AB] of the triangle ∆ABC are divided by the points M, N re-
spectively P into the same ratio k. Prove that the triangles ∆ABC and ∆MNP have the
same center of gravity.

SOLUTION.

9. Sketch the graph of x2 − 4xy + 3y2 = 0.

SOLUTION.

10. Find the equation of the line passing through the intersection point of the lines

d1 : 2x− 5y− 1 = 0, d2 : x + 4y− 7 = 0

and through a point M which divides the segment [AB], A(4,−3), B(−1, 2), into the

ratio k =
2
3
.
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SOLUTION.

11. Let A be a mobile point on the Ox axis and B a mobile point on Oy, so that
1

OA
+

1
OB

=

k (constant). Prove that the lines AB passes through a fixed point.

SOLUTION.

12. Find the equation of the line passing through the intersection point of

d1 : 3x− 2y + 5 = 0, d2 : 4x + 3y− 1 = 0

and crossing the positive half axis of Oy at the point A with OA = 3.

SOLUTION.

13. Find the parametric equations of the line through P1 and P2, when

(a) P1(3,−2), P2(5, 1);

(b) P1(4, 1), P2(4, 3).
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SOLUTION.

14. Find the parametric equations of the line through P(−5, 2) and parallel to v(2, 3).

SOLUTION.

15. Show that the equations

x = 3− t, y = 1 + 2t and x = −1 + 3t, y = 9− 6t

represent the same line.

SOLUTION.

16. Find the vector equation of the line P1P2, where

(a) P1(2,−1), P2(−5, 3);

(b) P1(0, 3), P2(4, 3).

SOLUTION.
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17. Given the line d : 2x + 3y + 4 = 0, find the equation of a line d1 through the point
M0(2, 1), in the following situations:

(a) d1 is parallel with d;

(b) d1 is orthogonal on d;

(c) the angle determined by d and d1 is ϕ =
π

4
.

SOLUTION.

18. The vertices of the triangle ∆ABC are the intersection points of the lines

d1 : 4x + 3y− 5 = 0, d2 : x− 3y + 10 = 0, d3 : x− 2 = 0.

(a) Find the coordinates of A, B, C.

(b) Find the equations of the median lines of the triangle.

(c) Find the equations of the heights of the triangle.

SOLUTION.
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4 Week 4

4.1 Analytic conditions of parallelism and nonparallelism

4.1.1 The parallelism between a line and a plane

Proposition 4.1. The equation of the director subspace
→
π, of the plane π : Ax + By + Cz + D = 0

is AX + BY + CZ = 0.

Proof. We first recall that
→
π= {

−→
A0M | M ∈ π}, (4.1)

where A0 ∈ π is an arbitrary point, and the representation (4.1) of
→
π is independent on the

choice of A0 ∈ π. According to equation (3.8), the equation of a plane π can be written in
the form

A(x− x0) + B(y− y0) + C(z− z0) = 0,

where A0(x0, y0, z0) is a point in π. In other words,

M(x, y, z) ∈ π ⇐⇒ A(x− x0) + B(y− y0) + C(z− z0) = 0,

which shows that

→
π = {

−→
A0M (x− x0, y− y0, z− z0) | M(x, y, z) ∈ π}

= {
−→

A0M (x− x0, y− y0, z− z0) | A(x− x0) + B(y− y0) + C(z− z0) = 0}
= {→v (X, Y, Z) ∈ V | AX + BY + CZ = 0}.

Thus, the equation AX + BY + CZ = 0 is a necessary and sufficient condition for the vector
→
v (X, Y, Z) to be contained within the direction of the plane

π : A(x− x0) + B(y− y0) + C(z− z0) = 0.

In other words, the equation of the director subspace
→
π is AX + BY + CZ = 0.

Corollary 4.2. The straight line

∆ :
x− x0

p
=

y− y0

q
=

z− z0

r

is parallel to the plane π : Ax + By + Cz + D = 0 if and only if

Ap + Bq + Cr = 0 (4.2)

Proof. Indeed,

∆‖π ⇐⇒
→
∆⊆

→
π⇐⇒ 〈(p, q, r)〉 ⊆→π

⇐⇒
→
d (p, q, r) ∈→π⇐⇒ Ap + Bq + Cr = 0.
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4.1.2 The intersection point of a straight line and a plane

Proposition 4.3. Consider a straight line

d :
x− x0

p
=

y− y0

q
=

z− z0

r

and a plane π : Ax + By + Cz + D = 0 which are not parallel to each other, i.e.

Ap + Bq + Cr 6= 0.

The coordinates of the intersection point d ∩ π are

x0 − p
F(x0 , y0 , z0)

Ap + Bq + Cr

y0 − q
F(x0 , y0 , z0)

Ap + Bq + Cr

z0 − r
F(x0 , y0 , z0)

Ap + Bq + Cr
,

(4.3)

where F : R3 −→ R, F(x, y, z) = Ax + By + Cz + D.

Proof. The parametric equations of (d) are
x = x0 + pt
y = y0 + qt
z = z0 + rt

, t ∈ R. (4.4)

The unique value of t ∈ R, which corresponds to the intersection point d ∩ π, can be found
by solving the equation

A(x0 + pt) + B(y0 + qt) + C(z0 + rt) + D = 0.

Its unique solution is

t = −Ax0 + By0 + Cz0 + D
Ap + Bq + Cr

= − F(x0 , y0 , z0)

Ap + Bq + Cr

and can be used to obtain the required coordinates (4.3) by replacing this value in (4.4).
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Example 4.1 (Homework). Decide whether the line d and the plane π are parallel or concur-
rent and find the coordinates of the intersection point of of ∆ and π whenever ∆ 6‖ π:

1. d : x+2
1 = y−1

3 = z−3
1 and π : x− y + 2z = 1.

2. d : x−3
1 = y+1

−2 = z−2
−1 and π : 2x− y + 3z− 1 = 0.

SOLUTION.

4.1.3 Parallelism of two planes

Proposition 4.4. Consider the planes

(π1) A1x + B1y + C1z + D1 = 0, (π2) A2x + B2y + C2z + D2 = 0.

Then dim(
→
π1 ∩

→
π2) ∈ {1, 2} and the following statemenets are equivalent

1. π1‖π2.

2. dim(
→
π1 ∩

→
π2) = 2, i.e.

→
π1=

→
π2.

3. rank
(

A1 B1 C1
A2 B2 C2

)
= 1.

4. The vectors (A1, B1, C1), (A2, B2, C2) ∈ R3 are linearly dependent.

Remark 4.1. Note that

rank
(

A1 B1 C1
A2 B2 C2

)
= 1⇔

∣∣∣∣ A1 B1
A2 B2

∣∣∣∣ = ∣∣∣∣ A1 C1
A2 C2

∣∣∣∣ = ∣∣∣∣ B1 C1
B2 C2

∣∣∣∣ = 0

⇔ A1B2 − A2B1 = A1C2 − A2C1 = B1C2 − C2B1 = 0. (4.5)

The relations (4.5) are often written in the form

A1

A2
=

B1

B2
=

C1

C2
, (4.6)

although at most two of the coefficients A2, B2 or C2 might be zero. In fact relations (4.6)
should be understood in terms of linear dependence of the vectors (A1, B1, C1), (A2, B2, C2) ∈
R3, i.e. (A1, B1, C1) = k(A2, B2, C2), where k ∈ R is the common value of those ratios (4.6)
which do not involve any zero coefficients. Let us finally mention that the equivalences (4.5)
prove the equivalence (3)⇐⇒ (4) of Proposition 4.4.
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Example 4.2. The equation of the plane α passing through the point A0(x0, y0, z0), which is
parallel to the plane π : Ax + By + Cz + D = 0 is

α : A(x− x0) + B(y− y0) + C(z− z0) = 0.

4.1.4 Straight lines as intersections of planes

Corollary 4.5. Consider the planes

(π1) A1x + B1y + C1z + D1 = 0, (π2) A2x + B2y + C2z + D2 = 0.

The following statements are equivalent

1. π1 6 ‖π2.

2. dim(
→
π1 ∩

→
π2) = 1.

3. rank
(

A1 B1 C1
A2 B2 C2

)
= 2.

4. The vectors (A1, B1, C1), (A2, B2, C2) ∈ R3 are linearly independent.

By using the characterization of parallelism between a line and a plane, given by Proposi-
tion 4.2, we shall find the direction of a straight line which is given as the intersection of two
planes. Consider the planes (π1) A1x + B1y + C1z + D1 = 0, (π2) A2x + B2y + C2z + D2 = 0
such that

rank
(

A1 B1 C1
A2 B2 C2

)
= 2,

alongside their intersection straight line ∆ = π1 ∩ π2 of equations

(∆)
{

A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D1 = 0.

Thus,
→
∆=

→
π1 ∩

→
π2 and therefore, by means of some previous Proposition, it follows that the

equations of
→
∆ are

(
→
∆)

{
A1X + B1Y + C1Z = 0
A2X + B2Y + C2Z = 0. (4.7)
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By solving the system (4.7) one can therefore deduce that
→
d (p, q, r) ∈

→
∆⇔ ∃λ ∈ R such that

(p, q, r) = λ

(∣∣∣∣ B1 C1
B2 C2

∣∣∣∣ ,
∣∣∣∣ C1 A1

C2 A2

∣∣∣∣ ,
∣∣∣∣ A1 B1

A2 B2

∣∣∣∣) . (4.8)

The relation is usually (4.8) written in the form

p∣∣∣∣ B1 C1
B2 C2

∣∣∣∣ =
q∣∣∣∣ C1 A1

C2 A2

∣∣∣∣ =
r∣∣∣∣ A1 B1

A2 B2

∣∣∣∣ . (4.9)

Let us finaly mention that we usually choose the values∣∣∣∣ B1 C1
B2 C2

∣∣∣∣ ,
∣∣∣∣ C1 A1

C2 A2

∣∣∣∣ şi
∣∣∣∣ A1 B1

A2 B2

∣∣∣∣ (4.10)

for the director parameters (p, q, r) of ∆.

Example 4.3. Write the equations of the plane through P(4,−3, 1) which is parallel to the lines

(∆1)

{
2x − z + 1 = 0

3y + 2z − 2 = 0.
and (∆2)

{
x + y + z = 0

2x − y + 3z = 0.

SOLUTION. One can see the required plane as the one through P(4,−3, 1) which is parallel to the

director vectors
→
d 1 (p1, q1, r1) and

→
d 2 (p2, q2, r2) of ∆1 and ∆2 respectively. One can choose

p1 =

∣∣∣∣ 0 −1
3 2

∣∣∣∣ = 3

q1 =

∣∣∣∣ −1 2
2 0

∣∣∣∣ = −4

r1 =

∣∣∣∣ 2 0
0 3

∣∣∣∣ = 6

and

p2 =

∣∣∣∣ 1 1
−1 3

∣∣∣∣ = 4

q2 =

∣∣∣∣ 1 1
3 2

∣∣∣∣ = −1

r2 =

∣∣∣∣ 1 1
2 −1

∣∣∣∣ = −3.

Thus, the equation of the required plane is

Figure 3:

∣∣∣∣∣∣
x− 4 y + 3 z− 1

3 −4 6
4 −1 −3

∣∣∣∣∣∣ = 0 ⇐⇒ 12(x− 4)− 3(z− 1) + 24(y + 3) + 16(z− 1) + 6(x− 4) + 9(y + 3) = 0

⇐⇒ 18(x− 4) + 33(y + 3) + 13(z− 1) = 0
⇐⇒ 18x + 33y + 13z− 72 + 99− 13 = 0
⇐⇒ 18x + 33y + 13z + 14 = 0.
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4.2 Pencils of planes
Definition 4.1. The collection of all planes containing a given straight line

(∆)
{

A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D2 = 0

is called the pencil or the bundle of planes through ∆.

Proposition 4.6. The plane π belongs to the pencil of planes through the straight line ∆ if and only if the
equation of the plane π is

λ(A1x + B1y + C1z + D1) + µ(A2x + B2y + C2z + D2) = 0. (4.11)

for some λ, µ ∈ R such that λ2 + µ2 > 0.

Proof. Every plane in the family (4.11) obviously contains the line ∆.
Conversely, assume that π is a plane through the line ∆. Consider a point M ∈ π \ ∆ and recall

that π is completely determined by ∆ and M. On the other hand M and ∆ are obviously contained in
the plane F1(xM, yM, zM)F2(x, y, z)− F2(xM, yM, zM)F1(x, y, z) = 0 of the family (4.11), where F1, F2 :
R3 −→ R, Fi(x, y, z) = Aix + Biy + Ciz + Di, for i = 1, 2. Thus the plane π belongs to the family
(4.11) and its equation is

F1(xM, yM, zM)F2(x, y, z)− F2(xM, yM, zM)F1(x, y, z) = 0.

Remark 4.2. The family of planes A1x + B1y + C1z + D1 + λ(A2x + B2y + C2z + D2) = 0, where λ
covers the whole real line R, is the so called reduced pencil of planes through ∆ and it consists in all
planes through ∆ except the plane of equation A2x + B2y + C2z + D2 = 0.

Example 4.4. Write the equations of the plane parallel to the line d : x = 2y = 3z passing through
the line

∆ :
{

x + y + z = 0
2x− y + 3z = 0.

SOLUTION. Note that none of the planes x + y + z = 0 and x− y + 3z = 0, passing through (∆),
is parallel to (d), as 1 · 1 + 1 · 1

2 + 1 · 1
3 6= 0 and 2 · 1 + (−1) · 1

2 + 3 · 1
3 6= 0. Thus, the required plane

is in a reduced pencil of planes, such as the family πλ : x + y + z + λ(2x− y + 3z) = 0, λ ∈ R. The
parallelism relation between (d) and πλ : (2λ + 1)x + (1− λ)y + (3λ + 1)z = 0 is

(2λ + 1) · 1 + (1− λ) · 1
2
+ (3λ + 1) · 1

3
= 0⇐⇒ 12λ + 6 + 3− 3λ + 6λ + 2 = 0⇐⇒ λ = −11

15
.

Thus, the required plane is

π−11/15 :
(
−2

11
15

+ 1
)

x +

(
1 +

11
15

)
y +

(
−3

11
15

+ 1
)

z = 0⇐⇒ −7x + 26y− 18z = 0.
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Appendix

4.3 Projections and symmetries
4.3.1 The projection on a plane parallel with a given line

Consider a straight line

d :
x− x0

p
=

y− y0

q
=

z− z0

r

and a plane π : Ax + By + Cz + D = 0 which are not parallel to each other, i.e.

Ap + Bq + Cr 6= 0.

For these given data we may define the projection pπ,d : P −→ π of P on π parallel to d, whose value
pπ,d(M) at M ∈ P is the intersection point between π and the line through M which is parallel to d.
Due to relations (4.3), the coordinates of pπ,d(M), in terms of the coordinates of M, are

xM − p
F(xM , yM , zM)

Ap + Bq + Cr

yM − q
F(xM , yM , zM)

Ap + Bq + Cr

zM − r
F(xM , yM , zM)

Ap + Bq + Cr
,

(4.12)

where F(x, y, z) = Ax + By + Cz + D.
Consequently, the position vector of pπ,d(M) is

−−−−−−−→
Opπ,d(M)=

−→
OM − F(M)

Ap + Bq + Cr
→
d . (4.13)

Proposition 4.7. If R = (O, b) is the Cartesian reference system behind the equations of the line

(d)
x− x0

p
=

y− y0

q
=

z− z0

r

and the plane (π) Ax + By + Cz + D = 0, concurrent with (d), then

[pπ,d(M)]R =
1

Ap + Bq + Cr

 Bq + Cr −Bp −Cp
−Aq Ap + Cr −Cq
−Ar −Br Ap + Bq

 [M]R −
D

Ap + Bq + Cr
[
→
d ]b,

where
→
d (p, q, r) stands for the director vector of the line (d).
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4.3.2 The symmetry with respect to a plane parallel with a given line

We call the function sπ,d : P −→ P , whose value sπ,d(M) at M ∈ P is the symmetric point of M
with respect to pπ,d(M) the symmetry of P with respect to π parallel to d. The direction of d is equally
called the direction of the symmetry and π is called the axis of the symmetry. For the position vector
of sπ,d(M) we have

−−−−−−−→
Opπ,d(M)=

−→
OM +

−−−−−−−→
Osπ,d(M)

2
, i.e. (4.14)

−−−−−−−→
Osπ,d(M)= 2

−−−−−−−→
Opπ,d(M) −

−→
OM=

−→
OM −2

F(M)

Ap + Bq + Cr
→
d . (4.15)

Proposition 4.8. If R = (O, b) is the Cartesian reference system behind the equations of the line

(d)
x− x0

p
=

y− y0

q
=

z− z0

r

and the plane (π) Ax + By + Cz + D = 0, concurrent with (d), then

(Ap+Bq+Cr)[sπ,d(M)]R=

 −Ap+Bq+Cr −2Bp −2Cp
−2Aq Ap−Bq+Cr −2Cq
−2Ar −2Br Ap+Bq−Cr

[M]R−2D[
→
d ]b, (4.16)

where
→
d (p, q, r) stands for the director vector of the line (d).

4.3.3 The projection on a straight line parallel with a given plane

Consider a straight line

d :
x− x0

p
=

y− y0

q
=

z− z0

r
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and a plane π : Ax + By + Cz + D = 0 which are not parallel to each other, i.e.

Ap + Bq + Cr 6= 0.

For these given data we may define the projection pd,π : P −→ d of P on d, whose value pd,π(M) at
M ∈ P is the intersection point between d and the plane through M which is parallel to π. Due to
relations (4.3), the coordinates of pd,π(M), in terms of the coordinates of M, are

x0 − p
GM(x0 , y0 , z0)

Ap + Bq + Cr

y0 − q
GM(x0 , y0 , z0)

Ap + Bq + Cr

z0 − r
GM(x0 , y0 , z0)

Ap + Bq + Cr
,

(4.17)

where GM(x, y, z) = A(x − xM) + B(y − yM) + C(z − zM). Consequently, the position vector of
pd,π(M) is

−−−−−−−→
Opd,π(M)=

−→
OA0 −

GM(A0)

Ap + Bq + Cr
→
d , where A0(x0, y0, z0). (4.18)

Note that GM(A0) = A(x0 − xM) + B(y0 − yM) + C(z0 − zM) = F(A0)− F(M), where F(x, y, z) =
Ax + By + Cz + D. Consequently the coordinates of pd,π(M), in terms of the coordinates of M, are

x0 + p
F(M)− F(A0)

Ap + Bq + Cr

y0 + q
F(M)− F(A0)

Ap + Bq + Cr

z0 + r
F(M)− F(A0)

Ap + Bq + Cr
,

(4.19)

and the position vector of pd,π(M) is

−−−−−−−→
Opd,π(M)=

−→
OA0 +

F(M)− F(A0)

Ap + Bq + Cr
→
d , where A0(x0, y0, z0). (4.20)

4.3.4 The symmetry with respect to a line parallel with a plane

We call the function sd,π : P −→ P , whose value sd,π(M) at M ∈ P is the symmetric point of M
with respect to pd,π(M), the symmetry of P with respect to d parallel to π. The direction of π is equally
called the direction of the symmetry and d is called the axis of the symmetry. For the position vector
of sd,π(M) we have
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−−−−−−−→
Opd,π(M)=

−→
OM +

−−−−−−−→
Osd,π(M)

2
, i.e. (4.21)

−−−−−−−→
Osd,π(M) = 2

−−−−−−−→
Opd,π(M) −

−→
OM

= 2
−→

OA0 −
−→

OM +2
F(M)− F(A0)

Ap + Bq + Cr
→
d .

(4.22)

4.4 Problems
1. Write the equation of the plane determined by the line

(d)
{

x − 2y + 3z = 0
2x + z − 3 = 0

and the point A(−1, 2, 6).

SOLUTION.

2. Write the equation of the line which passes through the point M(1, 0, 7), is parallel to the plane
(π) 3x− y + 2z− 15 = 0 and intersects the line

(d)
x− 1

4
=

y− 3
2

=
z
1

.

SOLUTION 1. The equation of the plane α passing through the point M(1, 0, 7), which is parallel
to the plane (π) 3x− y + 2z− 15 = 0, is (α) 3(x− 1)− (y− 0) + 2(z− 7) = 0, i.e. (α) 3x− y +
2z− 17 = 0.
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The parametric equations of the line d are
x = 1 + 4t
y = 3 + 2t
z = t

, t ∈ R.

The coordinates of the intersection point N between the line (d) and the plane α can be obtained
by solving the equation 3((1 + 4t)− (3 + 2t) + 2t− 17 = 0. The required line is MN.

SOLUTION 2. The required line can be equally regarded as the intersection line between the
plane α (passing through the point M(1, 0, 7), which is parallel to the plane (π)) and the plane
determined by the given line (d) and the point M. While the equation 3x− y + 2z− 17 = 0 of
α was already used above, the equation of the plane determined by the line (d) and the point
M can be determined via the pencil of planes through

(d)


x− 1

4
=

y− 3
2

y− 3
2

=
z
1

⇔ (d)
{

x− 2y + 5 = 0
y− 2z− 3 = 0.

Note that none of the planes x− 2y + 5 = 0 or y− 2z− 3 = 0 passes through M, which means
that the plane determined by d and M is in the reduced pencil of planes

(πλ) x− 2y + 5 = 0 + λ(y− 2z− 3) = 0.

The plane determined by d and M can be found by imposing on the coordinates of M to verify
the equation of πλ.

3. Write the equations of the projection of the line

(d)
{

2x − y + z − 1 = 0
x + y − z + 1 = 0
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on the plane π : x + 2y− z = 0 parallel to the direction
−→
u (1, 1,−2). Write the equations of

the symmetry of the line d with respect to the plane π parallel to the direction
−→
u (1, 1,−2).

SOLUTION.

4. Prove Proposition 4.7

SOLUTION.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

5. Prove Proposition 5.6

SOLUTION.
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6. Show that two different parallel lines are either projected onto parallel lines or on two points
by a projection pπ,d, where

π : Ax + By + Cz + D = 0, d :
x− x0

p
=

y− y0

q
=

z− z0

r

and π 6 ‖d.

SOLUTION.

7. Show that two different parallel lines are mapped onto parallel lines by a symmetry sπ,d, where

π : Ax + By + Cz + D = 0, d :
x− x0

p
=

y− y0

q
=

z− z0

r

andπ 6 ‖d.

SOLUTION.
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8. Assume that R = (O, b) (b = [
→
u ,
→
v ,
→
w]) is the Cartesian reference system behind the equations

of a plane π : Ax + By + Cz + D = 0 and a line

d :
x− x0

p
=

y− y0

q
=

z− z0

r
.

If π 6 ‖d, show that

(a)
−−−−−−−−−−−−−−−→

pπ,d(M)pπ,d(N)= p(
−→

MN), for all M, N ∈ V , where p : V −→ V is the linear transforma-
tion whose matrix representation is

[p]b =
1

Ap + Bq + Cr

 Bq + Cr −Bp −Cp
−Aq Ap + Cr −Cq
−Ar −Br Ap + Bq

 .

SOLUTION.

(b)
−−−−−−−−−−−−−−−→
sπ,d(M)sπ,d(N)= s(

−→
MN), for all M, N ∈ V , where s : V −→ V is the linear transformation

whose matrix representation is

[s]b =
1

Ap + Bq + Cr

 −Ap + Bq + Cr −2Bp −2Cp
−2Aq Ap− Bq + Cr −2Cq
−2Ar −2Br Ap + Bq− Cr

 .

SOLUTION.
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9. Consider a plane π : Ax + By + Cz + D = 0 and a line

d :
x− x0

p
=

y− y0

q
=

z− z0

r
.

If π 6 ‖d, show that

(a) pπ,d ◦ pπ,d = pπ,d.

(b) sπ,d ◦ sπ,d = idP .

SOLUTION.

4.5 Projections and symmetries in the two dimensional setting
4.5.1 The intersection point of two concurrent lines

Consider two lines
d :

x− x0

p
=

y− y0

q

şi ∆ : ax + by + c = 0 which are not parallel to each other, i.e.

ap + bq 6= 0.

The parametric equations of d are: {
x = x0 + pt
y = y0 + qt , t ∈ R (4.23)
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

The value of t ∈ R for which this line (4.23) punctures the line ∆ can be determined by imposing
the condition on the point of coordinates

(x0 + pt, y0 + qt)

to verify the equationof the line ∆, namely

a(x0 + pt) + b(y0 + qt) + c = 0.

Thus

t = − ax0 + by0 + c
ap + bq

= −F(x0, y0)

ap + bq
,

where F(x, y) = ax + by + c.
The coordinates of the intersection point d ∩ ∆ are:

x0 − p
F(x0, y0)

ap + bq

y0 − q
F(x0, y0)

ap + bq
.

(4.24)

4.5.2 The projection on a line parallel with another given line

Consider two straight non-parallel lines

d :
x− x0

p
=

y− y0

q

and ∆ : ax + by + c = 0 which are not parallel to each other, i.e. ap + bq 6= 0. For these given data
we may define the projection p∆,d : π → ∆ of π on ∆ parallel cu d, whose value p∆,d at M ∈ π is the
intersection point between ∆ and the line through M which is parallelt to d. Due to relations (4.24),
the coordinates of p∆,d(M), in terms of the coordinates of M are:

xM − p
F(xM, yM)

ap + bq

yM − q
F(xM, yM)

ap + bq
,

where F(x, y) = ax + by + c.
Consequently, the position vector of p∆,d(M) is

−−−−−−→
Op∆,d(M) =

−−→
OM− F(M)

ap + bq
−→
d ,

where
−→
d = p−→e + g

−→
f .

Proposition 4.9. If R is the Cartesian reference system of the plane π behind the equations of the concurrent
lines

∆ : ax + by + c = 0 and d :
x− x0

p
=

y− y0

q
,

then

[p∆,d(M)]R =
1

ap + bq

(
bq −bp
−aq ap

)
[M]R −

c
ap + bq

[
−→
d ]b. (4.25)
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4.5.3 The symmetry with respect to a line parallel with another line

We call the function s∆,d : π → π, whose value s∆,d at M ∈ π is the symmetric point of M with
respect to p∆,d(M), the symmetry of π with respect to ∆ parallel to d. The direction of d is equally called
the direction of the symmetry and π is called the axis of the symmetry. For the position vector of
s∆,d(M) we have

−−−−−−→
Op∆,d(M) =

−−→
OM +

−−−−−−→
Os∆,d(M)

2
, i.e.

−−−−−−→
Os∆,d(M) = 2

−−−−−−→
Op∆,d(M)−−−→OM =

−−→
OM− 2

F(M)

ap + bq
−→
d ,

where F(x, y) = ax + by + c. Thus, the coordinates of s∆,d(M), in terms of the coordinates of M, are
xM − 2p

F(xM, yM)

ap + bq

yM − 2q
F(xM, yM)

ap + bq
.

Proposition 4.10. If R is the Cartesian reference system of the plane π behind the equations of the concurrent
lines

∆ : ax + by + c = 0 and d :
x− x0

p
=

y− y0

q
,

then

[s∆,d(M)]R =
1

ap + bq

(
−ap + bq −2bp
−2aq ap− bq

)
[M]R −

2c
ap + bq

[
−→
d ]b. (4.26)
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5 Week 5: Products of vectors

5.1 The dot product
Definition 5.1. The real number

→
a ·
→
b=

 0 if
→
a= 0 or

→
b= 0

|| →a || · ||
→
b ||cos(

→̂
a ,
→
b ) if

→
a 6= 0 and

→
b 6= 0

(5.1)

is called the dot product of the vectors
→
a ,
→
b .

Remark 5.1. 1.
→
a⊥
→
b⇔

→
a ·
→
b= 0.

2.
→
a · →a= || →a || · || →a || cos 0 = || →a ||2.

Proposition 5.1. The dot product has the following properties:

1.
→
a ·
→
b=
→
b ·
→
a , ∀ →a ,

→
b∈ V .

2.
→
a ·(λ

→
b ) = λ(

→
a ·
→
b ), ∀ λ ∈ R,

→
a ,
→
b∈ V .

3.
→
a ·(

→
b +

→
c ) =

→
a ·
→
b +

→
a · →c , ∀ →a ,

→
b ,
→
c∈ V .

4.
→
a · →a≥ 0, ∀ →a∈ V .

5.
→
a · →a= 0⇔→a=

→
0 .

Definition 5.2. A basis of the vector space V is said to be orthonormal, if ||
→
i || = ||

→
j || = ||

→
k || =

1,
→
i ⊥
→
j ,
→
j ⊥
→
k ,
→
k⊥
→
i (
→
i ·

→
i =
→
j ·

→
j =
→
k ·

→
k= 1,

→
i ·

→
j =
→
j ·

→
k=
→
k ·

→
i = 0). A Cartesian reference

system R = (O,
→
i ,
→
j ,
→
k ) is said to be orthonormal if the basis [

→
i ,
→
j ,
→
k ] is orthonormal.

Proposition 5.2. Let [
→
i ,
→
j ,
→
k ] be an orthonormal basis and

→
a ,
→
b∈ V . If

→
a= a1

→
i +a2

→
j +a3

→
k ,
→
b= b1

→
i

+b2
→
j +b3

→
k , then

→
a ·
→
b= a1b1 + a2b2 + a3b3 (5.2)

Proof. Indeed,
→
a ·
→
b = (a1

→
i +a2

→
j +a3

→
k ) · (b1

→
i +b2

→
j +b3

→
k )

= a1b1
→
i ·
→
i +a1b2

→
i ·
→
j +a1b3

→
i ·
→
k

+a2b1
→
j ·
→
i +a2b2

→
j ·
→
j +a2b3

→
j ·
→
k

+a3b1
→
k ·
→
i +a3b2

→
k ·
→
j +a3b3

→
k ·
→
k

= a1b1 + a2b2 + a3b3.
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Remark 5.2. Let [
→
i ,
→
j ,
→
k ] be an orthonormal basis and

→
a ,
→
b∈ V . If

→
a= a1

→
i +a2

→
j +a3

→
k and

→
b= b1

→
i +b2

→
j +b3

→
k , then

1.
→
a · →a= a2

1 + a2
2 + a2

3 and we conclude that || →a || =
√→

a · →a =
√

a2
1 + a2

2 + a2
3.

2.

cos(
→̂
a ,
→
b ) =

→
a ·
→
b

|| →a || · ||
→
b ||

=
a1b1 + a2b2 + a3b3√

a2
1 + a2

2 + a2
3 ·
√

b2
1 + b2

2 + b2
3

.

(5.3)

In particular

cos(
→̂
a ,
→
i ) =

a1√
a2

1 + a2
2 + a2

3

;

cos(
→̂
a ,
→
j ) =

a2√
a2

1 + a2
2 + a2

3

;

cos(
→̂
a ,
→
k ) =

a3√
a2

1 + a2
2 + a2

3

.

3.
→
a⊥
→
b⇔ a1b1 + a2b2 + a3b3 = 0

5.1.1 Applications of the dot product

♦ The two dimensional setting

• The distance between two points Consider two points A(xA, yA), B(xB, yB) ∈ π. The norm

of the vector
−→
AB (xB − xA, yB − yA is

||
−→
AB || =

√
(xB − xA)2 + (yB − yA)2.

• The equation of the circle

Recall that the circle C(O, r) is the locus of points M in the plane such that dist(O, M) = r ⇐⇒
‖
−→

OM ‖ = r. If (a, b) are the coordinates of O and (x, y) are the coordinates of M, then

‖
−→

OM ‖ =r ⇐⇒
√
(x− a)2 + (y− b)2 = r ⇐⇒ (x− a)2 + (y− b)2 = r2

⇐⇒ x2 + y2 − 2ax− 2by + c = 0, (5.4)

where c = a2 + b2 − r2. Conversely, every equation of the form x2 + y2 + 2ex + 2 f y + g = 0
is the equation of the circle centered at (−e,− f ) and having the radius r =

√
e2 + f 2 − g,

whenever e2 + f 2 ≥ g. One can find the equation of the circle circumscribed to the triangle ABC
by imposing the requirement on the coordinates (xA , yA), (xB , yB) and (xC , yC) of its vertices
A, B, C to verify the equation x2 + y2 + 2ex + 2 f y + g = 0. A point M(x, y) belongs to this
circumcircle if and only if 

x2 + y2 + 2ex + 2 f y + g = 0
x2

A + y2
A + 2exA + 2 f yA + g = 0

x2
B + y2

B + 2exB + 2 f yB + g = 0
x2

C + y2
C + 2exC + 2 f yC + g = 0

(5.5)
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On can regard the system (5.5) as linear with the unknowns e, g, f , whose compatibility is given,
via the Kronecker-Capelli theorem, by∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x2

A + y2
A xA yA 1

x2
B + y2

B xB yB 1
x2

C + y2
C xC yC 1

∣∣∣∣∣∣∣∣ = 0,

which is the equation of the circumcircle of the triangle ABC.

• The normal vector of a line If R = (O, b) is the orthonormal Cartesian reference sytem behind

the equation of a line (d) ax + by + c = 0, then
→
n (a, b) is a normal vector to the direction

→
d of

d. Indeed, every vector of the direction
→
d of d has the form

−→
PM, where P(xP , yP) and M(x, y)

are two points on the line d. Thus, axP + byP + c = 0 = axM + byM + c, which shows that

a(xM − xP) + b(yM − yP) = 0,

namely
→
n ·

−→
PM= 0⇐⇒→n⊥

−→
PM .

• The distance from a point to a line If (d) ax + by + c = 0 is a line and M(xM , yM) ∈ π a given
point, then the distance from M to d is

δ(M, d) =
|axM + byM + c|√

a2 + b2
. (5.6)

Indeed, δ(M, d) = |δ|, where δ is the real scalar with the property
−→
PM= δ

→
n
‖→n‖

and P(xP , yP) is

the orthogonal projection of M(xM , yM) on d. Thus
−→
PM (xM − xP , yM − yP) andul

δ(M, d) = |δ| =
∣∣∣∣∣ −→PM ·

→
n

‖ →n ‖

∣∣∣∣∣ = |
−→
PM·→n |
‖→n‖

=
|a(xM − xP) + b(yM − yP)|√

a2 + b2

=
|axM + byM − axP − byP)|√

a2 + b2
=
|axM + byM + c|√

a2 + b2
.

♦ The three dimensional setting

• The distance between two points Consider two points A(xA, yA, zA), B(xB, yB, zB) ∈ P . The

norm of the vector
−→
AB (xB − xA, yB − yA, zB − zA) is

||
−→
AB || =

√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2.

• The equation of the sphere

Recall that the sphere S(O, r) is the locus of points M in space such that dist(O, M) = r ⇐⇒
‖
−→

OM ‖ = r. If (a, b, c) are the coordinates of O and (x, y, z) are the coordinates of M, then

‖
−→

OM ‖ = r ⇐⇒
√
(x− a)2 + (y− b)2 + (z− c)2 = r ⇐⇒ (x− a)2 + (y− b)2 + (z− c)2 = r2

⇐⇒ x2 + y2 + z2 − 2ax− 2by− 2cz + d = 0,

where d = a2 + b2 + c2 − r2. Conversely, every equation of the form

x2 + y2 + z2 + 2ex + 2 f y + 2gz + h = 0
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is the equation of the sphere centered at (−e,−g,− f ) and having the radius r =
√

e2 + f 2 + g2 − h,
whenever e2 + f 2 + g2 ≥ h. One can find the equation of the sphere circumscribed to the tetra-
hedron ABCD by imposing the requirement on the coordinates (xA, yA, zA), (xB, yB, zB) and
(xC, yC, zC) and (xD, yD, zD) of its vertices A, B, C, D to verify the equation x2 + y2 + z2− 2ax−
2by− 2cz + d = 0. A point M(x, y, z) belongs to this circumcircle if and only if

x2 + y2 + z2 + 2ex + 2 f y + 2gz + h = 0
x2

A + y2
A + z2

A + 2exA + 2 f yA + 2gzA + h = 0
x2

B + y2
B + z2

B + 2exB + 2 f yB + 2gzB + h = 0
x2

C + y2
C + z2

C + 2exC + 2 f yC + 2gzC + h = 0
x2

D + y2
D + z2

D + 2exD + 2 f yD + 2gzA + h = 0

(5.7)

On can regard the system (5.7) as linear with the unknowns e, g, f , h, whose compatibility is
given, via the Kronecker-Capelli theorem, by∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1
x2

A + y2
A + z2

A xA yA zA 1
x2

B + y2
B + z2

B xB yB zB 1
x2

C + y2
C + z2

C xC yC zC 1
x2

D + y2
D + z2

D xD yD zA 1

∣∣∣∣∣∣∣∣∣∣
= 0,

which is the equation of the circumsphere of the tetrahedron ABCD.

• The normal vector of a plane. Consider the plane π : Ax + By + Cz + D = 0 and the point
P(x0, y0, z0) ∈ π. The equation of π becomes

A(x− x0) + B(y− y0) + C(z− z0) = 0. (5.8)

If M(x, y, z) ∈ π, the coordinates of
−→
PM are (x− x0, y− y0, z− z0) and the equation (5.8) tells

us that
→
n ·

−→
PM= 0, for every M ∈ π, that is

→
n⊥

−→
PM= 0, for every M ∈ π, which is equivalent

to
→
n⊥→π, where

→
n (A, B, C). This is the reason to call

→
n (A, B, C) the normal vector of the plane π.

• The distance from a point to a plane. Consider the plane π : Ax + By + Cz + D = 0, a point

P(xP, yP, zP)∈P and M the orthogonal projection of P on π. The real number δ given by
−→
MP=

δ· −→n 0 is called the oriented distance from P to the plane π, where
−→
n 0=

1
||−→n ||

−→
n is the versor

of the normal vector
−→
n (A, B, C). Since

−→
MP= δ· −→n 0, it follows that δ(P, M) = ||

−→
MP || = |δ|,

where δ(P, M) stands for the distance from P to π. We shall show that

δ =
AxP + ByP + CzP + D√

A2 + B2 + C2
.

Indeed, since
−→
MP= δ· −→n 0, we get successively:

δ =
−→
n 0 ·

−→
MP=

(
1
||−→n ||

−→
n
)
·
−→
MP=

−→
n ·
−→
MP

||−→n ||

=
A(xP − xM) + B(yP − yM) + C(zP − zM)√

A2 + B2 + C2

=
AxP + ByP + CzP − (AxM + ByM + CzM)√

A2 + B2 + C2

=
AxP + ByP + CzP + D√

A2 + B2 + C2
.

Consequently, the distance from P to the plane π is

δ(P, π) = ||
−→
MP || = |δ| = |AxP + ByP + CzP + D|√

A2 + B2 + C2
.
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Example 5.1. Compute the distance from the point A(3, 1,−1) to the plane

π : 22x + 4y− 20z− 45 = 0.

SOLUTION.

δ(A, π) =
|22 · 3 + 4 · 1− 20 · (−1)− 45|√

222 + 42 + (−20)2
=

45√
900

=
45
30

=
3
2

.

5.2 Appendix: Orthogonal projections and reflections
5.2.1 The two dimensional setting

Asssume that R = (O,
−→
i ,
−→
j ) is the orthonormal Cartesian system of a plane π behind the equation

of the line ∆ : ax + by + c = 0.
• The orthogonal projection of a point on a line. We define the projection of the ambient plane
p∆ : π → ∆ on ∆, whose value p∆ at M ∈ π is the intersection point between ∆ and the line through
M perpendicular to ∆. Due to relations (4.24), the coordinates of p∆(M), in terms of the coordinates
of M are:

xM − p
F(xM, yM)

a2 + b2

yM − q
F(xM, yM)

a2 + b2 ,

where F(x, y) = ax + by + c. Consequently, the position vector of p∆(M) is

−−−−−→
Op∆(M) =

−−→
OM− F(M)

a2 + b2
−→n∆ ,

where −→n ∆ = a
−→
i + b

−→
j .

Proposition 5.3. If R = (O,
−→
i ,
−→
j ) is the orthonormal Cartesian reference system of the plane π behind the

equations of the line
∆ : ax + by + c = 0,

then

[p∆(M)]R =
1

a2 + b2

(
b2 −ab
−ab a2

)
[M]R −

c
a2 + b2

[−→n ∆

]
b , (5.9)

where b stands for the orthonormal basis [
−→
i ,
−→
j ] of −→π .

• The reflection of the plane about a line. We call the function r∆ : π → π, whose value r∆ at M ∈ π
is the symmetric point of M with respect to p∆(M), the reflection of π about ∆. For the position vector
of r∆(M) we have

−−−−−→
Op∆(M) =

−−→
OM +

−−−−−→
Or∆(M)

2
, i.e.

−−−−−→
Or∆(M) = 2

−−−−−→
Op∆(M)−−−→OM =

−−→
OM− 2

F(M)

a2 + b2
−→n ∆ ,

where F(x, y) = ax + by + c and −→n ∆ = a
−→
i + b

−→
j . Thus, the coordinates of s∆,d(M), in terms of the

coordinates of M, are 
xM − 2p

F(xM, yM)

a2 + b2

yM − 2q
F(xM, yM)

a2 + b2 .
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Proposition 5.4. If R = (O,
−→
i ,
−→
j ) is the orthonormal Cartesian reference system of the plane π behind the

equations of the line
∆ : ax + by + c = 0,

then

[r∆(M)]R =
1

a2 + b2

(
−a2 + b2 −2ab
−2ab a2 − b2

)
[M]R −

2c
a2 + b2

[−→n ∆

]
b , (5.10)

where b stands for the orthonormal basis [
−→
i ,
−→
j ] of −→π .

Example 5.2. Find the coordinates of the reflected point of P(−5, 13) with respect to the line

d : 2x− 3y− 3 = 0,

knowing that the Cartesian reference system R behind the coordinates of A and the equation of (d)
is orthonormal.

HINT. According to 5.11 it follows that

[rd(P)]R =
1

22 + (−3)2

(
−22 + (−3)2 −2 · 2 · (−3)
−2 · 2 · (−3) 22 − (−3)2

) [
−5
13

]
− 2 · (−3)

22 + (−3)2

[
2
−3

]
. (5.11)

5.2.2 The three dimensional setting

• The orthogonal projection of a point on a plane. For a given plane

π : Ax + By + Cz + D = 0

and a given point M(xM , yM , zM), we shall determine the coordinates of its orthogonal projection on
the plane π, as well as the coordinates of its (orthogonal) symmetric with respect to π. The equa-
tion of the plane and the coordinates of M are considered with respect to some cartezian coordinate

system R = (O,
→
i ,
→
j ,
→
k ). In this respect we consider the orthogonal line on π which passes through

M.

Its parametric equations are 
x = xM + At
y = yM + Bt
z = zM + Ct

, t ∈ R. (5.12)

The orthogonal projection pπ (M) of M on the plane π is at its intersection point with the orthogonal
line (5.12) and the value of t ∈ R for which this orthogonal line (5.12) puncture the plane π can
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be determined by imposing the condition on the point of coordinates (xM + At, yM + Bt, zM + Ct) to
verify the equation of the plane, namely A(xM + At) + B(yM + Bt) + C(zM + Ct) + D = 0. Thus

t = −AxM + ByM + CzM + D
A2 + B2 + C2 = −F(xM , yM , zM)

‖ →n π ‖2
,

where F(x, y, z) = Ax + By + Cz + D şi
→
n π= A

→
i +B

→
j +C

→
k is the normal vector of the plasne π.

• The orthogonal projection of the space on a plane.
The coordinates of the orthogonal projection pπ (M) of M on th eplane π are

xM − A
F(xM , yM , zM)

A2 + B2 + C2

yM − B
F(xM , yM , zM)

A2 + B2 + C2

zM − C
F(xM , yM , zM)

A2 + B2 + C2 .

Therefore, the position vector of the orthogonal projection pπ (M) is

−−−−−→
Opπ (M)=

−→
OM − F(M)

‖ →n π ‖2

→
n π . (5.13)

Proposition 5.5. If R = (O, b) is the orthonormal Cartesian reference system behind the equation of the plane
(π) Ax + By + Cz + D = 0 , then

(A2 + B2 + C2)[pπ(M)]R =

 B2 + C2 −AB −AC
−AB A2 + C2 −BC
−AC −BC A2 + B2

 [M]R − D[
→
n π ]b. (5.14)

Remark 5.3. The distance from the point M(xM , yM , zM) to the plane π : Ax + By + Cz + D = 0 can
be equally computed by means of (5.13). Indeed,

δ(M, π) = ‖
−−−−−→

Mpπ (M) ‖ = ‖
−−−−−→

Opπ (M) −
−→

OM ‖

=
∣∣− F(M)

‖→n π ‖2

∣∣ · ‖ →n π ‖ =
|F(M)|
‖ →n π ‖

.

• The reflection of the space about a plane. In order to find the position vector of the orthogonally
symmetric point rπ (M) of M w.r.t. π, we use the relation

−−−−−→
Opπ (M)=

1
2

( −→
OM +

−−−−−→
Orπ (M)

)
,

namely
−−−−−→
Orπ (M)= 2

−−−−−→
Opπ (M) −

−→
OM=

−→
OM −2

F(M)

‖ →n π ‖2

→
n π .

The correspondence which associate to some point M its orthogonally symmetric point w.r.t. π, is
called the reflection in the plane π and is denoted by rπ .

Proposition 5.6. If R = (O, b) is the orthonormal Cartesian reference system behind the equation of the plane
(π) Ax + By + Cz + D = 0, then

(A2+B2+C2)[rπ(M)]R=

 −A2+B2+C2 −2AB −2AC
−2AB A2−B2+C2 −2BC
−2AC −2BC A2+B2−C2

[M]R−2D[
→
n π ]b. (5.15)
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• The orthogonal projection of the space on a line. For a given line

∆ :
x− x0

p
=

y− y0

q
=

z− z0

r

and a point N(xN , yN , zN ), we shall find the coordinates of its orthogonal projection on the line ∆, as
well as the coordinates of the orthogonally symmetric point M with respect to ∆. The equations of
the line and the coordinates of the point N are considered with respect to an orthonormal coordinate

system R = (O,
→
i ,
→
j ,
→
k ). In this respect we consider the plane p(x− xN ) + q(y− yN ) + r(z− zN ) = 0

orthogonal on the line ∆ which passes through the point N.

The parametric equations of the line ∆ are
x = x0 + pt
y = y0 + qt
z = z0 + rt

, t ∈ R. (5.16)

The orthogonal projection of N on the line ∆ is at its intersection point with the plane

p(x− xN ) + q(y− yN ) + r(z− zN ) = 0,

and the value of t ∈ R for which the line ∆ puncture the orthogonal plane p(x− xN ) + q(y− yN ) +
r(z− zN ) = 0 can be found by imposing the condition on the point of coordinate (x0 + pt, y0 + qt, z0 +
rt) to verify the equation of the plane, namely p(x0 + pt− xN ) + q(y0 + qt− yN ) + r(z0 + rt− zN ) = 0.
Thus

t = − p(x0 − xN ) + q(y0 − yN ) + r(z0 − zN )

p2 + q2 + r2 = −G(x0 , y0 , z0)

‖
→
d ∆ ‖2

,

where G(x, y, z) = p(x− xN ) + q(y− yN ) + r(z− zN ) and
→
d π= p

→
i +q

→
j +r

→
k is the director vectoir

of the line ∆. Ths coordinates of the orthogonal projection p∆(N) of N on the line ∆ are therefore

x0 − p
G(x0 , y0 , z0)

p2 + q2 + r2

y0 − q
G(x0 , y0 , z0)

p2 + q2 + r2

z0 − r
G(x0 , y0 , z0)

p2 + q2 + r2 .

Thus, the position vector of the orthogonal projection p∆(N) is

−−−−−→
Op∆(N)=

−→
OA0 −

G(A0)

‖
→
d ∆ ‖2

→
d ∆ , (5.17)

where A0(x0 , y0 , z0) ∈ ∆.
• The reflection of the space about a line. In order to find the position vector of the orthogonally
symmetric point r∆(N) of N with respect to the line ∆ we use the relation

−−−−−→
Op∆(N)=

1
2

( −→
ON +

−−−−−→
Or∆(N)

)
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i.e.
−−−−−→
Os∆(N)= 2

−−−−−→
Op∆(N) −

−→
ON= 2

−→
OA0 −2

G(A0)

‖
→
d ∆ ‖2

→
d ∆ −

−→
ON .

The correspondence which associate to some point M its orthogonally symmetric point w.r.t. δ,
is called the reflection in the line δ and is denoted by r

δ
.

5.3 Problems
1. (2p) Consider the triangle ABC and the midpoint A′ of the side [BC]. Show that

4
−→

AA′
2

−
−→
BC

2
= 4

−→
AB ·

−→
AC .

2. (2p) Consider the rectangle ABCD and the arbitrary point M witin the space. Show that

(a)
−→
MA ·

−→
MC=

−→
MB ·

−→
MD.

(b)
−→
MA

2
+
−→
MC

2
=
−→
MB

2
+
−→

MD
2
.

3. (3p) Find the angle between:

(a) the straight lines

(d1)

{
x + 2y + z − 1 = 0
x − 2y + z + 1 = 0

(d2)

{
x − y − z − 1 = 0
x − y + 2z + 1 = 0.

(b) the planes
π1 : x + 3y + 2z + 1 = 0 and π2 : 3x + 2y− z = 6.
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(c) the plane xOy and the straight line M1M2, where M1(1, 2, 3) and M2(−2, 1, 4).

4. (3p) Consider the noncoplanar vectors
−→
OA (1,−1,−2),

−→
OB (1, 0,−1),

−→
OC (2, 2,−1) related to

an orthonormal basis
→
i ,
→
j ,
→
k . Let H be the foot of the perpendicular through O on the plane

ABC. Determine the components of the vectors
−→
OH.

5. (2p) Find the points on the z-axis which are equidistant with respect to the planes

π1 : 12x + 9y− 20z− 19 = 0 and π2 : 16x + 12y + 15z− 9 = 0.
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6. (2p) Consider two planes

(π1) A1x + B1y + C1z + D1 = 0
(π2) A2x + B2y + C2z + D2 = 0

which are not parallel and not perpendicular as well. The two planes π1, π2 devide the space
into four regions R1, R2, R3 and R4, two of which, say R1 and R3, correspond to the acute
dihedral angle of the two planes. Show that M(x, y, z) ∈ R1 ∪R3, if and only if

F1(x, y, z) · F2(x, y, z)(A1A2 + B1B2 + C1C2) < 0,

where F1(x, y, z) = A1x + B1y + C1z + D1 and F2(x, y, z) = A2x + B2y + C2z + D2.

Hint. The non-parallellism relation between the two planes is equivalent with the condition

rank
(

A1 B1 C1
A2 B2 C2

)
= 2.

The point M belongs to the unionR1 ∪R3 if and only if the angle of the vectors
−−−−−→

Mpπ1
(M) and

−−−−−→
Mpπ2

(M) is at leat 90◦, as the quadrilateral OAMB is inscriptible. More formally

M(x, y, z) ∈ R1 ∪R3 ⇔ m(
̂−−−−−→

Mpπ1
(M),

−−−−−→
Mpπ2

(M)) > 90◦

⇔
−−−−−→

Mpπ1
(M) ·

−−−−−→
Mpπ2

(M)< 0,
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where pπ1
(M), pπ2

(M) are the orthogonal projections of M on the planes π1 and π2 respectively.

7. (3p) Consider the planes (π1) 2x + y− 3z− 5 = 0, (π2) x + 3y + 2z + 1 = 0. Find the equations
of the bisector planes of the dihedral angles formed by the planes π1 and π2 and select the one
contained into the acute regions of the dihedral angles formed by the two planes.

8. (3p) Let a, b be two real numbers such that a2 6= b2. Consider the planes:

(α1)ax + by− (a + b)z = 0

(α2)ax− by− (a− b)z = 0

and the quadric (C) : a2x2 − b2y2 + (a2 − b2)z2 − 2a2xz + 2b2yz− a2b2 = 0. If a2 < b2, show
that the quadric C is contained in the acute regions of the dihedral angles formed by the two
planes. If, on the contrary, a2 > b2, show that the quadric C is contained in the obtuse regions
of the dihedral angles formed by the two planes.
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9. If two pairs of opposite edges of the tetrahedron ABCD are perpendicular (AB ⊥ CD, AD ⊥
BC), show that

(a) The third pair of opposite edges are perpendicular too (AC ⊥ BD).

(b) AB2 + CD2 = AC2 + BD2 = BC2 + AD2.

(c) The heights of the tetrahedron are concurrent.
(Such a tetrahedron is said to be orthocentric)

Solution. Denote by
−→
AB=

→
b ,
−→
AC=

→
c and

−→
AD=

→
d .

(a) AB ⊥ CD =⇒
→
b (
→
d −

→
c ) = 0 =⇒

→
b
→
d=
→
b
→
c = k

AD ⊥ BC =⇒
→
d (
→
c −

→
b ) = 0 =⇒ →

c
→
d=
→
b
→
d= k,

deci
→
c
→
b=
→
c
→
d =⇒ →

c (
→
b −

→
d ) = 0 =⇒ AC ⊥ BD.

(b) AB2 + CD2 =
→
b

2
+(
→
d −

→
c )2 =

→
b

2
+
→
d

2
+
→
c

2
−2k;

AC2 + BD2 =
→
c

2
+(
→
d −

→
b )2 =

→
b

2
+
→
c

2
+
→
d

2
−2k;

BC2 + AD2 =
→
d

2
+(
→
c −

→
b )2 =

→
b

2
+
→
c

2
+
→
d

2
−2k.

(c) We shall show that there exists a point H such that AH ⊥ (DBC), BH ⊥ (ACD), CH ⊥
(ABD), DH ⊥ (ABC). Let

−→
h =

−→
AH= m

−→
a +n

→
b +p

→
c . Writing the conditions

−→
AH⊥

−→
BC

,
−→
CD;

−→
BH⊥

−→
AC,

−→
AD;

−→
CH⊥

−→
AB,

−→
AD;

−→
DH⊥

−→
AB,

−→
AC we obtain a consistent system with one

single solution: 
b2m + kn + kp = k
km + c2n + kp = k
km + kn + d2 p = k.

(5.18)

Indeed the the matrix of the system is

A =

b2 k k
k c2 k
k k d2


and for its determinant we have successively

det(A) =

∣∣∣∣∣∣
b2 k k
k c2 k
k k d2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
b · b b · c b · c
c · b c · c c · d
d · b d · c d · d

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b2

1 + b2
2 + b2

3 b1c1 + b2c2 + b3c3 b1d1 + b2d2 + b3d3
c1b1 + c2b2 + c3b3 c2

1 + c2
2 + c2

3 c1d1 + c2d2 + c3d3
d1b1 + d2b2 + d3b3 d1c1 + d2c2 + d3c3 d2

1 + d2
2 + d2

3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b1 b2 b3
c1 c2 c3
d1 d2 d3

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
b1 c1 d1
b1 c2 d2
b1 c3 d3

∣∣∣∣∣∣ = (
→
b ,
→
c ,
→
d ) ·

∣∣∣∣∣∣
b1 b2 b3
c1 c2 c3
d1 d2 d3

∣∣∣∣∣∣ = (
→
b ,
→
c ,
→
d )2.

The linear independence of the vectors
→
b ,
→
c ,
→
d ensure that (

→
b ,
→
c ,
→
d ) 6= 0 and shows that the

linear system (5.18) is consistent and has one single solution.

10. Two triangles ABC şi A′B′C′ are said to be orthologic if they are in the same plane and the
perpendicular lines from the vertices A′, B′, C′ on the sides BC, CA, AB are concurrent. Show
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that, in this case, the perpendicular lines from the vertices A, B, C on the sides B′C′, C′A′, A′B′

are concurrent too.

Solution Due to the given hypothesis, we have

→
MA′ ·

→
BC=

→
MB′ ·

→
CA=

→
MC′ ·

→
AB= 0 (5.19)

We now consider the perpendicular lines from the vertices A and B on the edges B′C′ and C′A′

and denote by N their intersection point.

Thus
→

NA ·
→

B′C′=
→

NB ·
→

C′A′= 0.

By using the relations (5.19) we obtain

−→
MA′ ·

−→
BC +

−→
MB′ ·

−→
CA +

−→
MC′ ·

−→
AB= 0

⇔
−→

MA′ ·(
−→
NC −

−→
NB)+

−→
MB′ ·(

−→
NA −

−→
NC)+

−→
MC′ ·(

−→
NB −

−→
NA) = 0

⇔ (
−→

MB′ −
−→

MC′)·
−→
NA +(

−→
MC′ −

−→
MA′)·

−→
NB +(

−→
MA′ −

−→
MB′)·

−→
NC= 0

⇔
−→

C′B′ ·
−→
NA +

−→
A′C′ ·

−→
NB +

−→
B′A′ ·

−→
NC= 0

⇔
−→

B′A′ ·
−→
NC= 0⇔ NC ⊥ A′B′.

11. (2p) Find the orthogonal projection

(a) of the point A(1, 2, 1) on the plane π : x + y + 3z + 5 = 0.

(b) of the point B(5, 0,−2) on the straight line (d)
x− 2

3
=

y− 1
2

=
z− 3

4
.
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A few questions in the two dimensional setting

12. (3p) Find the coordinates of the point P on the line d : 2x − y − 5 = 0 for which the sum
AP + PB is minimum, when A(−7, 1) and B(−5, 5).

13. (2p) Find the coordinates of the circumcenter (the center of the circumscribed circle) of the
triangle determined by the lines 4x− y + 2 = 0, x− 4y− 8 = 0 and x + 4y− 8 = 0.

14. (3p) Given the bundle of lines of equations (1− t)x+(2− t)y+ t− 3 = 0, t ∈ R and x+ y− 1 =
0, find:

(a) the coordinates of the vertex of the bundle;
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(b) the equation of the line in the bundle which cuts Ox and Oy in M respectively N, such
that OM2 ·ON2 = 4(OM2 + ON2).

15. (2p) Let B be the bundle of lines of vertex M0(5, 0). An arbitrary line from B intersects the lines
d1 : y− 2 = 0 and d2 : y− 3 = 0 in M1 respectively M2. Prove that the line passing through M1
and parallel to OM2 passes through a fixed point.

16. (3p) The vertices of the quadrilateral ABCD are A(4, 3), B(5,−4), C(−1,−3) and D((−3,−1).

(a) Find the coordinates of the intersection points {E} = AB ∩ CD and
{F} = BC ∩ AD;

(b) Prove that the midpoints of the segments [AC], [BD] and [EF] are collinear.
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17. (3p) Let M be a point whose coordinates satisfy

4x + 2y + 8
3x− y + 1

=
5
2
.

(a) Prove that M belongs to a fixed line (d);

(b) Find the minimum of x2 + y2, when M ∈ d \ {M0(−1,−2)}.

18. (3p) Find the locus of the points whose distances to two orthogonal lines have a constant ratio.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics
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6 Week 6:

6.1 The vector product

Definition 6.1. The vector product or the cross product of the vectors
→
a ,
→
b∈ V is a vector, denoted by

→
a ×

→
b , which is defined to be zero if

→
a ,
→
b are linearly dependent (collinear), and if

→
a ,
→
b are linearly

independent (noncollinear), then it is defined by the following data:

1.
→
a ×

→
b is a vector orthogonal on the two-dimensional subspace 〈→a ,

→
b 〉 of V ;

2. if
→
a=

−→
OA,

→
b=

−→
OB, then the sense of

→
a ×

→
b is the one in which a right-handed screw, placed

along the line passing through O orthogonal to the vectors
→
a and

→
b , advances when it is being

rotated simultaneously with the vector
→
a from

→
a towards

→
b within the vector subspace 〈→a ,

→
b 〉

and the support half line of
→
a sweeps the interior of the angle ÂOB (Screw rule).

3. the norm (magnitude or length) of
→
a ×

→
b is defined by

|| →a ×
→
b || = ||

→
a || · ||

→
b || sin(

→̂
a ,
→
b ).

Remark 6.1. 1. The norm (magnitude or length) of the vector
→
a ×

→
b is actually the area of the paral-

lelogram constructed on the vectors
→
a ,
→
b .

2. The vectors
→
a ,
→
b∈ V are linearly dependent (collinear) if and only if

→
a ×

→
b=
→
0 .

Proposition 6.1. The vector product has the following properties:

1.
→
a ×

→
b= −

→
b ×

→
a , ∀ →a ,

→
b∈ V ;

2. (λ
→
a )×

→
b=
→
a ×(λ

→
b ) = λ(

→
a ×

→
b ), ∀ λ ∈ R,

→
a ,
→
b∈ V ;

3.
→
a ×(

→
b +

→
c ) =

→
a ×

→
b +

→
a × →c , ∀ →a ,

→
b ,
→
c∈ V .
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6.2 The vector product in terms of coordinates

If [
→
i ,
→
j ,
→
k ] is an orthonormal basis, observe that

→
i ×

→
j ∈ {−

→
k ,
→
k }. We say that the orthonormal

basis [
→
i ,
→
j ,
→
k ] is direct if

→
i ×

→
j =
→
k . If, on the contrary,

→
i ×

→
j = −

→
k , we say that the orthonormal

basis [
→
i ,
→
j ,
→
k ] is inverse.

Therefore, if [
→
i ,
→
j ,
→
k ] is a direct orthonormal basis, then

→
i ×

→
j =
→
k ,
→
j ×

→
k=
→
i ,
→
k ×

→
i =
→
j and

obviously
→
i ×

→
i =
→
j ×

→
j =
→
k ×

→
k=
→
0 .

Proposition 6.2. If [
→
i ,
→
j ,
→
k ] is a direct orthonormal basis and

→
a= a1

→
i +a2

→
j +a3

→
k ,
→
b= b1

→
i +b2

→
j

+b3
→
k , then

→
a ×

→
b= (a2b3 − a3b2)

→
i +(a3b1 − a1b3)

→
j +(a1b2 − a2b1)

→
k , (6.1)

or, equivalently,
→
a ×

→
b=

∣∣∣a2 a3

b2 b3

∣∣∣ →i −∣∣∣a1 a3

b1 b3

∣∣∣ →j +
∣∣∣a1 a2

b1 b2

∣∣∣ →k (6.2)

Proof. Indeed,

→
a ×

→
b = (a1

→
i +a2

→
j +a3

→
k )× (b1

→
i +b2

→
j +b3

→
k )

= a1b1
→
i ×

→
i +a1b2

→
i ×

→
j +a1b3

→
i ×

→
k

+a2b1
→
j ×

→
i +a2b2

→
j ×

→
j +a2b3

→
i ×

→
k

+a3b1
→
k ×

→
i +a3b2

→
k ×

→
j +a3b3

→
k ×

→
k

= a1b2
→
k −a1b3

→
j −a2b1

→
k +a2b3

→
i +a3b1

→
j −a3b2

→
i

= (a2b3 − a3b2)
→
i +(a3b1 − a1b3)

→
j +(a1b2 − a2b1)

→
k

One can rewrite formula (6.1) in the form

→
a ×

→
b=

∣∣∣∣∣∣∣
→
i

→
j

→
k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣ (6.3)

the right hand side determinant being understood in the sense of its cofactor expansion along the
first line.
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Remark 6.2. If R = (O,
→
i ,
→
j ,
→
k ) is the direct Cartesian orthonormal reference system behind the

equations of the line

(∆)
{

A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D1 = 0,

then we can recover the director parameters (4.10) of ∆, in this particular case of orthonormal Carte-
sian reference systems, by observing that

→
n 1 ×

→
n 2 is a director vector of ∆, where

→
n 1 = A1

→
i +B1

→
j +C1

→
k

→
n 2 = A2

→
i +B2

→
j +C2

→
k .

Recall that

→
n 1 ×

→
n 2=

∣∣∣∣∣∣∣
→
i

→
j

→
k

A1 B1 C1
A2 B2 C2

∣∣∣∣∣∣∣ =
∣∣∣∣ B1 C1

B2 C2

∣∣∣∣ →i +

∣∣∣∣ C1 A1
C2 A2

∣∣∣∣ →j +

∣∣∣∣ A1 B1
A2 B2

∣∣∣∣ →k .

Note however that the director parameters were obtained before for arbitrary Cartesian reference
systems (See (4.10)).

6.3 Applications of the vector product

• The area of the triangle ABC. SABC = 1
2 ||

−→
AB || · ||

−→
AC || sin B̂AC = 1

2 ||
−→
AB ×

−→
AC ||. On the

other hand

−→
AB ×

−→
AC=

∣∣∣∣∣∣∣
→
i

→
j

→
k

xB − xA yB − xA zB − zA

xC − xA yC − xA zC − zA

∣∣∣∣∣∣∣ ,

as the coordinates of
−→
AB and

−→
AC are (xB − xA , yB − xA , zB − zA) and (xC − xA , yC − xA , zC − zA)

respectively. Thus,

4S2
ABC

=
∣∣∣yB−yA zB−zA

yC−yA zC−zA

∣∣∣2+∣∣∣zB−zA xB−xA

zC−zA xC−xA

∣∣∣2+∣∣∣xB−xA yB−yA

xC−xA yC−yA

∣∣∣2.
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• The distance from one point to a straight line.

(a) The distance δ(A, BC) from the point A(xA , yA , zA) to the straight line BC, where B(xB , yB , zB)
and C(xC , yC , zC). Since

SABC =
||
−→
BC || · δ(A, BC)

2
it follos that

δ2(A, BC) =
4S2

ABC

||
−→
BC ||2

.

Thus, we obtain

δ2(A, BC) =

∣∣∣yB−yA zB−zA

yC−yA zC−zA

∣∣∣2+∣∣∣zB−zA xB−xA

zC−zA xC−xA

∣∣∣2+∣∣∣xB−xA yB−yA

xC−xA yC−yA

∣∣∣2
(xC − xB)

2 + (yC − yB)
2 + (zC − zB)

2 .

(b) The distance from δ(A, d) from one point A(AA , yA , zA) to the straight line

d :
x− x0

p
=

y− y0

q
=

z− z0

r
.

δ(A, d) =
||
→
d ×

−→
A0A ||
→
‖d‖

, (6.4)

where A0(x0, y0, z0) ∈ δ.
Since

→
d ×

−→
A0A =

∣∣∣∣∣∣∣
→
i

→
j

→
k

p q r
xA − x0 yA − y0 zA − z0

∣∣∣∣∣∣∣
=

∣∣∣ q r

yA−y0 zA−z0

∣∣∣→i +
∣∣∣ r p

zA−z0 xA−x0

∣∣∣→j +
∣∣∣ p q

xA−x0 yA−y0

∣∣∣→k
it follows that

δ(A, d) =

√∣∣∣ q r

yA−y0 zA−z0

∣∣∣2+∣∣∣ r p

zA−z0 xA−x0

∣∣∣2+∣∣∣ p q

xA−x0 yA−y0

∣∣∣2√
p2 + q2 + r2

.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

6.4 The double vector (cross) product

The double vector (cross) product of the vectors
→
a ,
→
b ,
→
c is the vector

→
a ×(

→
b ×

→
c )

Proposition 6.3.

→
a ×(

→
b ×

→
c ) = (

→
a · →c )

→
b −(

→
a ·
→
b )
→
c =

∣∣∣ →b →
c

→
a ·
→
b
→
a ·→c

∣∣∣, ∀ →a ,
→
b ,
→
c∈ V . (6.5)

Proof. (Sketch) If the vectors
→
b and

→
c are linearly dependent, then both sides are obviously zero.

Otherwise one can choose an orthonormal basis [
→
i ,
→
j ,
→
k ], related to the vectors

→
a ,
→
b and

→
c , such

that
→
b= b1

→
i ,
→
c = c1

→
i +c2

→
j ,
→
a= a1

→
i +a2

→
j +a3

→
k .

For example one can choose
→
i to be

→
b /‖

→
b ‖ and

→
j a unit vector in the subspace 〈

→
b ,
→
c 〉 which is

perpendicular on
→
b . Finally, one can choose

→
k=
→
i ×

→
j . By computing the two sides of the equality

6.5, in terms of coordinates and the vectors
→
i ,
→
j ,
→
k , one gets the same result.

Corollary 6.4. 1. (
→
a ×

→
b )×

→
c = (

→
a · →c )

→
b −(

→
b ·
→
c )
→
a=

∣∣∣→b →
a

→
c ·
→
b
→
c ·→a

∣∣∣, ∀ →a ,
→
b ,
→
c∈ V ;

2.
→
a ×(

→
b ×

→
c )+

→
b ×(

→
c × →a )+ →

c ×(→a ×
→
b ) =

→
0 , ∀ →a ,

→
b ,
→
c∈ V (Jacobi’s identity).

Proof. While the first identity follows immediately via 6.5, for the Jacobi’s identity we get succes-
sively:

→
a ×(

→
b ×

→
c )+

→
b ×(

→
c × →a )+ →

c ×(→a ×
→
b )

= (
→
a · →c )

→
b −(

→
a ·
→
b )
→
c +(

→
b ·
→
a )
→
c −(

→
b ·
→
c )
→
a +(

→
c ·
→
b )
→
a −(→c · →a )

→
b=
→
0 .

6.5 Problems
1. (2p) Show that ‖ →a ×

→
b ‖ ≤ ‖

→
a ‖ · ‖

→
b ‖, ∀

→
a ,
→
b ,∈ V .

Solution.
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2. (3p) Let
→
a ,
→
b ,
→
c be pairwise noncollinear vectors. Show that the necesssary and sufficient

condition for the existence of a triangle ABC with the properties
−→
BC=

→
a ,
−→
CA=

→
b ,
−→
AB=

→
c is

→
a ×

→
b=
→
b ×

→
c =
→
c × →a .

From the equalities of the norms deduce the low of sines.

Solution.

3. (3p) Show that the sum of some outer-pointing vectors perpendicular on the faces of a tetrahe-
dron which are proportional to the areas of the faces is the zero vector.

Solution.

4. (2p) Find the distance from the point P(1, 2,−1) to the straight line (d) x = y = z.
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Solution.

5. (3p) Find the area of the triangle ABC and the lengths of its hights, where A(−1, 1, 2), B(2,−1, 1)
and C(2,−3,−2).

6. (3p) Let d1, d2, d3, d4 be pairwise skew straight lines. Assuming that d12 ⊥ d34 and d13 ⊥ d24,
show that d14 ⊥ d23, where dik is the common perpendicular of the lines di and dk.

Solution. A director vector of the common perpendicular dij is
→
d i ×

→
d j, where

→
d r stands for a

director vector of dr. Therefore we have successively:

d12 ⊥ d34 ⇔
→
d 1 ×

→
d 2⊥

→
d 3 ×

→
d 4⇔ (

→
d 1 ×

→
d 2) · (

→
d 3 ×

→
d 4) = 0

⇔
∣∣∣∣∣
→
d 1 ·

→
d 3

→
d 1 ·

→
d 4

→
d 2 ·

→
d 3

→
d 2 ·

→
d 4

∣∣∣∣∣ = 0⇔ (
→
d 1 ·

→
d 3)(

→
d 2 ·

→
d 4) = (

→
d 1 ·

→
d 4)(

→
d 2 ·

→
d 3).

Similalry

d13 ⊥ d24 ⇔
→
d 1 ×

→
d 3⊥

→
d 2 ×

→
d 4⇔ (

→
d 1 ×

→
d 3) · (

→
d 2 ×

→
d 4) = 0

⇔
∣∣∣∣∣
→
d 1 ·

→
d 2

→
d 1 ·

→
d 4

→
d 3 ·

→
d 2

→
d 3 ·

→
d 4

∣∣∣∣∣ = 0⇔ (
→
d 1 ·

→
d 2)(

→
d 3 ·

→
d 4) = (

→
d 1 ·

→
d 4)(

→
d 3 ·

→
d 2).
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Therefore we have

(
→
d 1 ·

→
d 3)(

→
d 2 ·

→
d 4) = (

→
d 1 ·

→
d 4)(

→
d 2 ·

→
d 3) = (

→
d 1 ·

→
d 2)(

→
d 3 ·

→
d 4),

which shows that

(
→
d 1 ·

→
d 3)(

→
d 2 ·

→
d 4)− (

→
d 1 ·

→
d 2)(

→
d 3 ·

→
d 4) = 0⇔

∣∣∣∣∣
→
d 1 ·

→
d 2

→
d 1 ·

→
d 3

→
d 4 ·

→
d 2

→
d 4 ·

→
d 3

∣∣∣∣∣ = 0⇔ d14 ⊥ d23.
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7 Week 7: The triple scalar product

The triple scalar product (
→
a ,
→
b ,
→
c ) of the vectors

→
a ,
→
b ,
→
c is the real number (

→
a ×

→
b )·

→
c .

Proposition 7.1. If [
→
i ,
→
j ,
→
k ] is a direct orthonormal basis and

→
a= a1

→
i +a2

→
j +a3

→
k

→
b= b1

→
i +b2

→
j +b3

→
k

→
c = c1

→
i +c2

→
j +c3

→
k

then

(
→
a ,
→
b ,
→
c ) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ (7.1)

Proof. Indeed, we have successively:

(
→
a ,
→
b ,
→
c ) = (

→
a ×

→
b )·

→
c

=

(∣∣∣a2 a3

b2 b3

∣∣∣ →i −∣∣∣a1 a3

b1 b3

∣∣∣ →j +
∣∣∣a1 a2

b1 b2

∣∣∣ →k) · (c1
→
i +c2

→
j +c3

→
k )

=

∣∣∣∣ a2 a3
b2 b3

∣∣∣∣ c1 −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c2 +

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣ c3 =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .

Remark 7.1. Taking into account the formula (7.2) for the distance δ(N, ∆) from the point N(xN , yN , zN )

to the straight line ∆ :
x− x0

p
=

y− y0

q
=

z− z0

r
as well as Proposition 6.3 we deduce that

δ(N, ∆) = ‖
−−−−−→
Np∆(N) ‖ (7.2)

= ‖
−→
NO +

−−−−−→
Op∆(N) ‖ =

∥∥∥ −→
NA0 −

→
d ∆ ·

−→
NA0

‖
→
d ∆ ‖2

→
d ∆

∥∥∥
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=

‖
(→

d ∆ ·
→
d ∆

) −→
NA0 −

(
→
d ∆ ·

−→
NA0

)
→
d ∆ ‖

‖
→
d ∆ ‖2

=
‖
→
d ∆ ×(

−→
NA0 ×

→
d ∆)‖

‖
→
d ∆ ‖2

=
‖
−→

NA0 ×
→
d ∆ ‖

‖
→
d ∆ ‖

.

Thus, we recovered the distance formula from one point to one straight line (see formula 6.4) by
using different arguments.

Corollary 7.2. 1. The free vectors
→
a ,
→
b ,
→
c are linearly dependent (collinear) iff (

→
a ,
→
b ,
→
c ) = 0

2. The free vectors
→
a ,
→
b ,
→
c are linearly independent (noncollinear) if and only if (

→
a ,
→
b ,
→
c ) 6= 0

3. The free vectors
→
a ,
→
b ,
→
c form a basis of the space V if and only if (

→
a ,
→
b ,
→
c ) 6= 0.

4. The correspondence F : V × V × V → R, F(
→
a ,
→
b ,
→
c ) = (

→
a ,
→
b ,
→
c ) is trilinear and skew-symmetric,

i.e.

(α
→
a +α′

→
a ′,

→
b ,
→
c ) = α(

→
a ,
→
b ,
→
c ) + α′(

→
a ′,

→
b ,
→
c )

(
→
a , β

→
b +β′

→
b ′,

→
c ) = β(

→
a ,
→
b ,
→
c ) + β′(

→
a ,
→
b
′
,
→
c )

(
→
a ,
→
b , γ

→
c +γ′

→
c ′) = γ(

→
a ,
→
b ,
→
c ) + γ′(

→
a ,
→
b ,
→
c ′)

(7.3)

∀ α, β, γ, α′, β′, γ′ ∈ R, ∀ →a ,
→
b ,
→
c ,
→
a ′,

→
b ′,

→
c ′ ∈ V şi

(
→
a 1,
→
a 2,
→
a 3) = sgn(σ)(

→
a σ(1),

→
a σ(2),

→
a σ(3)), ∀

→
a 1,
→
a 2,
→
a 3∈ V şi ∀ σ ∈ S3 (7.4)

Remark 7.2. One can rewrite the relations (7.4) as follows:

(
→
a 1,
→
a 2,
→
a 3) = (

→
a 2,
→
a 3,
→
a 1) = (

→
a 3,
→
a 1,
→
a 2)

= −(→a 2,
→
a 1,
→
a 3) = −(

→
a 1,
→
a 3,
→
a 2) = −(

→
a 3,
→
a 2,
→
a 1),

∀ →a 1,
→
a 2,
→
a 3∈ V

Corollary 7.3. 1. (
→
a ×

→
b )·

→
c =
→
a ·(

→
b ×

→
c ) ∀ →a ,

→
b ,
→
c∈ V .

2. For every
→
a ,
→
b ,
→
c ,
→
d∈ V the Laplace formula holds:

(
→
a ×

→
b ) · (

→
c ×

→
d ) =

∣∣∣∣∣
→
a · →c →

a ·
→
d

→
b ·
→
c

→
b ·
→
d

∣∣∣∣∣ .

Proof. While the first identity is obvious, for the Laplace formula we have successively:

(
→
a ×

→
b ) · (

→
c ×

→
d ) =

(→
a ,
→
b ,
→
c ×

→
d
)
=
(→

c ×
→
d ,
→
a ,
→
b
)

=
[
(
→
c ×

→
d )×

→
a
]
·
→
b= −

[
(
→
a ·
→
d )
→
c −(→a · →c )

→
d
]
·
→
b

= −(→a ·
→
d )(
→
c ·
→
b ) + (

→
a · →c )(

→
d ·

→
b ) =

∣∣∣∣∣
→
a · →c →

a ·
→
d

→
b ·
→
c

→
b ·
→
d

∣∣∣∣∣ .
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Definition 7.1. The basis [
→
a ,
→
b ,
→
c ] of the space V is said to be directe if (

→
a ,
→
b ,
→
c ) > 0. If, on the

contrary, (
→
a ,
→
b ,
→
c ) < 0, we say that the basis [

→
a ,
→
b ,
→
c ] is inverse

Definition 7.2. The oriented volume of the parallelepiped constructed on the noncoplanar vectors
→
a ,
→
b ,
→
c is ε ·V, where V is the volume of this parallelepiped and ε = +1 or −1 insomuch as the basis

[
→
a ,
→
b ,
→
c ] is directe or inverse respectively.

Proposition 7.4. The triple scalar product (
→
a ,
→
b ,
→
c ) of the noncoplanar vectors

→
a ,
→
b ,
→
c is equal with the

oriented volume of the parallelepiped constructed on these vectors.

7.1 Applications of the triple scalar product
7.1.1 The distance between two straight lines

If d1, d2 are two straight lines, then the distance between them, denoted by δ(d1, d2), is being defined
as

min{||
−→

M1M2 || | M1 ∈ d1, M2 ∈ d2}.

1. If d1 ∩ d2 6= ∅, then δ(d1, d2) = 0.

2. If d1||d2, then δ(d1, d2) = ||
−→

MN || where {M} = d ∩ d1, {N} = d ∩ d2 and d is a straight line

perpendicular to the lines d1 and d2. Obviously ||
−→

MN || is independent on the choice of the
line d.

3. We now assume that the straight lines d1, d2 are noncoplanar (skew lines). In this case there
exits a unique straight line d such that d ⊥ d1, d2 and d ∩ d1 = {M1}, d ∩ d2 = {M2}. The
straight line d is called the common perpendicular of the lines d1, d2 and obviously δ(d1, d2) =

||
−→

M1M2 ||.

Assume that the straight lines d1, d2 are given by their points A1(x1, y1, z1), A2(x2, y2, z2) and their

vectors şi au vectorii directori
→
d 1 (p1, q1, r1)

→
d 2 (p2, q2, r2), that is, thei equations are

d1 :
x− x1

p1
=

y− y1

q1
=

z− z1

r1

d2 :
x− x2

p2
=

y− y2

q2
=

z− z2

r2
.
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The common perpendicular of the lines d1, d2 is the intersection line between the plane containing

the line d1 which is parallel to the vector
→
d 1 ×

→
d 2, and the plane containing the line d2 which is

parallel to
→
d 1 ×

→
d 2. Since

→
d 1 ×

→
d 2=

∣∣∣∣∣∣∣
→
i

→
j
→
k

p1 q1 r1
p2 q2 r2

∣∣∣∣∣∣∣ =
∣∣∣q1 r1

q2 r2

∣∣∣→i +
∣∣∣r1 p1

r2 p2

∣∣∣→j +
∣∣∣p1 q1

p2 q2

∣∣∣→k
it follows that the equations of the common perpendicular are

Figure 4: Perpendiculara comună a dreptelor d1 şi d2



∣∣∣∣∣∣∣∣
x− x1 y− y1 z− z1

p1 q1 r1∣∣∣q1 r1

q2 r2

∣∣∣ ∣∣∣r1 p1

r2 p2

∣∣∣ ∣∣∣p1 q1

p2 q2

∣∣∣
∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
x− x2 y− y2 z− z2

p2 q2 r2∣∣∣q1 r1

q2 r2

∣∣∣ ∣∣∣r1 p1

r2 p2

∣∣∣ ∣∣∣p1 q1

p2 q2

∣∣∣
∣∣∣∣∣∣∣∣ = 0.

(7.5)

The distance between the straight lines d1, d2 can be also regarded as the height of the parallelogram

constructed on the vectors
→
d 1,
→
d 2,
→
d 1 ×

→
d 2. Thus

δ(d1, d2) =
|(
−→

A1A2,
→
d 1,
→
d 2)|

||
→
d 1 ×

→
d 2 ||

. (7.6)

Therefore we obtain

δ(d1, d2) =

|

∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1

p1 q1 r1
p2 q2 r2

∣∣∣∣∣∣ |√∣∣∣q1 r1

q2 r2

∣∣∣2+∣∣∣r1 p1

r2 p2

∣∣∣2+∣∣∣p1 q1

p2 q2

∣∣∣2 (7.7)
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7.1.2 The coplanarity condition of two straight lines

Using the notations of the previous section, observe that the straight lines d1, d2 are coplanar if and

only if the vectors
−→

A1A2,
→
d 1,
→
d 2 are linearly dependent (coplanar), or equivalently (

−→
A1A2,

→
d 1,
→
d 2) =

0. Consequently the stright lines d1, d2 are coplanar if and only if∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1

p1 q1 r1
p2 q2 r2

∣∣∣∣∣∣ = 0 (7.8)

7.2 Problems
1. (2p) Show that

(a) |(→a ,
→
b ,
→
c )| ≤ ‖ →a ‖ · ‖

→
b ‖ · ‖

→
c ‖;

Solution.

(b) (2p) (
→
a +

→
b ,
→
b +

→
c ,
→
c +

→
a ) = 2(

→
a ,
→
b ,
→
c ).

Solution.

2. (3p) Prove the following identity:

(
→
a ×

→
b )× (

→
c ×

→
d ) = (

→
a ,
→
c ,
→
d )
→
b −(

→
b ,
→
c ,
→
d )
→
a= (

→
a ,
→
b ,
→
d )
→
c −(→a ,

→
b ,
→
c )
→
d .
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Solution. By using the identity
→
u ×(→v × →w) = (

→
u · →w)

→
v −(→u · →v ) →v for

→
u=
→
a ×

→
b ,
→
v=
→
c and

→
w=

→
d we obtain

(
→
a ×

→
b )× (

→
c ×

→
d ) =

→
u ×(→v × →w) = (

→
u · →w)

→
v −(→u · →v ) →v

=
[
(
→
a ×

→
b )·

→
d
] →

c −
[
(
→
a ×

→
b )·

→
c
] →

d

= (
→
a ,
→
b ,
→
d )
→
c −(→a ,

→
b ,
→
c )
→
d .

By using the identity (
→
u × →v )× →w= (

→
u · →w)

→
v −(→v · →w)

→
u for

→
u=
→
a ,
→
v=
→
b and

→
w=

→
c ×

→
d we

obtain
(
→
a ×

→
b )× (

→
c ×

→
d ) = (

→
u × →v )× →w= (

→
u · →w)

→
v −(→v · →w)

→
u

=
[→

a ·(→c ×
→
d )
] →

b −
[→

b ·(
→
c ×

→
d )
] →

a

= (
→
a ,
→
c ,
→
d )
→
b −(

→
b ,
→
c ,
→
d )
→
a .

3. (3p) Prove the following identity: (
→
u × →v ,

→
v × →w,

→
w × →u ) = (

→
u ,
→
v ,
→
w)2.

Solution. We have successively:

(
→
u × →v ,

→
v × →w,

→
w × →u ) =

[
(
→
u × →v )× (

→
v × →w)

]
· (→w × →u )

=
[
(
→
u ,
→
v ,
→
w)
→
v −(→u ,

→
v ,
→
v )
→
w
]
· (→w × →u )

= (
→
u ,
→
v ,
→
w)
[→

v ·(→w × →u )
]
= (

→
u ,
→
v ,
→
w)(

→
v ,
→
w,
→
u ) = (

→
u ,
→
v ,
→
w)2.

4. (3p) The reciprocal vectors of the noncoplanar vectors
→
u ,
→
v ,
→
w are defined by

→
u
′
=

→
v × →w

(
→
u ,
→
v ,
→
w)

,
→
v
′
=

→
w × →u

(
→
u ,
→
v ,
→
w)

,
→
w
′
=

→
u × →v

(
→
u ,
→
v ,
→
w)

.

Show that:

(a)

→
a = (

→
a · →u

′
)
→
u +(

→
a · →v

′
)
→
v +(

→
a · →w

′
)
→
w

=
(
→
a ,
→
v ,
→
w)

(
→
u ,
→
v ,
→
w)

→
u +

(
→
u ,
→
a ,
→
w)

(
→
u ,
→
v ,
→
w)

→
v +

(
→
u ,
→
v ,
→
a )

(
→
u ,
→
v ,
→
w)

→
w .

(b) the reciprocal vectors of
→
u
′
,
→
v
′
,
→
w
′

are the vectors
→
u ,
→
v ,
→
w.

Solution. (4a) Obviously
→
a= α

→
u +β

→
v +γ

→
c , as

→
u ,
→
v ,
→
w are three linearly independent vectors

of the three dimensional vector space V , i.e.
→
u ,
→
v ,
→
w form a basis of V . Moreover we have

→
a · →u

′
=

→
a ·(→v × →w)

(
→
u ,
→
v ,
→
w)

=
(
→
a ,
→
v ,
→
w)

(
→
u ,
→
v ,
→
w)

=
(α
→
u +β

→
v +γ

→
c ,
→
v ,
→
w)

(
→
u ,
→
v ,
→
w)

=
α(
→
u ,
→
v ,
→
w) + β(

→
v ,
→
v ,
→
w) + γ(

→
w,
→
v ,
→
w)

(
→
u ,
→
v ,
→
w)

= α.

One can similalry show that

→
a · →v

′
=

(
→
u ,
→
a ,
→
w)

(
→
u ,
→
v ,
→
w)

= β and
→
a · →w

′
=

(
→
u ,
→
v ,
→
a )

(
→
u ,
→
v ,
→
w)

= γ.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

(4b) Let us first observe that

(
→
u
′
,
→
v
′
,
→
w
′
) = (

→
w
′
,
→
u
′
,
→
v
′
) =

(
→
u × →v ,

→
v × →w,

→
w × →u )

(
→
u ,
→
v ,
→
w)3

=
(
→
u ,
→
v ,
→
w)2

(
→
u ,
→
v ,
→
w)3

=
1

(
→
u ,
→
v ,
→
w)

.

On the other hand we have:

→
v
′
× →w

′

(
→
u
′
,
→
v
′
,
→
w
′
)
= (

→
u ,
→
v ,
→
w)(

→
v
′
× →w

′
) = (

→
u ,
→
v ,
→
w)

(
→
w × →u )× (

→
u × →v )

(
→
u ,
→
v ,
→
w)2

=
(
→
w,
→
u ,
→
v )
→
u −(→w,

→
u ,
→
u )
→
v

(
→
u ,
→
v ,
→
w)

=
→
u .

One can similarly show that

→
w
′
× →u

′

(
→
u
′
,
→
v
′
,
→
w
′
)
=
→
v and

→
u
′
× →v

′

(
→
u
′
,
→
v
′
,
→
w
′
)
=
→
w .

5. (2p) Find the value of the parameter α for which the pencil of planes through the straight
line AB has a common plane with the pencil of planes through the straight line CD, where
A(1, 2α, α), B(3, 2, 1), C(−α, 0, α) and D(−1, 3,−3).

Solution.

6. (2p) Find the value of the parameter λ for which the straight lines

(d1)
x− 1

3
=

y + 2
−2

=
z
1

, (d2)
x + 1

4
=

y− 3
1

=
z
λ

are coplanar. Find the coordinates of their intersection point in that case.

Solution.
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7. (2p) Find the distance between the straight lines

(d1)
x− 1

2
=

y + 1
3

=
z
1

, (d2)
x + 1

3
=

y
4
=

z− 1
3

as well as the equations of the common perpendicular.

Solution.

8. (2p) Find the distance between the straight lines M1M2 and d, where M1(−1, 0, 1), M2(−2, 1, 0)
and

(d)
{

x + y + z = 1
2x − y − 5z = 0.

as well as the equations of the common perpendicular.

Solution.
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8 Week 8: Curves and surfaces

8.1 Regular curves
Definition 8.1. A subset C of R2 or R3 is said to be a regular curve if for every p ∈ C there exists a
neighbourhood V of p in R2 or R3 respectively and a parametrized differentiable curve r : I → U ∩ C,
where I ⊆ R is an open set, such that

1. r is smooth;

2. r : I → U ∩ C is a homeomorphism;

3. r is regular, i.e. −→r ′(t) 6= −→0 , ∀ t ∈ I.

The parametrized differentiable curve r : I → V ∩ C is called local parametrization or local system
of coordinates at p and V ∩ C is called coordinate neighbourhood at p. Recall that the the tangent line of
the local parametrization r : I → U ∩ C at r(t0), for some t0 ∈ I, is defined as the limit position of the
line Mr(t0)Mr(t) as t −→ t0. This tangent line is denoted by (Tr)(t0). A director vector of the line
Mr(t0)Mr(t) is obviously

−→r (t)−−→r (t0)

t− t0
,

which shows that −→r ′(t0) is a director vector of (Tr)(t0) and the direction of (Tr)(t0) is therefore
(d−→r )t0(R).

If r1 : I1 → U1 ∩ C and r2 : I2 → U2 ∩ C are two local parametrizations of of C at p ∈ C,
then r1(t1) = r2(t2) = p for some t1 ∈ I1 and t2 ∈ I2 and one can easily show that (d−→r 1)t1(R) =
(d−→r 2)t2(R). This shows that r1 and r2 have the same tangent line at r1(t1) = r2(t2) = p.

Proposition 8.1. The equation of the paremetrized differentiable curve r : I −→ R2, r(t) = (x(t), y(t)) at
r(t0), for some regular point t0 ∈ I, i.e. −→r ′(t0) 6=

−→
0 is

(Tr)(t0) :
x− x(t0)

x′(t0)
=

y− y(t0)

y′(t0)
. (8.1)

The equation of the normal line to r at r(t0), i.e. the line through Mr(t0) which is perpendicular to (Tr)(t0) is

(Nr)(t0) x′(t0)(x− x(t0)) + y′(t0)(y− y(t0)) = 0. (8.2)
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Proposition 8.2. The equation of the paremetrized differentiable curve r : I −→ R3, r(t) = (x(t), y(t), z(t))
at r(t0), for some regular point t0 ∈ I, i.e. −→r ′(t0) 6=

−→
0 is

(Tr)(t0) :
x− x(t0)

x′(t0)
=

y− y(t0)

y′(t0)
=

z− z(t0)

z′(t0)
. (8.3)

The equation of the normal plane to r at r(t0), i.e. the plane through Mr(t0) which is perpendicular to (Tr)(t0)
is

(Nr)(t0) x′(t0)(x− x(t0)) + y′(t0)(y− y(t0)) + z′(t0)(z− z(t0)) = 0. (8.4)

Remark 8.1. 1. The requirement (3) of definition (8.1), is equivalent with (dr)t 6= 0, ∀ t ∈ R;

2. V ∩ C is the image of a regular one-to-one parametrized differentiable curve. On the other
hand, there are regular one-to-one parametrized differentiable curves whose images are not
parts of regular curves;

3. The role of requirement (2) in definition (8.1) is to prevent the self-intersections of the regular
curves, which is not the case with the images of regular parametrized differentiable curves.

4. The requirement (3) combined with (2) ensure the existence of a unique tangent line at every
point of a regular curve. The tangent line Tp(C) of C at p ∈ C is defined as the tangent line at
p of a local parametrization r : I → U ∩ C of C at p. The tangent line Tp(C) is well-defined as
the tangent at p of a local parametrization r : I → U ∩ C at p is independent of r.

Definition 8.2. If U ⊆ R2 is an open set, f : U −→ R is a C1-smooth function, then the value a ∈
Im( f ) of f is said to be regular if (∇ f )(x, y) 6= 0, ∀(x, y) ∈ f−1(a), i.e. (d f )(x,y) 6= 0, ∀(x, y) ∈ f−1(a).

Theorem 8.3. (The preimage theorem) If U ⊆ R2 is an open set, f : U −→ R is a C1-smooth function and
a ∈ Im f is a regular value of f , then the inverse image of a through f ,

f−1(a) = {(x, y) ∈ U| f (x, y) = a}

is a planar regular curve called the regular curve of implicit cartezian equation f (x, y) = a.

Definition 8.3. Let U ⊂ R2 be an open set such that tx ∈ U for every t ∈ R∗+ and avery x ∈ U. The
function f : U → R is said to be homogeneouos of order p ∈ R whenever f (tx) = tp f (x), ∀t ∈ R∗+, x ∈
U.

For example a homogeneous polynomial function of degree n ∈ N is a a homogeneous function
of order p.

Example 8.1. If f : U → R is a C1-smooth homoheneous function of order p ∈ R∗ and c ∈ Im f \{0},
then f−1(c) is a regular curve.

Indeed, it is enough to show that c is a regular value of f . By differentiating the relation f (tx) =
tp f (x) with respect to t we obtain:

(d f )tx(x) = ptp−1 f (x), ∀t ∈ R∗+, x ∈ U,

and the Euler’s relation

(d f )x(x) = p f (x), ∀x ∈ U. (8.5)

follow for t = 1. But for x ∈ C( f ) we have (d f )x = 0 and thus (d f )x(x) = 0, namely f (x) = 0.
We therefore showed that B( f ) = f (C( f )) ⊂ {0}, or, equivalently, R∗ ⊂ R\B( f ), where C( f ) ⊆ U
stands for the closed set of critical points of f , i.e. C( f ) := {(x, y) ∈ U|(d f )(x,y) = 0}. But since
c ∈ Im f \{0} we deduce that c is a regular value of f and f−1(c) is a regular curve therefore.
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Proposition 8.4. The equation of the tangent line T(x0,y0)(C) of the planar regular curve C of implicit cartezian
equation f (x, y) = a at the point p = (x0, y0) ∈ C, is

T(x0,y0)(C) : f ′x(p)(x− x0) + f ′y(p)(y− y0) = 0,

and the equation of the normal line N(x0,y0)(C) of C at p is

N(x0,y0)(C) :
x− x0

f ′x(p)
=

y− y0

f ′y(p)
.

Example 8.2. The tangent line of the general conic

C : a00 + 2a10x + 2a20y + a11x2 + 2a12xy + a22y2 = 0

at some of its regular point (x0, y0) ∈ C is

a00 + a10(x + x0) + a20(y + y0) + a11x0x + a12(xy0 + x0y) + a22y0y = 0 (8.6)

and can be obtained by polarizing the conic’s equation, i.e. by replacing:

1. x2 with x0x

2. y2 with y0y

3. 2x with x + x0

4. 2y with y + y0

5. 2xy with x0y + xy0.

Indeed, C = f−1(0), where f : R2 −→ R is a second degree polynomial function given by
f (x, y) = a00 + 2a10x + 2a20y + a11x2 + 2a12xy + a22y2. Since

fx = 2a10 + 211x + 2a12y and fy = 2a20 + 2a12x + 2a22y,

it follws that
T(x0 ,y0)

(C) : (2a10 + 211x + 2a12y)(x− x0) + (2a20 + 2a12x + 2a22y)(y− y0) = 0
⇐⇒ a10x + a11x0x + a12y0x + a20y + a12x0y + a22y0y = a10x0 + a11x2

0 + a12y0x0 + a20y0 + a12x0y0 + a22y2
0

⇐⇒ a10(x + x0) + a20(y + y0) + a11x0x + a12(xy0 + x0y) + a22y0y = 2a10x + 0 + 2a20y0 + a11x2
0 + 2a12x0y0 + a22y2

0
⇐⇒ a00 + a10(x + x0) + a20(y + y0) + a11x0x + a12(xy0 + x0y) + a22y0y = 0.

8.2 Parametrized differentiable surfaces
Definition 8.4. Let U ⊆ R2 be an open set. A smooth map r : U → R3 is said to be a parametrized
differentiable surface. The set r(U) is called the trace, the support, or the image of r. If the differential
(dr)q : R2 → R3 is injective for q ∈ U, then the parametrized differentiable surface r is said to be
regular at q. If the differential (dr)q : R2 → R3 is injective for all q ∈ U, then the parametrized
differentiable surface r is said to be regular.

Remark 8.2. Let U ⊆ R2 be an open set and r : U → R3, r(u, v) = (x(u, v), y(u, v), z(u, v)) be a
parametrized differentiable surface. Then r is regular at q ∈ U if and only if

−→ru(q)×−→rv(q) 6=
−→
0 .

Indeed,

r is regular at q ∈ U ⇐⇒ (dr)q : R2 → R3 is one-to-one
⇐⇒ (dr)q(e1), (dr)q(e2) are linearly independent (e1 = (1, 0), e2 = (0, 1))
⇐⇒ −→ru(q) = (d−→r )q(e1),

−→rv(q) = (d−→r )q(e2) are linearly independent
⇐⇒ −→ru(q)×−→rv(q) 6=

−→
0 ,

where −→r : U −→ V , −→r (u, v) = x(u, v)
−→
i + y(u, v)

−→
j + z(u, v)

−→
k .

The image of a parametrized differentiable surface might have self-intersections.
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8.2.1 The tangent plane and the normal line to a parametrized surface

Definition 8.5. Let r : U → R3, r(u, v) = (x(u, v), y(u, v), z(u, v)) be a regular parametrized dif-
ferentiable surface and q = (u0, v0) ∈ U. The plane (Tr)(q) through Mr(u0, v0), whose direction
is (d−→r )q(R2), is called the tangent plane to r at Mr(q) corresponding to the pair (u0, v0) of the pa-
rameters. The perpendicular line (Nr)(q) on (Tr)(q) at Mr(q) is called the normal line to r at Mr(q)
corresponding to the pair (u0, v0) of the parameters.

Remark 8.3. If r : U → R3, r(u, v) = (x(u, v), y(u, v), z(u, v)) is a regular parametrized differentiable
surface and q = (u0, v0) ∈ U, then the vectors−→ru(q) = (d−→r )q(1, 0), −→rv(q) = (d−→r )q(0, 1) form a basis
of the two dimensional vector subspace (d−→r )

(
R2) of V şi and −→ν (q) = −→ru(q)×−→rv(q) is therefore a

director vector of the normal line to r at Mr(q) corresponding to the pair (u0, v0) of the parameters.

−→ν (q) = −→ru(q)×−→rv(q) =

∣∣∣∣∣∣
−→
i

−→
j

−→
k

xu(q) yu(q) zu(q)
xv(q) yv(q) zv(q)

∣∣∣∣∣∣
=

∂(y, z)
∂(u, v)

(q)
−→
i +

∂(z, x)
∂(u, v)

(q)
−→
j +

∂(x, y)
∂(u, v)

(q)
−→
k ,

where

∂(x, y)
∂(u, v)

(q) =

∣∣∣∣ xu(q) yu(q)
xv(q) yv(q)

∣∣∣∣ ,

∂(z, x)
∂(u, v)

(q) =

∣∣∣∣ zu(q) xu(q)
zv(q) xv(q)

∣∣∣∣ ,

∂(y, z)
∂(u, v)

(q) =

∣∣∣∣ yu(q) zu(q)
yv(q) zv(q)

∣∣∣∣ .

Proposition 8.5. If r : U → R3 r(u, v) = (x(u, v), y(u, v), z(u, v)) regular parametrized differentiable
surface and q = (u0, v0) ∈ U, then the equation of the tangent plane to r at Mr(q), corresponding to the pair
(u0, v0) of the parameters, is ∣∣∣∣∣∣

x− x(q) y− y(q) z− z(q)
xu(q) yu(q) zu(q)
xv(q) yv(q) zv(q)

∣∣∣∣∣∣ = 0,

i.e.
∂(y, z)
∂(u, v)

(q)(x− x(q)) +
∂(z, x)
∂(u, v)

(q)(y− y(q)) +
∂(x, y)
∂(u, v)

(q)(z− z(q)) = 0 (8.7)

Also, the equation of the normal line to r at Mr(q), corresponding to the pair (u0, v0) of the parameters, is:

x− x(q)
∂(y, z)
∂(u, v)

(q)
=

y− y(q)
∂(z, x)
∂(u, v)

(q)
=

z− z(q)
∂(x, y)
∂(u, v)

(q)
(8.8)
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8.3 Regular surfaces
Definition 8.6. A subset S ⊆ R3 is called regular surface if, for every point p ∈ S, there exists a
neighbourhood V of p, in R3, and a mapping r : U → V ∩ S, r(u, v) = (x(u, v), y(u, v), z(u, v)),
where U ⊆ R2 is an open set, with the following properties:

1. r is smooth, i.e. its coordinate functions x, y, z have arbitrary high continuous partial deriva-
tives;

2. r is a homeomorphism;

3. For every q ∈ U, the differential (dr)q : R2 → R3 is injective.

The function r : U → V ∩ S is called local parametrization at p or local chart at p or local coordinate
system at p. The neighbourhood V ∩ S of p in S is called coordinate neighbourhood. The equations

x = x(u, v)
y = y(u, v)
z = z(u, v)

(u, v) ∈ U,

are called the parametric equations of of the coordinate neighbourhood V ∩ S. The equation

−→r = −→r (u, v) where −→r (u, v) = x(u, v)
−→
i + y(u, v)

−→
j + z(u, v)

−→
k

is called the vector equation of the coordinate neighbourhood V ∩ S.

Remark 8.4. 1. Every open subset O of a regular surface S ⊆ R3 is a regular surface. Indeed every
local parametriation r : U −→ S∩V of S at some point p ∈ O produces a local parametrization

U ∩ r−1(O) −→ S ∩ C ∩V, q 7→ r(q)

of O at p.

2. Every regular surface can be covered by the traces of some families of local charts. Such a
family of lacal charts is called an atlas of the surface. If the regular surface is compact, then it
obviously admits finite atlases. For example the 2-sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

admits an atlas with two local charts A = {(ϕS, ϕN}, where

ϕS : R2 −→ S2 \ {S}, ϕS(u, v) =
(

2u
1 + u2 + v2 ,

2v
1 + u2 + v2 ,

1− u2 − v2

1 + u2 + v2

)
ϕN : R2 −→ S2 \ {N}, ϕN(u, v) =

(
2u

1 + u2 + v2 ,
2v

1 + u2 + v2 ,
u2 + v2 − 1
1 + u2 + v2

)
and S = (0, 0,−1), N = (0, 0, 1) are the south and north poles of S2.

Note that the inverses of ϕS and ϕN are the stereogrphic projections

ϕ−1
S : S2 \ {S} −→ R2, ϕ−1

S (x, y, z) =
(

x
1 + z

,
y

1 + z

)
ϕ−1

N : S2 \ {N} −→ R2, ϕ−1
N (x, y, z) =

(
x

1− z
,

y
1− z

)
.
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Another atlas of the sphere S2 has 6 local charts, namely

A1 = {ϕ±x , ϕ±y , ϕ±z : B(0, 1) −→ S2},

where B(0, 1) is the unit ball of R2 centered at the origin 0 ∈ R2 and

ϕ±x (u, v) = (±
√

1− u2 − v2, u, v),

ϕ±y (u, v) = (u,±
√

1− u2 − v2, v),

ϕ±z (u, v) = (u, v,±
√

1− u2 − v2).
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Proposition 8.6. If U ⊆ R2 is an open set and f : U → R is a smooth function, then its graph G f =
{(x, y, f (x, y)) | (x, y) ∈ U} is a regular surface.

For example

1. The elliptic paraboloid Pe :
x2

p
+

y2

q
= 2z, p, q > 0 is a regular surface, as Pe is the graph of the

function f : R2 −→ R, f (x, y) =
1
2

(
x2

p
+

y2

p

)
.

2. The hyperbolic paraboloid Ph :
x2

p
− y2

q
= 2z, p, q > 0 is a regular surface, as Ph is the graph of

the function g : R2 −→ R, g(x, y) =
1
2

(
x2

p
− y2

q

)
.

Theorem 8.7. (The third preimage theorem). If U ⊆ R3 is an open set, f : U → R is a smooth functionand
a ∈ Im f is a regualr value of f , then

f−1(a) = {(x, y, z) ∈ U | f (x, y, z) = a}

is a regular surface in R3 called the regular surface of implicite Cartesian equation f (x, y, z) = a.

Proposition 8.8. Let U ⊂ R3 be an open set such that tx ∈ U for every t ∈ R∗+ and every x ∈ U. A function
f : U → R is said to be homogeneous of order p ∈ R if f (tx) = tp f (x), ∀t ∈ R∗+, x ∈ U. If f : U → R

is a differentiable and homogeneous function of order p ∈ R∗ and c ∈ Im f \{0}, then f−1(c) is a regular
surface.
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Proof. Indeed, it is enough to show that c is a regular value of f . Differentiating with respect to t, the
relation f (tx) = tp f (x) we obtain

(d f )tx(x) = ptp−1 f (x), ∀t ∈ R∗+, ∀x ∈ U,

which shows, by taking t = 1, the Euler relation

(d f )x(x) = p f (x), ∀x ∈ U. (8.9)

But for x ∈ C( f ) we have (d f )x = 0 and thus (d f )x(x) = 0, which shows that f (x) = 0. We therefore
showed that B( f ) = f (C( f )) ⊂ {0}, or, equivalently, R∗ ⊂ R\B( f ). But since c ∈ Im f \{0} we
deduce that c is a taken regular value of f , which shows that f−1(c) is a regular surface.

In particular,

1. the ellipsoid E :
x2

a2 +
y2

b2 +
z2

c2 = 1,

2. the hyperboloid of one sheet H1 :
x2

a2 +
y2

b2 −
z2

c2 = 1,

3. the hyperboloid of two seets H2 :
x2

a2 −
y2

b2 −
z2

c2 = 1.

are all regular surfaces. Let us finally observe that the cone C : x2 + y2 − z2 = 0 is not a regular
surface.

8.4 The tangent vector space
Let S ⊆ R3 be a regular surface and p ∈ S. A tangent vector to S at p is the tangent vector −→α ′(0) of a
parametrized diferentiable curve α : (−ε, ε)→ S with α(0) = p

Proposition 8.9. Let U ⊆ R2 be an open set, let q ∈ U and let r : U → S be a local parametrization of S.
The 2-dimensional subspace (d−→r )q(R

2) ⊆ V coincides with the set of all tangent vectors to S at r(q).

Definition 8.7. The plane through a point p of a regular surface S, whose direction is the tangent
space to S at p,

−→
T p(S), is called the tangent plane to S at p and is denoted by Tp(S). The perpendicular

line on the tangent plane of the surface S at p is called the normal line to the surface S at p.

Proposition 8.10. If V ⊆ R3 is an open set, f : V → R is a smooth function, a ∈ Im f is a regular value
of f and p ∈ f−1(a), then the equation of the tangent plane to the regular surface S = f−1(a), of implicit
equation f (x, y, z) = a, at some point p ∈ S is:

fx(p)(x− x0) + fy(p)(y− y0) + fz(p)(z− z0) = 0. (8.10)

and the equation of the normal line to S at p is:

x− x0

fx(p)
=

y− y0

fy(p)
=

z− z0

fz(p)
(8.11)

For example the tanget plane of the quadric

(Q) a00 + 2a10x + 2a20y + 2a30z + 2a12xy + 2a13xz + 2a23yz + a11x2 + a22y2 + a33z2 = 0

at some of its point A0(x0, y0, z0) ∈ Q is

TA0(Q) a00 + a10(x + x0) + a20(y + y0) + a30(z + z0) + a12(x0y + xy0) + a13(z0x + zx0) + 2a23(y0z + yz0)

+a11x0x + a22y0y + a33z0z = 0.

and can be obtained by polarizing the quadric’s equation, i.e. by replacing
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1. x2 with x0x

2. y2 with y0y

3. z2 with z0z

4. 2x with x + x0

5. 2y with y + y0

6. 2z with z + z0

7. 2xy with x0y + xy0

8. 2yz with y0z + yz0

9. 2zx with z0x + zx0.

8.5 Problems
1. (2p) Show that the angle between the tangent of the circular helix

x = a cos t
y = a sin t
z = bt

and the z-axis is constant.

Solution.

2. (3p) A cycloid is the curve traced by a chosen point on the circumference of a circle which rools
along a stright line without slipping. Show that the parametric equations of the are:{

x = r(t− sin t)
y = r(1− cos t) , t ∈ R.

Solution.
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3. (2p) Show that the normal line to the cycloid at a certain point passes through the tangency
point between the generating circle and the line alnog which the generating circle rools on.

Solution.

4. An epicycloid is a plane curve traced by a chosen point on the circumference of a circle which
rools without slipping around a fixed circle. Find the equations of the epicicloid.

The equations of the epicicloid are
x = (R + r) cos t− r cos

(
R + r

r
t
)

y = (R + r) sin t− r sin
(

R + r
r

t
) , t ∈ R,

or {
x = r(k + 1) cos t− r cos(k + 1)t
y = r(k + 1) sin t− r sin(k + 1)t , t ∈ R,
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

where k =
R
r

. If k is an integer, then the epicycloid is a closed curve.

5. A hypocycloid is a plane curve traced by a chosen point on a small circle that rools without
slipping within a larger circle. Find the equations of the hypocycloid.

Answer: The equations of the hypocycloid are:
x = (R− r) cos t + r cos

(
R− r

r
t
)

y = (R− r) sin t− r sin
(

R− r
r

t
) , t ∈ R,

or {
x = r(k− 1) cos t + r cos(k− 1)t
y = r(k− 1) sin t− r sin(k− 1)t , t ∈ R,

where k =
R
r

. If k is an integer, then the hypocycloid is a closed curve. In particular, for k = 4
the hypocicloid is called astroid
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6. The subtangent of a planar parametrized differentiable curve is the segment which unify the
tangency point between the tangent and the curve with the intersection point between the
tangent and the x-axis. Show that the length of the subtangent of the planar parametrized
differentiable curve

r : (0, π)→ R2, r(t) = a
(
ln tan(t/2) + cos t, sin t

)
,

called the tractrix is constant and equal to a.

Solution.

The parametric equations of the tractrix are{
x = a log tan(t/2) + a cos t
y = a sin t , t ∈ (0, π)
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and its vector equation is

−→r (t) = (aln tan(t/2) + a cos t)
−→
i + (a sin t)

−→
j .

and its tangent vector

−→r ′(t) =

(
a

1
tan(t/2)

1
cos2(t/2)

1
2
− a sin t

)−→
i + (a cos t)

−→
j

=
( a

sin t
− a sin t

)−→
i + (a cos t)

−→
j

=
a cos2 t

sin t
−→
i + (a cos t)

−→
j = a cos t(cot t

−→
i +
−→
j ).

Thus, the equation of the tangent line to the tractrix at the regular points Mr(t), i.e. t ∈ (0, π) \
{0} is

(Tr)(t) :
X− x(t)

x′(t)
=

Y− y(t)
y′(t)

⇐⇒ X− a log tan(t/2)− a cos t
a cos t cot t

=
Y− a sin

a cos t
. (8.12)

The coordinates of the intersection point Nr(t) of the tangent Tr(t) to the tractrix at Mr(t) with
the x-axis can be obtained by taking Y = 0 in (8.12), which implies X = a log tan(t/2), i.e.
Nr(t)(a log tan(t/2), 0). The distance between

Mr(t) (a log tan(t/2) + a cos t, a sin t) and Nr(t)(a log tan(t/2), 0)

is √
(a log tan(t/2) + a cos t− a cos t)2 + (a sin t− 0)2 =

√
a2 = |a| = a.

Note that t = π/2 is the only singular point of −→r . Since −→r ′′(π/2) = a
−→
j , it follows that

t = π/2 is a singular point of order two for −→r , i.e. −→r ′′(π/2) is a director vector of the tangent
line of r at t = π/2. In other words the y-axis is the tangent line to r at t = π/2. Note that
Mr(π/2)(0, a) and Nr(π/2) is the origin O(0, 0). Thus the distance between Mr(π/2)(0, a)
and Nr(π/2) is a.

7. (2p) Show that the tangents of the astroid{
x = r cos3 t
y = r sin3 t

determines on the coordinate axes segments of constant length.

Solution.
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8. Write the equations of the tangent line and the normal plane for the following curves, whenever
these associated objects are well-determined:

(a) (2p)
x = et cos 3t
y = et sin 3t
z = e−2t

at the point corresponding to the value t = 0 of the parameter

(b) (2p)
x = et cos 3t
y = et sin 3t
z = e−2t

at the point corresponding to the value t =
π

4
of the parameter

Solution.
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9. (2p) Write the equations of the tangent planes of the hyperboloid of one sheet x2 + y2 − z2 = 1
at the points of the form (x0, y0, 0) and show that these are parallel to the z-axis.

Solution.

10. (2p) Show that the trace of the parametrized differentiable curve α : R→ R3, α(t) = (et cos t, et sin t, 2t)
is contained in the regular surface of equation z = ln(x2 + y2) and write the equation of the
tangent plane of the surface at the points α(t), t ∈ R.

Solution.

Cornel Pintea Page 104 of 169 © ’Babeş-Bolyai’ University 2016



MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

11. (3p) Show that the tangent planes of the surface of equation z = x f ( y
x ), where f is a differen-

tiable function, are passing through the origin.

Solution.

12. (3p) Show that the set S = {(x, y, z) ∈ R3 | xyz = a3}, a 6= 0 is a regular surface and the its
tangent plane at an arbitrary point p ∈ S determines on the coordinate axes three points which
form, together with the origin a tetrahedron of constant volume (independent of p).

Solution.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

Cornel Pintea Page 106 of 169 © ’Babeş-Bolyai’ University 2016
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9 Week 9:Conics

9.1 The Ellipse
Definition 9.1. An ellipse is the locus of points in a plane, the sum of whose distances from two fixed
points, say F and F′, called foci is constant.

The distance between the two fixed points is called the focal distance
Let F and F′ be the two foci of an ellipse and let |FF′| = 2c be the focal distance. Suppose that the

constant in the definition of the ellipse is 2a. If M is an arbitrary point of the ellipse, it must verify
the condition

|MF|+ |MF′| = 2a.

One may chose a Cartesian system of coordinates centered at the midpoint of the segment [F′F], so
that F(c, 0) and F′(−c, 0).

Remark 9.1. In ∆MFF′ the following inequality |MF|+ |MF′| > |FF′| holds. Hence 2a > 2c. Thus,
the constants a and c must verify a > c.

Thus, for the generic point M(x, y) of the ellipse we have succesively:

|MF|+ |MF′| = 2a ⇔
√
(x− c)2 + y2 +

√
(x + c)2 + y2 = 2a√

(x− c)2 + y2 = 2a−
√
(x + c)2 + y2

x2 − 2cx + c2 + y2 = 4a2 − 4a
√
(x + c)2 + y2 + (x + c)2 + y2

a
√
(x + c)2 + y2 = cx + a2

a2(x2 + 2xc + c2) + a2y2 = c2x2 + 2a2cx + a2

(a2 − c2)x2 + a2y2 − a2(a2 − c2) = 0.

Denote a2 − c2 by b2, as (a > c). Thus b2x2 + a2y2 − a2b2 = 0, i.e.

x2

a2 +
y2

b2 − 1 = 0 (9.1)

Remark 9.2. The ellipse

(E)
x2

a2 +
y2

b2 = 1

is a regular curve and the equation of its tangent line TP0(E) at some point P0(x0, y0) ∈ E is

TP0(E)
x0x
a2 +

y0y
b2 = 1. (9.2)
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Remark 9.3. The equation (9.1) is equivalent to

y = ±
b
a

√
a2 − x2; x = ±

a
b

√
b2 − y2,

which means that the ellipse is symmetric with respect to both the x and the y axes. In fact, the line
FF′, determined by the foci of the ellipse, and the perpendicular line on the midpoint of the segment
[FF′] are axes of symmetry for the ellipse. Their intersection point, which is the midpoint of [FF′], is
the center of symmetry of the ellipse, or, simply, its center.

Remark 9.4. In order to sketch the graph of the ellipse, observe that it is enough to represent the
function

f : [−a, a]→ R, f (x) =
b
a

√
a2 − x2,

and to complete the ellipse by symmetry with respect to the x-axis.

One has

f ′(x) = −
b
a

x
√

a2 − x2
, f ′′(x) = −

ab

(a2 − x2)
√

a2 − x2
.

x −a 0 a
f ′(x) | + + + 0 − − − |
f (x) 0 ↗ b ↘ 0

f ′′(x) | − − − − − − − |

9.2 The Hyperbola
Definition 9.2. The hyperbola is defined as the geometric locus of the points in the plane, whose
absolute value of the difference of their distances to two fixed points, say F and F′ is constant.

The two fixed points are called the foci of the hyperbola, and the distance |FF′| = 2c between the
foci is the focal distance.

Suppose that the constant in the definition is 2a. If M(x, y) is an arbitrary point of the hyperbola,
then

||MF| − |MF′|| = 2a.

Choose a Cartesian system of coordinates, having the origin at the midpoint of the segment [FF′]
and such that F(c, 0), F′(−c, 0).
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Remark 9.5. In the triangle ∆MFF′, ||MF| − |MF′|| < |FF′|, so that a < c.

Let us determine the equation of a hyperbola. By using the definition we get |MF| − |MF′| = ±2a,
namely √

(x− c)2 + y2 −
√
(x + c)2 + y2 = ±2a,

or, equivalently √
(x− c)2 + y2 = ±2a +

√
(x + c)2 + y2.

We therefore have successively

x2 − 2cx + c2 + y2 = 4a2 ± 4a
√
(x + c)2 + y2 + x2 + 2cx + c2 + y2

cx + a2 = ±a
√
(x + c)2 + y2

c2x2 + 2a2cx + a4 = a2x2 + 2a2cx + a2c2 + a2y2

(c2 − a2)x2 − a2y2 − a2(c2 − a2) = 0.

By using the notation c2 − a2 = b2 (c > a) we obtain the equation of the hyperbola

x2

a2 −
y2

b2 − 1 = 0. (9.3)

Remark 9.6. The hyperbola

(H)
x2

a2 −
y2

b2 = 1

is a regular curve and the equation of its tangent line TP0(H) at some point P0(x0, y0) ∈ H is

TP0(H)
x0x
a2 −

y0y
b2 = 1. (9.4)

The equation (9.3) is equivalent to

y = ±
b
a

√
x2 − a2; x = ±

a
b

√
y2 + b2.

Therefore, the coordinate axes are axes of symmetry of the hyperbola and the origin is a center of
symmetry equally called the center of the hyperbola.

Remark 9.7. To sketch the graph of the hyperbola, is it enough to represent the function

f : (−∞,−a] ∪ [a, ∞)→ R, f (x) =
b
a

√
x2 − a2,

by taking into account that the hyperbola is symmetric with respect to the x-axis.

Since lim
x→∞

f (x)
x

=
b
a

and lim
x→−∞

f (x)
x

= −
b
a
, it follows that y =

b
a
x and y = −

b
a
x are asymptotes of

f .
One has, also

f ′(x) =
b
a

x
√

x2 − a2
, f ′′(x) = −

ab

(x2 − a2)
√

x2 − a2
.

x −∞ −a a ∞
f ′(x) − − − − | ��� | + + + +
f (x) ∞ ↘ 0| ��� |0 ↗ ∞

f ′′(x) − − − − | ��� | − − − −
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9.3 The Parabola
Definition 9.3. The parabola is a plane curve defined to be the geometric locus of the points in the
plane, whose distance to a fixed line d is equal to its distance to a fixed point F.

The line d is the director line and the point F is the focus. The distance between the focus and the
director line is denoted by p and represents the parameter of the parabola.

Consider a Cartesian system of coordinates xOy, in which F

(
p
2

, 0

)
and d : x = −

p
2

. If M(x, y) is

an arbitrary point of the parabola, then it verifies

|MN| = |MF|,

where N is the orthogonal projection of M on Oy.
Thus, the coordinates of a point of the parabola verify√√√√(x +

p
2

)2

+ 0 =

√√√√(x−
p
2

)2

+ y2

(
x +

p
2

)2

=

(
x−

p
2

)2

= y2

x2 + px +
p2

4
= x2 − px +

p2

4
+ y2,

and the equation of the parabola is
y2 = 2px. (9.5)

Remark 9.8. The parabola
(P) y2 = 2px

is a regular curve and the equation of its tangent line TP0(P) at some point Q0(x0, y0) ∈ P is

TQ0(P) y0y = p(x + x0). (9.6)

Remark 9.9. The equation (9.5) is equivalent to y = ±
√

2px, so that the parabola is symmetric with
respect to the x-axis.
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Representing the graph of the function f : [0, ∞) → [0, ∞) and using the symmetry of the curve
with respect to he x-axis, one obtains the graph of the parabola.

One has

f ′(x) =
p√

2px0
; f ′′(x) = −

p

2x
√

2x
.

x 0 ∞
f ′(x) | + + + +
f (x) 0 ↗ ∞

f ′′(x) − − − − −

9.4 Problems

1. Find the equations of the tangent lines to the ellipse E :
x2

a2 +
y2

b2− 1 = 0 having a given angular
coefficient m ∈ R. (see [1, p. 110]).

Solution. We are looking for the lines d : y = mx + n, which are tangent to the ellipse, i.e.
each of them has one single common point with the ellipse. Their intersection is given by the
solutions of the system of equations  x2

a2 +
y2

b2 − 1 = 0

y = mx + n
,

or, by replacing y in the equation of the ellipse,

(a2m2 + b2)x2 + 2a2mnx + a2(n2 − b2) = 0.

The discriminant ∆ of the last equation is given by

∆ = 4[a4m2n2 − a2(a2m2 + b2)(n2 − b2)]

and the line (d) and the ellipse (E) have one single common point if and only if a4m2n2 −
a2(a2m2 + b2)(n2 − b2) = 0, i.e. n = ±

√
a2m2 + b2. The equations of the tangent lines of

direction m are therefore
y = mx±

√
a2m2 + b2. (9.7)
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2. (2p) Find the equations of the tangent lines to the ellipse E : x2 + 4y2 − 20 = 0 which are
orthogonal to the line d : 2x− 2y− 13 = 0.

Solution.

3. (2p) Find the equations of the tangent lines to the ellipse E :
x2

25
+

y2

16
− 1 = 0, passing through

P0(10,−8).

Solution.

4. If M(x, y) is a point of the tangent line TM0(E) of the ellipse E :
x2

a2 +
y2

b2 = 1 at one of its points

M0(x0, y0) ∈ E , show that
x2

a2 +
y2

b2 ≥ 1.

Solution. Every director vector of the tangent line TM0(E) :
x0x
a2 +

y0y
b2 = 1 is orthogonal

to the normal vector
→
n

(
x0

a2,
y0

b2

)
of the tangent line TM0(E). Such an orthogonal vector is

→
v

(
y0

b2,−
x0

b2

)
. Thus, the parametric equations of the tangent line are

TM0(E) :


x = x0 +

y0

b2t

y = y0 −
x0

b2t
, t ∈ R,

i.e. the coordinates of M are of this form. In order to completely solve the question , we only

need to show that ϕ ≥ 1, where ϕ : R −→ R, ϕ(t) =

(
x0 +

y0

b2t

)2

a2 +

(
y0 −

x0

b2t

)2

b2 . This is
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actually the case as

ϕ(t) =
x2

0 + 2
x0y0

b2 t +
y2

0

b4t2

a2 +
y2

0 − 2
x0y0

b2 t +
x2

0

a2t2

b2

=
x2

0

a2 +
y2

0

b2 +
1

a2b2

(
x2

0

a2 +
y2

0

b2

)
t2 = 1 +

t2

a2b2 ≥ 1, ∀t ∈ R.

5. Find the equations of the tangent lines to the hyperbola H :
x2

a2 −
y2

b2 − 1 = 0 having a given
angular coefficient m ∈ R. (see [1, p. 115]).

Solution. The intersection of the hyperbola (H) with the line (d)y = mx + n is given by the
solution of the system  x2

a2 −
y2

b2 − 1 = 0

y = mx + n
.

By substituting y in the first equation, one obtains

(a2m2 − b2)x2 + 2a2mnx + a2(n2 + b2) = 0. (9.8)

• If a2m2 − b2 = 0, (or m = ±
b
a
), then the equation (9.8) becomes

±2bnx + a(n2 + b2) = 0.

– If n = 0, there are no solutions (this means, geometrically, that the two asymptotes
do not intersect the hyperbola);

– If n 6= 0, there exists a unique solution (geometrically, a line d, which is parallel to
one of the asymptotes, intersects the hyperbola at exactly one point);

• If a2m2 − b2 6= 0, then the discriminant of the equation (9.8) is

∆ = 4[a4m2n2 − a2(a2m2 − b2)(n2 + b2)].

The line d : y = mx + n is tangent to the hyperbolaH :
x2

a2 −
y2

b2− 1 = 0 if the discriminant

∆ of the equation (9.8) is zero, i.e. a2m2 − n2 − b2 = 0.

– If a2m2 − b2 ≥ 0, i.e. m ∈
(
−∞,−

b
a

]
∪
[

b
a
, ∞

)
, then n = ±

√
a2m2 − b2. The equa-

tions of the tangent lines toH, having the angular coefficient m are

y = mx±
√

a2m2 − b2. (9.9)

– If a2m2 − b2 < 0, there are no tangent lines toH, of angular coefficient m.

6. (2p) Find the equations of the tangent lines to the hyperbola H :
x2

20
−

y2

5
− 1 = 0 which are

orthogonal to the line d : 4x + 3y− 7 = 0.

Solution.
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7. Find the equations of the tangent lines to the parabola P : y2 = 2px having a given angular
coefficient m ∈ R. (see [1, p. 119]).

Solution. The intersection beteen the porabla (P) and the line (d)y = mx + n is given by the
solution of the system {

y2 = 2px
y = mx + n.

This leads to a second degree equation

m2x2 + 2(mn− p)x + n2 = 0,

having the discriminant
∆ = 4p(2mn− p) (9.10)

The line d : y = mx + n (with m 6= 0) is tangent to the parabola P : y2 = 2px if the discriminant
∆ which appears in (9.10) is zero, i.e. 2mn = p. Then, the equation of the tangent line to P ,
having the angular coefficient m, is

y = mx +
p

2m
. (9.11)

8. (2p) Find the equation of the tangent line to the parabola P : y2 − 8x = 0, parallel to d :
2x + 2y− 3 = 0.

Solution.

9. (2p) Find the equation of the tangent line to the parabola P : y2 − 36x = 0, passing through
P(2, 9).

Solution.

10. (3p) Find the locus of the orthogonal projections of the center O(0, 0) of the ellipse

E :
x2

a2 +
y2

b2 = 1

on its tangents.
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Solution.

11. (3p) Find the locus of the orthogonal projections of the center O(0, 0) of the hyperbola

H :
x2

a2 −
y2

b2 = 1

on its tangents.

Solution.

12. Show that a ray of light through a focus of an ellipse reflects to a ray that passes through the
other focus (optical property of the ellipse).

Solution. Let F1(−c, 0), F2(c, 0) be the foci of the ellipse E :
x2

a2 +
y2

b2 = 1. Recall that the

gradient grad( f )(x0, y0) = ( fx(x0, y0), fy(x0, y0)) is a normal vector of the ellipse E to its point
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

M0(x0, y0), where

f (x, y) = δ(F1, M) + δ(F2, M) =
√
(x− c)2 + y2 +

√
(x + c)2 + y2

and M(x, y). Note that

fx(x0, y0) =
x0 − c

δ(F1, M0)
+

x0 + c
δ(F2, M0)

and fy(x0, y0) =
y

δ(F1, M0)
+

y
δ(F2, M0)

,

and shows that

grad( f ) = ( fx(x0, y0), fy(x0, y0)) =

(
x0 − c

δ(F1, M0)
+

x0 + c
δ(F2, M0)

,
y0

δ(F1, M0)
+

y0

δ(F2, M0)

)
=

(x0 − c, y)
δ(F1, M0)

+
(x0 + c, y)
δ(F2, M0)

=

−→
F1M0

δ(F1, M0)
+

−→
F2M0

δ(F2, M0)
.

The versors

−→
F1M0

δ(F1, M0)
and

−→
F2M0

δ(F2, M0)
point towards the exterior of the ellipse E and their sum

make obviously equal angles with the directions of the vectors
−→

F1M0 and
−→

F2M0 and (the sum)
is also orthogonal to the tangent TM0(E) of the ellipse at M0(x0, y0). This shows that the angle
between the ray F1M and the tangent TM0(E) equals the angle between the ray F2M and the
tangent TM0(E).

13. Show that a ray of light through a focus of a hyperbola reflects to a ray that passes through the
other focus (optical property of the hyperbola).

Solution. Let F1(−c, 0), F2(c, 0) be the foci of the hyperbola E :
x2

a2 −
y2

b2 = 1. Recall that the

gradient grad( f )(x0, y0) = ( fx(x0, y0), fy(x0, y0)) is a normal vector of the hyperbola H to its
point M0(x0, y0), where

f (x, y) = δ(F2, M)− δ(F1, M) =
√
(x− c)2 + y2 −

√
(x + c)2 + y2 (9.12)

on the left hand side branch ofH and

f (x, y) = δ(F1, M)− δ(F2, M) =
√
(x + c)2 + y2 −

√
(x− c)2 + y2 (9.13)

on the right hand side branch of H and M(x, y). We shall only use the version (9.12) of f , as
judgement for the version (9.13) works in a similar way. Note that

fx(x0, y0) =
x0 − c

δ(F1, M0)
− x0 + c

δ(F2, M0)
and fy(x0, y0) =

y
δ(F1, M0)

− y
δ(F2, M0)

,
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and shows that

grad( f ) = ( fx(x0, y0), fy(x0, y0)) =

(
x0 − c

δ(F1, M0)
− x0 + c

δ(F2, M0)
,

y0

δ(F1, M0)
− y0

δ(F2, M0)

)
=

(x0 − c, y)
δ(F1, M0)

− (x0 + c, y)
δ(F2, M0)

=

−→
F1M0

δ(F1, M0)
−

−→
F2M0

δ(F2, M0)
.

The versors

−→
F1M0

δ(F1, M0)
and −

−→
F2M0

δ(F2, M0)
point towards the ’exterior’ of the hyperbola H3 and

their sum make obviously equal angles with the directions of the vectors
−→

F1M0 and
−→

F2M0 and
(the sum) is also orthogonal to the tangent TM0(H) of the hyperbola at M0(x0, y0). This shows
that the angle between the ray F1M and the tangent TM0(H) equals the angle between the ray
F2M and the tangent TM0(H).

14. Show that a ray of light through a focus of a parabola reflects to a ray parallel to the axis of the
parabola (optical property of the parabola).

Solution. Let F( p
2 , 0) be the focus of the parabola P : y2 = 2px and d : x = − p

2 be its director
line. Recall that the gradient grad( f )(x0, y0) = ( fx(x0, y0), fy(x0, y0)) is a normal vector of
parabola P to its point M0(x0, y0), where

f (x, y) = δ(F, M)− δ(M, d) =

√(
x− p

2

)2
+ y2 −

(
x +

p
2

)
and M(x, y). Note that

fx(x0, y0) =
x0 − p

2
δ(F, M0)

− 1 and fy(x0, y0) =
y0

δ(F, M0)
,

and shows that

grad( f ) = ( fx(x0, y0), fy(x0, y0)) =

(
x0 − p

2
δ(F, M0)

− 1,
y0

δ(F, M0)

)

=

(
x0 − p

2
δ(F, M0)

,
y0

δ(F, M0)

)
− (1, 0) =

−→
FM0

δ(F, M0)
− i.

3The exterior of a hyperbola is the nonconvex component of its complement
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

The versors

−→
FM0

δ(F, M0)
and −i point towards the ’exterior’ of the parabola P4 and their sum

make obviously equal angles with the directions of the vectors
−→

FM0 and i and (the sum) is also
orthogonal to the tangent line TM0(P) of the parabola at M0(x0, y0). This shows that the angle
between the ray FM and the tangent line TM0(P) equals the angle between Ox and the tangent
TM0(E).

4The exterior of a parabola is the nonconvex component of its complement
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10 Week 10: Quadrics

10.1 The ellipsoid
The ellipsoid is the quadric surface given by the equation

E :
x2

a2 +
y2

b2 +
z2

c2 − 1 = 0, a, b, c ∈ R∗+. (10.1)

• The coordinate planes are all planes of symmetry of E since, for an arbitrary point M(x, y, z) ∈
E , its symmetric points with respect to these planes, M1(−x, y, z), M2(x,−y, z) and M3(x, y,−z)
belong to E ; therefore, the coordinate axes are axes of symmetry for E and the origin O is the
center of symmetry of the ellipsoid (10.1);

• The traces in the coordinates planes are ellipses of equations y2

b2 +
z2

c2 − 1 = 0

x = 0
,

 x2

a2 +
z2

c2 − 1 = 0

y = 0
,

 x2

a2 +
y2

b2 − 1 = 0

z = 0.

• The sections with planes parallel to xOy are given by setting z = λ in (10.1). Then, a section is

of equations

 x2

a2 +
y2

b2 = 1−
λ2

c2

z = λ
.

• If |λ| < c, the section is an ellipse

x2a

√
1−

λ2

c2

2 +
y2b

√
1−

λ2

c2

2 = 1

z = λ

;
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• If |λ| = c, the intersection is reduced to one (tangency) point (0, 0, λ);

• If |λ| > c, the plane z = λ does not intersect the ellipsoid E .

The sections with planes parallel to xOz or yOz are obtained in a similar way.

10.2 The hyperboloid of one sheet
The surface of equation

H1 :
x2

a2 +
y2

b2 −
z2

c2 − 1 = 0, a, b, c ∈ R∗+, (10.2)

is called hyperboloid of one sheet.

• The coordinate planes are planes of symmetry for H1; hence, the coordinate axes are axes of
symmetry and the origin O is the center of symmetry ofH1;

• The intersections with the coordinates planes are, respectively, of equations
y2

b2 −
z2

c2 − 1 = 0

x = 0
a hyperbola

;


x2

a2 −
z2

c2 − 1 = 0

y = 0
a hyperbola

;


x2

a2 +
y2

b2 − 1 = 0

z = 0
an ellipse

;

• The intersections with planes parallel to the coordinate planes are
y2

b2 −
z2

c2 = 1−
λ2

a2

x = λ
hyperbolas

;


x2

a2 −
z2

c2 = 1−
λ2

b2

y = λ
hyperbolas

;


x2

a2 +
y2

b2 = 1 +
λ2

c2

z = λ
ellipses

;
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Remark: The surfaceH1 contains two families of lines, as

x2

a2 −
z2

c2 = 1−
y2

b2 ⇔
(

x
a
+

z
c

)(
x
a
−

z
c

)
=

(
1 +

y
b

)(
1−

y
b

)
.

The equations of the two families of lines are:

dλ :


λ

(
x
a
+

z
c

)
= 1 +

y
b

x
a
−

z
c
= λ

(
1−

y
b

) , λ ∈ R,

d′µ :


µ

(
x
a
+

z
c

)
= 1−

y
b

x
a
−

z
c
= µ

(
1 +

y
b

) , µ ∈ R.

Through any point onH1 pass two lines, one line from each family.

10.3 Th hyperboloid of two sheets
The hyperboloid of two sheets is the surface of equation

H2 :
x2

a2 +
y2

b2 −
z2

c2 + 1 = 0, a, b, c ∈ R∗+. (10.3)
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• The coordinate planes are planes of symmetry forH1, the coordinate axes are axes of symmetry
and the origin O is the center of symmetry ofH1;

• The intersections with the coordinates planes are, respectively,
y2

b2 −
z2

c2 + 1 = 0

x = 0
a hyperbola;

,


x2

a2 −
z2

c2 + 1 = 0

y = 0
a hyperbola

,


x2

a2 +
y2

b2 + 1 = 0

z = 0
the empty set

;

• The intersections with planes parallel to the coordinate planes are
y2

b2 −
z2

c2 = −1−
λ2

a2

x = λ
hyperbolas

,


x2

a2 −
z2

c2 = −1−
λ2

b2

y = λ
hyperbolas

,

 x2

a2 +
y2

b2 = −1 +
λ2

c2

z = λ.
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– If |λ| > c, the section is an ellipse;

– If |λ| = c, the intersection reduces to the point of coordinates (0, 0, λ);

– If |λ| < c, one obtains the empty set.

10.4 Elliptic Cones
The surface of equation

C :
x2

a2 +
y2

b2 −
z2

c2 = 0, a, b, c ∈ R∗+, (10.4)

is called elliptic cone.

• The coordinate planes are planes of symmetry for C, the coordinate axes are axes of symmetry
and the origin O is the center of symmetry of C;

• The intersections with the coordinates planes are
y2

b2 −
z2

c2 = 0

x = 0
two lines

,


x2

a2 −
z2

c2 − 1 = 0

y = 0
two lines

,


x2

a2 +
y2

b2 = 0

z = 0
the point O(0, 0, 0).

• The intersections with planes parallel to the coordinate planes are
y2

b2 −
z2

c2 = −
λ2

a2

x = λ
hyperbolas

;


x2

a2 −
z2

c2 = −
λ2

b2

y = λ
hyperbolas.

,


x2

a2 +
y2

b2 =
λ2

c2

z = λ.
ellipses

10.5 Elliptic Paraboloids
The surface of equation

Pe :
x2

p
+

y2

q
= 2z, p, q ∈ R∗+, (10.5)

is called elliptic paraboloid.

• The planes xOz and yOz are planes of symmetry;

• The traces in the coordinate planes are
y2

q
= 2z

x = 0
a parabola

,


x2

p
= 2z

y = 0
a parabola

,


x2

p
+

y2

q
= 0

z = 0
the point O(0, 0, 0).

• The intersection with the planes parallel to the coordinate planes are


x2

p
+

y2

q
= 2λ

z = λ

,

– If λ > 0, the section is an ellipse;

– If λ = 0, the intersection reduces to the origin;

– If λ < 0, one has the empty set;
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and 
y2

q
= 2z−

λ2

p
x = λ

parabolas

;


x2

p
= 2z−

λ2

q
y = λ

parabolas

;

10.6 Hyperbolic Paraboloids
The hyperbolic paraboloid is the surface given by the equation

Ph :
x2

p
−

y2

q
= 2z, p, q > 0. (10.6)

• The planes xOz and yOz are planes of symmetry;

• The traces in the coordinate planes are, respectively,
−

y2

q
= 2z

x = 0
a parabola

;


x2

p
= 2z

y = 0
a parabola

;


x2

p
−

y2

q
= 0

z = 0
two lines.

;

• The intersection with the planes parallel to the coordinate planes are
y2

q
= −2z +

λ2

p
x = λ

parabolas

;


x2

p
= 2z +

λ2

q
y = λ

parabolas.
x2

p
−

y2

q
= 2λ

z = λ
hyperbolas
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Remark: The hyperbolic paraboloid contains two families of lines. Since(
x
√

p
+

y
√

q

)(
x
√

p
−

y
√

q

)
= 2z,

then the two families are, respectively, of equations

dλ :


x
√

p
−

y
√

q
= λ

λ

(
x
√

p
+

y
√

q

)
= 2z

, λ ∈ R and

d′µ :


x
√

p
+

y
√

q
= µ

µ

(
x
√

p
−

y
√

q

)
= 2z

, µ ∈ R.

10.7 Singular Quadrics
Elliptic Cylinder, Hyperbolic Cylinder, Parabolic Cylinder

• The elliptic cylinder is the surface of equation

x2

a2 +
y2

b2 − 1 = 0, a, b > 0 or
x2

a2 +
z2

c2 − 1 = 0,
y2

b2 +
z2

c2 − 1 = 0. (10.7)

• The hyperbolic cylinder is the surface of equation

x2

a2 −
y2

b2 − 1 = 0, a, b > 0 or
x2

a2 −
z2

c2 − 1 = 0,
y2

b2 −
z2

c2 − 1 = 0. (10.8)

• The parabolic cylinder is the surface of equation

y2 = 2px, p > 0, (or an alternative equation). (10.9)

Cornel Pintea Page 125 of 169 © ’Babeş-Bolyai’ University 2016



MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

10.8 Problems
1. Find the intersection points of the ellipsoid

x2

16
+

y2

12
+

z2

4
= 1

with the line
x− 4

2
=

y + 6
−3

=
z + 2
−2

and write the equations of the tangent planes as well as the equations of the normal lines to the
ellipsoid at the intersection points.

Solution.
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2. Find the rectilinear generatrices of the quadric 4x2− 9y2 = 36z which passes through the point
P(3
√

2, 2, 1).

Solution.

3. Find the rectilinear generatrices of the hyperboloid of one sheet

(H1)
x2

36
+

y2

9
− z2

4
= 1

which are parallel to the plane (π) x + y + z = 0.
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Solution.

4. Find the locus of points on the hyperbolic paraboloid (Ph) y2 − z2 = 2x through which the
rectilinear generatrices are perpendicular.

Solution.
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5. Compute the distance from O(0, 0, 0) to the tangent plane TM(E) of the ellipsoid

E :
x2

a2 +
y2

b2 +
z2

c2 = 1

at some of its point M(x, y, z) ∈ E .

Solution.
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6. Show that the intersection between a straight line d and the sphere S(O, r) is a singleton if and
only if dist(O, d) = r.

Solution.
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11 Week 11: Generated Surfaces
Consider the 3-dimensional Euclidean space E3, together with a Cartesian system of coordinates
Oxyz. Generally, the set

S = {M(x, y, z) : F(x, y, z) = 0},

where F : D ⊆ R3 → R is a real function and D is a domain, is called surface of implicit equation
F(x, y, z) = 0. For example the quadric surfaces, defined in the previous chapter for F a polynomial
of degree two, are such of surfaces. On the other hand, the set

S1 = {M(x, y, z) : x = x(u, v), y = y(u, v), z = z(u, v)},

where x, y, z : D1 ⊆ R2 → R, is a parameterized surface, of parametric equations
x = x(u, v)
y = y(u, v)
z = z(u, v)

, (u, v) ∈ D1.

The intersection between two surfaces is a curve in 3-space (remember, for instance, that the inter-
section between a quadric surface and a plane is a conic section, hence the conics are plane curves).
Then, the set

C = {M(x, y, z) : F(x, y, z) = 0, G(x, y, z) = 0},

where F, G : D ⊆ R3 → R, is the curve of implicit equations{
F(x, y, z) = 0
G(x, y, z) = 0

.

As before, one can parameterize the curve. The set

C1 = {M(x, y, z) : x = x(t), y = y(t), z = z(t)},

where x, y, z : I ⊆ R→ R and I is open, is called parameterized curve of parametric equations
x = x(t)
y = y(t)
z = z(t)

, t ∈ I.

Let be given a family of curves, depending on one single parameter λ,

Cλ :
{

F1(x, y, z; λ) = 0
F2(x, y, z; λ) = 0

.

In general, the family Cλ does not cover the entire space. By eliminating the parameter λ between the
two equations of the family, one obtains the equation of the surface generated by the family of curves.

Suppose now that the family of curves depends on two parameters λ, µ,

Cλ,µ :
{

F1(x, y, z; λ, µ) = 0
F2(x, y, z; λ, µ) = 0

,

and that the parameters are related through ϕ(λ, µ) = 0 If it can be obtained an equation which does
not depend on the parameters (by eliminating the parameters between the three equations), then the
set of all the points which verify it is called surface generated by the family (or the sub-family) of
curves.
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11.1 Cylindrical Surfaces
Definition 11.1. The surface generated by a variable line, called generatrix, which remains parallel
to a fixed line d and intersects a given curve C, is called cylindrical surface. The curve C is called the
director curve of the cylindrical surface.

Theorem 11.1. The cylindrical surface, with the generatrix parallel to the line

d :
{

π1 = 0
π2 = 0

,

which has the director curve

C :
{

F1(x, y, z) = 0
F2(x, y, z) = 0

,

(d and C are not coplanar), is characterized by an equation of the form

ϕ(π1, π2) = 0. (11.1)

Proof. The equations of an arbitrary line, which is parallel to

d :
{

π1(x, y, z) = 0
π2(x, y, z) = 0

, are dλ,µ :
{

π1(x, y, z) = λ
π2(x, y, z) = µ

.

Not every line from the family dλ,µ intersects the curve C. This happens only when the system of
equations 

F1(x, y, z) = 0
F2(x, y, z) = 0
π1(x, y, z) = λ
π2(x, y, z) = µ

is compatible. By eliminating λ and µ between four equations of the system, one obtains a necessary
condition ϕ(λ, µ) = 0 for the parameters λ and µ in order to nonempty intersection between the line
dλ,µ. The equation of the surface can be determined now from the system

π1(x, y, z) = λ
π2(x, y, z) = µ

ϕ(λ, µ) = 0
,

and it is immediate that ϕ(π1, π2) = 0. �

Remark 11.1. Any equation of the form (11.1), where π1 and π2 are linear function of x, y and z,

represents a cylindrical surface, having the generatrices parallel to d :
{

π1 = 0
π2 = 0

.

Example 11.1. Let us find the equation of the cylindrical surface having the generatrices parallel to

d :
{

x + y = 0
z = 0

and the director curve given by

C :
{

x2 − 2y2 − z = 0
x− 1 = 0

.
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The equations of the generatrices d are

dλ,µ :
{

x + y = λ
z = µ

.

They must intersect the curve C, i.e. the system
x2 − 2y2 − z = 0

x− 1 = 0
x + y = λ

z = µ

has to be compatible. A solution of the system can be obtained using the three last equations
x = 1
y = λ− 1
z = µ

and, replacing in the first one, one obtains the compatibility condition

2(λ− 1)2 + µ− 1 = 0.

Thus, the equation of the required cylindrical surface is

2(x + y− 1)2 + z− 1 = 0.

11.2 Conical Surfaces
Definition 11.2. The surface generated by a variable line, called generatrix, which passes through a
fixed point V and intersects a given curve C, is called conical surface. The point V is called the vertex
of the surface and the curve C director curve.

Theorem 11.2. The conical surface, of vertex V(x0, y0, z0) and director curve

C :
{

F1(x, y, z) = 0
F2(x, y, z) = 0

,

(V and C are not coplanar), is characterized by an equation of the form

ϕ

(
x− x0

z− z0
,

y− y0

z− z0

)
= 0. (11.2)
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Proof. The equations of an arbitrary line through V(x0, y0, z0) are

dλµ :
{

x− x0 = λ(z− z0)
y− y0 = µ(z− z0)

.

A generatrix has to intersect the curve C, hence the system of equations
x− x0 = λ(z− z0)
y− y0 = µ(z− z0)

F1(x, y, z) = 0
F2(x, y, z) = 0

must be compatible. This happens for some values of the parameters λ and µ, which verify a compat-
ibility condition

ϕ(λ, µ),

obtained by eliminating x, y and z in the the previous system of equations. In these conditions, the
equation of the conical surface rises from the system

x− x0 = λ(z− z0)
y− y0 = µ(z− z0)

ϕ(λ, µ) = 0
,

i.e.

ϕ

(
x− x0

z− z0
,

y− y0

z− z0

)
= 0.

�

Remark 11.2. If ϕ is a polynomial function, then the equation (11.2) can be written in the form

φ(x− x0, y− y0, z− z0) = 0,

where φ is homogeneous with respect to x − x0, y− y0 and z− z0. If ϕ is polynomial and V is the
origin of the system of coordinates, then the equation of the conical surface is φ(x, y, z) = 0, with φ a
homogeneous polynomial. Conversely, an algebraic homogeneous equation in x, y and z represents
a conical surface with the vertex at the origin.

Example 11.2. Let us determine the equation of the conical surface, having the vertex V(1, 1, 1) and
the director curve

C :
{

(x2 + y2)2 − xy = 0
z = 0

.

The family of lines passing through V has the equations

dλµ :
{

x− 1 = λ(z− 1)
y− 1 = µ(z− 1)

.
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The system of equations 
(x2 + y2)2 − xy = 0

z = 0
x− 1 = λ(z− 1)
y− 1 = µ(z− 1)

must be compatible. A solution is 
x = 1− λ
y = 1− µ

z = 0
,

and, replaced in the first equation of the system, gives the compatibility condition

[(1− λ)2 + (1− µ)2]2 − (1− λ)(1− µ) = 0.

The equation of the conical surface is obtained by eliminating the parameters λ and µ in
x− 1 = λ(z− 1)
y− 1 = µ(z− 1)

((1− λ)2 + (1− µ)2)2 − (1− λ)(1− µ) = 0
.

Expressing λ =
x− 1
z− 1

and µ =
y− 1
z− 1

and replacing in the compatibility condition, one obtains

( z− x
z− 1

)2

+

(
z− y
z− 1

)2
2

−
(

z− x
z− 1

)(
z− y
z− 1

)
= 0,

or
[(z− x)2 + (z− y)2]2 − (z− x)(z− y)(z− 1)2 = 0.

11.3 Conoidal Surfaces
Definition 11.3. The surface generated by a variable line, which intersects a given line d and a given
curve C, and remains parallel to a given plane π, is called conoidal surface. The curve C is the director
curve and the plane π is the director plane of the conoidal surface.

Theorem 11.3. The conoidal surface whose generatrix intersects the line

d :
{

π1 = 0
π2 = 0

and the curve

C :
{

F1(x, y, z) = 0
F2(x, y, z) = 0

and has the director plane π = 0, (π is not parallel to d and that C is not contained into π), is characterized
by an equation of the form

ϕ

(
π,

π1

π2

)
= 0. (11.3)

Proof. An arbitrary generatrix of the conoidal surface is contained into a plane parallel to π and,
on the other hand, comes from the bundle of planes containing d. Then, the equations of a generatrix
are

dλµ :
{

π = λ
π1 = µπ2

.
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Again, the generatrix must intersect the director curve, hence the system of equations
π = λ

π1 = µπ2
F1(x, y, z) = 0
F2(x, y, z) = 0

has to be compatible. This leads to a compatibility condition

ϕ(λ, µ) = 0,

and the equation of the conoidal surface is obtained from
π = λ

π1 = µπ2
ϕ(λ, µ) = 0

.

By expressing λ and µ, one obtains (11.3). �

Example 11.3. Let us find the equation of the conoidal surface, whose generatrices are parallel to xOy
and intersect Oz and the curve {

y2 − 2z + 2 = 0
x2 − 2z + 1 = 0

.

The equations of xOy and Oz are, respectively,

xOy : z = 0, and Oz :
{

x = 0
z = 0

,

so that the equations of the generatrix are

dλ,µ :
{

x = λy
z = µ

.

From the compatibility of the system of equations
x = λy
z = µ

y2 − 2z + 2 = 0
x2 − 2z + 1 = 0

,

one obtains the compatibility condition

2λ2µ− 2λ2 − 2µ + 1 = 0,

and, replacing λ =
x
y

and µ = z, the equation of the conoidal surface is

2x2z− 2y2z− 2x2 + y2 = 0. (11.4)
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11.4 Revolution Surfaces
Definition 11.4. The surface generated by rotating of a given curve C around a given line d is said to
be a revolution surface.

Theorem 11.4. The equation of the revolution surface generated by the curve

C :
{

F1(x, y, z) = 0
F2(x, y, z) = 0

,

in its rotation around the line

d :
x− x0

p
=

y− y0

q
=

z− z0

r
,

is of the form
ϕ((x− x0)

2 + (y− y0)
2 + (z− z0)

2, px + qy + rz) = 0. (11.5)
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

Proof. An arbitrary point on the curve C will describe, in its rotation around d, a circle situated into
a plane orthogonal on d and having the center on the line d. This circle can be seen as the intersection
between a sphere, having the center on d and of variable radius, and a plane, orthogonal on d, so that
its equations are

Cλ,µ :
{

(x− x0)2 + (y− y0)2 + (z− z0)2 = λ.
px + qy + rz = µ

The circle has to intersect the curve C, therefore the system
F1(x, y, z) = 0
F2(x, y, z) = 0
(x− x0)2 + (y− y0)2 + (z− z0)2 = λ
px + qy + rz = µ

must be compatible. One obtains the compatibility condition

ϕ(λ, µ) = 0,

which, after replacing the parameters, gives the equation of the surface (11.5). �

11.5 Problems
1. Find the equation of the cylindrical surface whose director curve is the planar curve

(C)
{

y2 + z2 = x
x = 2z

and the generatrix is perpendicular to the plane of the director curve.

Solution.
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2. A disk of radius 1 is centered at the point A(1, 0, 2) and is parallel to the plane yOz. A source
of light is placed at the point P(0, 0, 3). Characterize analitically the shadow of the disk rushed
over the plane xOy.

Solution. Consider the conical surface of vertex P whose director curve is the circle of radius
1 which is centered at the point A(1, 0, 2) and is parallel to the plane yOz. The shadow of the
disk rushed over the plane xOy is the convex component of the complement, in the plane xOy,
of the intersection curve between the plane xOy and the described conical surface.

In order to find the equation of the conical surface we consider the lines

(Oz)
{

x = 0
y = 0

and (d)
{

x = 0
z = 3

as well as the family of lines

(∆λµ)

{
y− λx = 0
z− 3− µx = 0
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

depending on the parameters λ and µ of the reduced pencils of lines x − λy = 0 through Oz
and z− 3− µz = 0 through d.

The circle C which borders the disk is given by the equations

(C)
{

(x− 1)2 + y2 + (z− 2)2 = 1
x = 1.

The intersection point of the line ∆λµ with the plane of the circle is described by the system
x = 1
y− λx = 0
z− 3− µx = 0

which has the solution

(∆λµ ∩ (x = 1))


x = 1
y = λ
z = 3 + µ.

(11.6)

By imposing the condition on the intersection point (11.6) to belong the other surface which
defines C, namely the sphere (x− 1)2 + y2 +(z− 2)2 = 1, we obtain the relation λ2 +(µ+ 1)2 =
1, between λ and µ, in order to have concurrence between ∆λµ and C. The equation of the
conical surface is (y

x

)2
+

(
z− 3

x
+ 1
)2

= 1, or y2 + (x + z− 3)2 = x2.

The latter equation is equivalent with

y2 + z2 + 2xz− 6x− 6z + 9 = 0.

Its intersection curve with the plane xOy is the parabola

(P
{

z = 0
y2 − 6x + 9 = 0.

The convex compoennt of the compelment xOy \ P coincides with the required shadow and is
characterized by the following system{

y2 − 6x + 9 ≤ 0
z = 0.
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3. Consider a circle and a line parallel with the plane of the circle. Find the equation of the
conoidal surface generated by a variable line which intersects the line (d) and the circle (C)
and remains orthogonal to (d). (The Willis conoid)

Solution.

4. Find the equation of the revolution surface generated by the rotation of a variable line through
a fixed line.

Solution.
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5. The torus is the revolution surface obtained by the rotation of a circle C about a fixed line (d)
within the plane of the circle such that d ∩ C = ∅. Find the equation of the torus5

5The torus is a regular surface.
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Solution.
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12 Week 12. Transformations

12.1 Transformations of the plane
Definition 12.1. An affine transformation of the plane is a perturbation by a translation of a linear
transformation, i.e.

L : R2 −→ R2, L(x, y) = (ax + by + c, dx + ey + f ), (12.1)

for some constant real numbers a, b, c, d, e, f .

By using the matrix language, the action of the map L can be written in the form

L(x, y) = [x y]
[

a d
b e

]
+ [c f ].

The affine transformation L can be also identified with the map Lc : R2×1 −→ R2×1 given by

Lc
([

x
y

])
=

[
ax + by + c
dx + ey + f

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
= [L]

[
x
y

]
+

[
c
f

]
, where [L] =

[
a b
d e

]
.

Lemma 12.1. If (aB− bA)2 + (dB− eA)2 > 0, then the affine transformation (14.1) maps the line

(d) Ax + By + C = 0

to the line
(eA− dB)x+ (aB− bA)y+ (b f − ce)A− (a f − cd)B+ (ae− bd)C=0.

If aB− bA = dB− eA = 0, then ae− bd = 0 and L
∣∣
d is the constant map

(
cB−bC

B , f B−eC
B

)
.

Definition 12.2. An affine transformation (14.1) is said to be singular if∣∣∣∣ a b
d e

∣∣∣∣ = 0 i.e. ae− bd = 0.

and non-singular otherwise.

12.1.1 Translations

Note that the affine transformation L is nonsingular if and only if it is invertible. In such a case the
inverse L−1 is a non-singular affine transformation and [L−1] = [L]−1.

Definition 12.3. The translation of vector (h, k) ∈ R2 is the affine transformation

T(h, k) : R2 −→ R2, [T(h, k)] (x, y) = (x + h, y + k).

Thus

[T(h, k)c]

([
x
y

])
=

[
x + h
y + k

]
=

[
1 0
0 1

] [
x
y

]
+

[
h
k

]
,

i.e.

[T(h, k)] =
[

1 0
0 1

]
.

Note that the translation T(h, k) is non-singular (invertible) and (T(h, k))−1 = T(−h,−k).
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12.1.2 Scaling about the origin

Definition 12.4. The scaling about the origin by non-zero scaling factors (sx, sy) ∈ R2 is the affine
transformation

S(sx, sy) : R2 −→ R2,
[
S(sx, sy)

]
(x, y) = (sx · x, sy · y).

Thus [
S(sx, sy)

c] ([ x
y

])
=

[
sx · x
sy · y

]
=

[
sx 0
0 sy

] [
x
y

]
,

i.e.

[S(sx, sy)] =

[
sx 0
0 sy

]
.

Note that the scaling about the origin by non-zero scaling factors (sx, sy) ∈ R2 is non-singular
(invertible) and (S(sx, sy))−1 = S(s−1

x , s−1
y ).

12.1.3 Reflections

Definition 12.5. The reflections about the x-axis and the y-axis respectively are the affine transformation

rx, ry : R2 −→ R2, rx(x, y) = (x,−y), ry = (−x, y).

Thus

[rc
x]

([
x
y

])
=

[
x
−y

]
=

[
1 0
0 −1

] [
x
y

]
,

i.e.

[rx] =

[
1 0
0 −1

]
. Similarly [ry] =

[
−1 0

0 1

]
.

Note that rx = S(−1, 1) and ry = S(1,−1). Thus the two reflections are non-singular (invertible)
and r−1

x = rx, r−1
y = ry.

Definition 12.6. The reflection rl : R2 −→ R2 about the line l maps a given point M to the point M′

defined by the property that l is the perpendicular bisector of the segment MM′. One can show that
the action of the reflection about the line l : ax + by + c = 0 is

rl(x, y)=
(

b2 − a2

a2 + b2 x− 2ab
a2 + b2 y− 2ac

a2 + b2 ,− 2ab
a2 + b2 x+

a2 − b2

a2 + b2 y− 2bc
a2 + b2

)
.

Thus [
rc

l

] ([ x
y

])
=

 b2 − a2

a2 + b2 x− 2ab
a2 + b2 y− 2ac

a2 + b2

− 2ab
a2 + b2 x +

a2 − b2

a2 + b2 y− 2bc
a2 + b2



=

 b2 − a2

a2 + b2 − 2ab
a2 + b2

− 2ab
a2 + b2

a2 − b2

a2 + b2

 [ x
y

]
−

 2ac
a2 + b2

2bc
a2 + b2

 ,

i.e.

[rl ] =
1

a2 + b2

[
b2 − a2 −2ab
−2ab a2 − b2

]
.

Note that the reflection rl is non-singular (invertible) and r−1
l = rl .
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12.1.4 Rotations

Definition 12.7. The rotation Rθ : R2 −→ R2 about the origin through an angle θ maps a point
M(x, y) into a point M′(x′, y′) with the properties that the segments [OM] and [OM′] are congruent
and the m(M̂OM′) = θ. If θ > 0 the rotation is supposed to be anticlockwise and for θ < 0 the
rotation is clockwise. If (x, y) = (r cos ϕ, r sin ϕ), then the coordinates of the rotated point are

(
r cos(θ+

ϕ), r sin(θ+ϕ)
)
=(x cos θ−y sin θ, x sin θ+y cos θ), i.e.

Rθ(x, y) = (x cos θ−y sin θ, x sin θ+y cos θ).

Thus [
Rc

θ

] ([ x
y

])
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]

=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
,

i.e.

[Rθ ] =

[
cos θ − sin θ
sin θ cos θ

]
.

Note that the rotation Rθ is non-singular (invertible) and R−1
θ = R−θ .

12.1.5 Shears

Definition 12.8. Given a fixed direction in the plane specified by a unit vector v = (v1, v2), consider
the lines d with direction v and the oriented distance δ from the origin. The shear about the origin of
factor r in the direction v is defined to be the transformation which maps a point M(x, y) on d to the
point M′ = M + rδv. The equation of the line through M of direction v is v2X− v1Y + (v1y− v2x) =
0. The oriented distacnce δ from the origin to this line is v1y − v2x. Thus the action of the shear
Sh(v, r) : R2 −→ R2 about the origin of factor r in the direction v is

Sh(v, r)(x, y) = (x, y) + rδ(v1, v2)
= (x, y) + (r(v1y− v2x)v1, r(v1y− v2x)v2)
= (x, y) +

(
−rv1v2x + rv2

1y,−rv2
2x + rv1v2y

)
=
(
(1− rv1v2)x + rv2

1y,−rv2
2x + (1 + rv1v2)y

)
Thus

[Sh(v, r)c]

([
x
y

])
=

[
(1− rv1v2)x + rv2

1y
−rv2

2x + (1 + rv1v2)y

]

=

[
1− rv1v2 rv2

1
−rv2

2 1 + rv1v2

] [
x
y

]
,

i.e. [Sh(v, r)] =
[

1− rv1v2 rv2
1

−rv2
2 1 + rv1v2

]
.

Cornel Pintea Page 148 of 169 © ’Babeş-Bolyai’ University 2016
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12.2 Problems
1. Find the image of the triangle ABC through the reflection in the line (d) x − y = 2, where

A(−1, 2), B(−2,−1) and C(3, 3).

Solution.
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2. Find the image of the triangle ABC through the clockwise rotation of angle 30◦, where A(6, 4),
B(6, 2) and C(10, 6).

Solution.
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3. Consider a quadrilateral with vertices A(1, 1), B(3, 1), C(2, 2), and D(1.5, 3). Find the image
quadrilaterals through the translation T(1, 2), the scaling S(2, 2.5), the reflections about the x
and y-axes, the clockwise and anticlockwise rotations through the angle π/2 and the shear
Sh
((

2/
√

5, 1/
√

5
)

, 1.5
)

.

Solution.
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4. Let M(x, y) be a mobile point on the ellipse (E) x2

a2 +
y2

b2 = 1. Show that the locus of centroids
of the triangles MFF′, where F and F′ are the foci of the ellipse, is the image through a scalling
of equal factors (a homothety) of the given ellipse E . Find the equation of the locus..

Solution.
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5. Consider the line (d) ax + by + c = 0 and the points A, B 6∈ d. Find the coordinates of the point
M ∈ d such that dist(A, M) + dist(M, B) is minimal.

Solution.
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13 Week 13

13.1 Homogeneous coordinates
The affine transformation

L : R2 −→ R2, L(x, y) = (ax + by + c, dx + ey + f )

can be written by using the matrix language and by equations:

1. (a) indentifying the vectors (x, y) ∈ R2 with the line matrices [x y] ∈ R1×2 and implicitely
R2 with R1×2:

L[x y] = [x y]
[

a d
b e

]
+ [c f ].

(b) indentifying the vectors (x, y) ∈ R2 with the column matrices
[

x
y

]
∈ R2×1 and im-

plicitely R2 cu R2×1:

L
[

x
y

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
.

2.
{

x′ = ax + by + c
y′ = dx + ey + f .

⇔
[

x′

y′

]
=

[
a b
d e

][
x
y

]
+

[
c
f

]
Observe that the representation[

x′

y′

]
=

[
a b
d e

][
x
y

]
+

[
c
f

]
is equivalent to  x′

y′

1

=
 a b c

d e f
0 0 1

 x
y
1

 .

In this lesson we identify the points (x, y) ∈ R2 with the points (x, y, 1) ∈ R3 and even with the
punctured lines of R3, (rx, ry, r), r ∈ R∗. Due to technical reasons we shall actually identify the
points (x, y) ∈ R2 with the punctured lines of R3 represented in the form rx

ry
r

 , r ∈ R∗,

and the latter ones we shall call homogeneous coordinates of the point (x, y) ∈ R2. The set of ho-
mogeneous coordinates (x, y, w) will be denoted by RP2 and call it the real projective plane. The
homogeneous coordinates (x, y, w) ∈ RP2, w 6= 0 şi

( x
w , y

w , 1
)
represent the same element of RP2.

Remark 13.1. The projective plane RP2 is actually the quotient set (R3 \ {0})
/
∼, where ′ ∼′ is the

following equivalence relation on R3 \ {0}:

(x, y, w) ∼ (α, β, γ)⇔ ∃r ∈ R∗ a.ı̂. (x, y, w) = r(α, β, γ).

Observe that the equivalence classes of the equivalence relation ∼′ are the punctured lines of R3

through the origin without the origin itself, i.e. the elements of the real projective plane RP2. By the
column matrix  x

y
w


we also denote the equivalence class of (x, y, w) ∈ R3 \ {0}. The meaning of this notation will be
understood, each time, from the context.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

Definition 13.1. A projective transformation of the projective plane RP2 is a transformation

L : RP2 −→ RP2, L

 x
y
w

=
 a b c

d e f
g h k

 x
y
w

=
 ax + by + cw

dx + ey + f w
gx + hy + kw

, (13.1)

where a, b, c, d, e, f , g, h, k ∈ R. Note that the projective transformation L is defined by its homogeneous
transformation matrix  a b c

d e f
g h k

 .

Observe that a projective transformation (14.2) is well defined since

L

 rx
ry
rw

 =

 arx + bry + crw
drx + ery + f rw
grx + hry + krw

 =

 r(ax + by + cw)
r(dx + ey + f w)
r(gx + hy + kw)

 .

If g = h = 0 and k 6= 0, then the projective transformation (14.2) is said to be affine. The restriction
of the affine transformation (14.2), which corresponds to the situation g = h = 0 and k = 1, to the
subspace w = 1, has the form

L

 x
y
1

=
 a b c

d e f
0 0 1

 x
y
1

 =

 ax + by + cw
dx + ey + f w

1

 , (13.2)

i.e. {
x′ = ax + by + c
y′ = dx + ey + f .

(13.3)

Remark 13.2. If L1, L2 : RP2 −→ RP2 are two projective applications, then their product (concatena-
tion) transformation L1 ◦ L2 is also a projective transformation and its homogeneous transformation
matrix is the product of the homogeneous transformation matrices of L1 and L2 .

Indeed, if

L1

 x
y
w

=
 a1 b1 c1

d1 e1 f1
g1 h1 k1

 x
y
w


and

L2

 x
y
w

=
 a2 b2 c2

d2 e2 f2
g2 h2 k2

 x
y
w


then

(L1 ◦ L2)

 x
y
w

 =

 a1 b1 c1
d1 e1 f1
g1 h1 k1

 a2 b2 c2
d2 e2 f2
g2 h2 k2

 x
y
w


Remark 13.3. If L1, L2 : RP2 −→ RP2 are two affine applications, then their product L1 ◦ L2 is also
an affine transformation.

13.2 Transformations of the plane in homogeneous coordinates

In this section we shall identify an affine transformation of RP2 with its homogeneous transformation
matrix
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13.3 Translations and scalings
• The homogeneous transformation matrix of the translation T(h, k) is

T(h, k) =

 1 0 h
0 1 k
0 0 1

 .

• The homogeneous transformation matrix of the scaling S(sx, sy) is

S(sx, sy) =

 sx 0 0
0 sy 0
0 0 1

 .

13.4 Reflections
• The homogeneous transformation matrix of reflection rx about the x-axis is

rx =

 1 0 0
0 −1 0
0 0 1

 .

• The homogeneous transformation matrix of reflection ry about the y-axis is

ry =

 −1 0 0
0 1 0
0 0 1

 .

• The homogeneous transformation matrix of reflection rl about the line l : ax + by + c = 0 is

rl =


b2 − a2

a2 + b2 − 2ab
a2 + b2 − 2ac

a2 + b2

− 2ab
a2 + b2

a2 − b2

a2 + b2 − 2bc
a2 + b2

0 0 1

 .

Since in homogeneous coordinates multiplication by a factor does not affect the result, the above
matrix can be multiplied by a factor a2 + b2 to give the homogeneous matrix of a general reflection b2 − a2 −2ab −2ac

−2ab a2 − b2 −2bc
0 0 a2 + b2

 .

Example 13.1. Consider a line (d) ax + by + c whose slope is tgθ = − a
b

. By using the observation
that the reflection rd in the line d is the following concatenation (product)

T(0,−c/b) ◦ Rθ ◦ rx ◦ R−θ ◦ T(0, c/b),

one can show that the homogeneous transformation matrix of rd is
b2 − a2

a2 + b2 − 2ab
a2 + b2 − 2ac

a2 + b2

− 2ab
a2 + b2

a2 − b2

a2 + b2 − 2bc
a2 + b2

0 0 1

 .
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Solution. The homogeneous matrix of the concatenation

T(0,−c/b) ◦ Rθ ◦ rx ◦ R−θ ◦ T(0, c/b)

is  1 0 0
0 1 −c/b
0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 1 0 0
0 −1 0
0 0 1

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 1 0 0
0 1 c/b
0 0 1



=


cos2 θ − sin2 θ 2 sin θ cos θ 2

c
b

sin θ cos θ

2 sin θ cos θ sin2 θ − cos2 θ
c
b
(
sin2 θ − cos2 θ − 1

)
0 0 1

 . (13.4)

Since tgθ = − a
b

, it follows that
a2

b2 =
sin2 θ

cos2 θ
=

sin2 θ

1− sin2 θ
=

1− cos2 θ

cos2 θ
, namely

sin2 θ =
a2

a2 + b2 and cos2 θ =
b2

a2 + b2 .

Thus
sin θ = ± a√

a2 + b2
and cos θ = ∓ b√

a2 + b2
, as

sin θ

cos θ
= tgθ = − a

b
.

Therefore sin θ cos θ = − ab
a2 + b2 and the matrix (13.4) becomes


b2 − a2

a2 + b2 − 2ab
a2 + b2 − c

b
2ab

a2 + b2

− 2ab
a2 + b2

a2 − b2

a2 + b2
c
b

(
a2 − b2

a2 + b2 − 1
)

0 0 1

 =


b2 − a2

a2 + b2 − 2ab
a2 + b2 − 2ac

a2 + b2

− 2ab
a2 + b2

a2 − b2

a2 + b2 − 2bc
a2 + b2

0 0 1

 .

13.5 Rotations
The homogeneous transformation matrix of the rotation Rθ about the origin through an angle θ is

Rθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Example 13.2. The homogeneous transformation matrix of the product (concatenation) T(h, k) ◦ Rθ

is the product  1 0 h
0 1 k
0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 =

 cos θ − sin θ h
sin θ cos θ k
0 0 1

 .

In order to find the homogeneous transformation matrix of the inverse transformation

(T(h, k) ◦ Rθ)
−1 = R−1

θ ◦ T(h, k)−1 = R−θ ◦ T(−h,−k)

of the product (concatenation) homogeneous transformation T(h, k) ◦ Rθ we can either multiply the
homogeneous transformation matrices of the inverse transformations R−1

θ = R−1
θ and T(h, k)−1 =

Cornel Pintea Page 157 of 169 © ’Babeş-Bolyai’ University 2016
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T(−h,−k) or use the next proposition. The product of the homogeneous transformation matrices of
the inverse transformations R−1

θ = R−1
θ and T(h, k)−1 = T(−h,−k) is cos(−θ) − sin(−θ) 0

sin(−θ) cos(−θ) 0
0 0 1

 1 0 −h
0 1 −k
0 0 1

 =

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 1 0 −h
0 1 −k
0 0 1

 =

=

 cos θ sin θ −h cos θ − k sin θ
− sin θ cos θ h sin θ − k cos θ

0 0 1

 .

Proposition 13.1. A homogeneous transformation L is invertible if and only if its homogeneous transforma-
tion matrix, say T, is invertible and T−1 is the transformation matrix of L−1.

Proof. Suppose that L has an inverse L−1 with transformation matrix T1. The product trans-
formation L ◦ L−1 = id has the transformation matrix TT1 = I3. Similarly, L−1 ◦ L = I3 has the
transformation matrix T1T = I3. Thus T1 = T−1. Conversely, assume that T has an inverse T−1, and
let L1 be the homogeneous transformation defined by T−1. Since TT−1 = I3 and T−1T = I3, it follows
that L ◦ L1 = I and L1 ◦ L = I. Hence L1 is the inverse transformation of L.

Example 13.3. The homogeneous transformation matrix of inverse

(T(h, k) ◦ Rθ)
−1 = R−1

θ ◦ T(h, k)−1 = R−θ ◦ T(−h,−k)

of the product (concatenation) homogeneous transformation T(h, k) ◦ Rθ is the matrix cos θ − sin θ h
sin θ cos θ k
0 0 1

−1

=

 cos θ sin θ −h cos θ − k sin θ
− sin θ cos θ h sin θ − k cos θ

0 0 1

 .

13.6 Shears
The homogeneous transformation matrix of the shear is

[Sh(v, r)] =

 1− rv1v2 rv2
1 0

−rv2
2 1 + rv1v2 0

0 0 1

 .

13.7 Problems
1. Find the concatenation (product) of an anticlockwise rotation about the origin through an angle

of 3π
2 followed by a scaling by a factor of 3 units in the x-direction and 2 units in the y-direction.

(Hint: S(3, 2)R3π/2)

Solution
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2. Find the homogeneous matrix of the product (concatenation) S(3, 2) ◦ R 3π
2

.

Solution
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3. Find the equations of the rotation Rθ(x0, y0) about the point M0(x0, y0) through an angle θ.

Solution The homogeneous transformation matrix of the rotation Rθ(x0, y0) about the point
M0(x0, y0) through an angle θ is

Rθ(x0, y0) = T(x0, y0)RθT(−x0,−y0)

=

 1 0 x0
0 1 y0
0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 1 0 −x0
0 1 −y0
0 0 1


=

 cos θ − sin θ −x0 cos θ + y0 sin θ + x0
sin θ cos θ −x0 sin θ − y0 cos θ + y0

0 0 1

 .

Thus, the equations of the required rotation are:{
x′ = x cos θ − y sin θ − x0 cos θ + y0 sin θ + x0
y′ = x sin θ + y cos θ − x0 sin θ − y0 cos θ + y0.

.

4. Show that the concatenation (product) of two rotations, the first through an angle θ about a
point P(x0, y0) and the second about a point Q(x1, y1) (distinct from P) through an angle −θ is
a translation.

Solution
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14 Week 14

14.1 Transformations of the space
Definition 14.1. An affine transformation of the spacee is a perturbation bya atranslation of a linear
transformation, i.e.

L : R3 −→ R3, T(x, y, z) = (ax + by + cz + d, ex + f y + gz + h, kx + ly + mz + n), (14.1)

for some constant real numbers a, b, c, d, e, f , g, h, k, l, m, n.

By using the matrix language, the action of the map L can be written in the form

L(x, y, z) = [x y z]

 a e k
b f l
c g m

+ [d h n].

The affine transformation L can be also identified with the map Lc : R3×1 −→ R3×1 given by

Lc

 x
y
z

 =

 ax + by + cz + d
ex + f y + gz + h
kx + ly + mz + n

 =

 a b c
e f g
k l m

 x
y
z

+

 d
h
n


= [L]

 x
y
z

+

 d
h
n

 , where [L] =

 a b c
e f g
k l m

 .

Definition 14.2. An affine transformation (14.1) is said to be singular if∣∣∣∣∣∣
a b c
e f g
k l m

∣∣∣∣∣∣ = 0.

and non-singular otherwise.

14.1.1 Translations

The translation of R3 of vector (h, k, l) ∈ R3 is the affine transformation

T(h, k, l) : R3 → R3, T(h, k, l)(x1, x2, x3) = (x1 + h, x2 + k, x3 + l).

Its associated transformation is

T(h, k, l)c : R3×1 → R3×1, T(h, k, l)c
( x1

x2
x3

 ) =

 x1
x2
−x3

 =

1 0 0
0 1 0
0 0 1

x1
x2
x3

+

h
k
l

 ,

which shows that its standard matrix and equations are:

[T(h, k, l)] =

1 0 0
0 1 0
0 0 1

 and


w1 = x1 + h
w2 = x2 + k
w3 = x3 + l

.
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14.1.2 Scaling about the origin

The scaling about the origin by non-zero scaling factors (sx, sy, sz) ∈ R3 is the affine transformation

S(sx, sy, sz) : R3 −→ R3,
[
S(sx, sy, sz)

]
(x, y, z) = (sx · x, sy · y, sz · z).

Thus [
S(sx, sy, sz)

c] x
y
z

 =

 sx · x
sy · y
sz · z

 =

 sx 0 0
0 sy 0
0 0 sz

 x
y
z

 ,

i.e.

[S(sx, sy, sz)] =

 sx 0 0
0 sy 0
0 0 sz

 .

Note that the scaling about the origin by non-zero scaling factors (sx, sy, sz) ∈ R3 is non-singular
(invertible) and (S(sx, sy, sz))−1 = S(s−1

x , s−1
y , s−1

z ).

14.1.3 Reflections about planes

1. The reflection of R3 through the xy-plane is rxy : R3 → R3, rxy(x1, x2, x3) = (x1, x2,−x3). Its
associated transformation is

rc
xy : R3×1 → R3×1, rxy

( x1
x2
x3

 ) =

 x1
x2
−x3

 =

1 0 0
0 1 0
0 0 −1

x1
x2
x3

 ,

which shows that its standard matrix and equations are:

[rxy] =

1 0 0
0 1 0
0 0 −1

 and


w1 = x1

w2 = x2

w3 = −x3

.

2. The reflection of R3 through the xz-plane is rxz : R3 → R3, rxz(x1, x2, x3) = (x1,−x2, x3). Its
associated transformation is

rxz : R3×1 → R3×1, rc
xz

( x1
x2
x3

 ) =

 x1
−x2
x3

 =

1 0 0
0 −1 0
0 0 1

x1
x2
x3

 ,

which shows that its standard matrix and equations are:

[rxz] =

1 0 0
0 −1 0
0 0 1

 and


w1 = x1

w2 = −x2

w3 = x3

.

3. The reflection of R3 through the yz-plane is ryz : R3 → R3, ryz(x1, x2, x3) = (−x1, x2, x3). Its
associated transformation is

rc
yz : R3×1 → R3×1, rc

yz

( x1
x2
x3

 ) =

−x1
x2
x3

 =

−1 0 0
0 1 0
0 0 1

x1
x2
x3

 ,

which shows that its standard matrix and equations are:

[ryz] =

−1 0 0
0 1 0
0 0 1

 and


w1 = −x1

w2 = x2

w3 = x3

.
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MLE0014-Analytic Geometry, Lecture Notes ”Babeş-Bolyai” University, Department of Mathematics

4. The reflection of R3 through an arbitrary plane π : ax1 + bx2 + cx3 + d = 0 is rπ : R3 → R3, given
by

rπ(x, y, z) =

(
(−a2 + b2 + c2)x− 2aby− 2acz− 2ad

a2 + b2 + c2 ,

−2abx + (a2 − b2 + c2)y− 2bcz− 2bd
a2 + b2 + c2 ,

−2acx− 2bcy + (a2 + b2 − c2)z− 2cd
a2 + b2 + c2

)
.

Its associated transformation rπ : R3×1 → R3×1 is given by

rc
π

( x
y
z

 ) =


(−a2 + b2 + c2)x− 2aby− 2acz− 2ad

a2 + b2 + c2

−2abx + (a2 − b2 + c2)y− 2bcz− 2bd
a2 + b2 + c2

−2acx− 2bcy + (a2 + b2 − c2)z− 2cd
a2 + b2 + c2


=

1
a2 + b2 + c2

−a2 + b2 + c2 −2ab −2ac
−2ab a2 − b2 + c2 −2bc
−2ac −2bc a2 + b2 − c2

x
y
z

− 2d

a
b
c

 .

which shows that its standard matrix and equations are:

[rπ] =
1

a2 + b2 + c2

−a2 + b2 + c2 −2ab −2ac
−2ab a2 − b2 + c2 −2bc
−2ac −2bc a2 + b2 − c2


and 

w1 =
(−a2 + b2 + c2)x− 2aby− 2acz− 2ad

a2 + b2 + c2

w2 =
−2abx + (a2 − b2 + c2)y− 2bcz− 2bd

a2 + b2 + c2

w3 =
−2acx− 2bcy + (a2 + b2 − c2)z− 2cd

a2 + b2 + c2

14.1.4 Rotations

The rotation operator of R3 through a fixed angle θ about an oriented axis, rotates about the axis of rota-
tion each point of R3 in such a way that its associated vector sweeps out some portion of the cone
determine by the vector itself and by a vector which gives the direction and the orientation of the con-
sidered oriented axis. The angle of the rotation is measured at the base of the cone and it is measured
clockwise or counterclockwise in relation with a viewpoint along the axis looking toward the origin.
As in R2, the positives angles generates counterclockwise rotations and negative angles generates
clockwise roattions. The counterclockwise sense of rotaion can be determined by the right-hand rule:
If the thumb of the right hand points the direction of the direction of the oriented axis, then the
cupped fingers points in a counterclockwise direction. The rotation operators in R3 are linear.

For example

1. The counterclockwise rotation about the positive x-axis through an angle θ has the equations

w1 = x
w2 = y cos θ − z sin θ
w3 = y sin θ + z cos θ

,
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its standard matrix is  1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

2. The counterclockwise rotation about the positive y-axis through an angle θ has the equations

w1 = x cos θ + z sin θ
w2 = y
w3 = −x sin θ + z cos θ

,

its standard matrix is  cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .

3. The counterclockwise rotation about the positive z-axis through an angle θ has the equations

w1 = x cos θ − y sin θ
w2 = x sin θ + y cos θ
w3 = z

,

its standard matrix is  cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

14.2 Homogeneous coordinates
The affine transformation

L : R3 −→ R3, T(x, y, z) = (ax + by + cz + d, ex + f y + gz + h, kx + ly + mz + n),

can be written by using the matrix language and by equations:

1. (a) indentifying the vectors (x, y, z) ∈ R3 with the line matrices [x y z] ∈ R1×3 and implicitely
R3 with R1×3. With this identification, the action of L is given by

L[x y z] = [x y z]

 a e k
b f l
c g m

+ [d h n].

(b) indentifying the vectors (x, y, z) ∈ R3 with the column matrices

 x
y
z

 ∈ R3×1 and im-

plicitely R3 with R3×1. We de note by Lc : R3×1 −→ R3×1 the associated map via this
identification, and its action is given by

Lc

 x
y
z

 =

 ax + by + cz + d
ex + f y + gz + h
kx + ly + mz + n

 =

 a b c
e f g
k l m

 x
y
z

+

 d
h
n


= [L]

 x
y
z

+

 d
h
n

 , where [L] =

 a b c
e f g
k l m

 .

2.


x′ = ax + by + cz + d
y′ = ex + f y + gz + h
z′ = kx + ly + mz + n

⇔

 x′

y′

z′

 =

 a b c
e f g
k l m

 x
y
z

+

 d
h
n


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Observe that the representation x′

y′

z′

 =

 a b c
e f g
k l m

 x
y
z

+

 d
h
n


is equivalent to 

x′

y′

z′

1

 =


a b c d
e f g h
k l m n
0 0 0 1




x
y
z
1


In this section we identify the points (x, y, z) ∈ R3 with the points (x, y, z, 1) ∈ R4 and even with the
punctured lines of R4, (rx, ry, rz, r), r ∈ R∗. Due to technical reasons we shall actually identify the
points (x, y, z) ∈ R3 with the punctured lines of R4 represented in the form

rx
ry
rz
r

 , r ∈ R∗,

and the latter ones we shall call homogeneous coordinates of the point (x, y, z) ∈ R3. The set of ho-
mogeneous coordinates (x, y, z, w) will be denoted by RP3 and call it the real projective space. The

homogeneous coordinates (x, y, z, w) ∈ RP3, w 6= 0 and
( x

w
,

y
w

,
z
w

, 1
)

represent the same element of

RP3.

Remark 14.1. The projective space RP3 is actually the quotient set (R4 \ {0})
/
∼, where ′ ∼′ is the

following equivalence relation on R4 \ {0}:

(x, y, z, w) ∼ (α, β, γ, δ)⇔ ∃r ∈ R∗ a.ı̂. (x, y, z, w) = r(α, β, γ, δ).

Observe that the equivalence classes of the equivalence relation ∼′ are the punctured lines of R3

through the origin without the origin itself, i.e. the elements of the real projective plane RP3. By the
column matrix 

x
y
z
w


we also denote the equivalence class of (x, y, z, w) ∈ R3 \ {0}. The meaning of this notation will be
understood, each time, from the context.

Definition 14.3. A projective transformation of the projective space RP3 is a transformation

L : RP3 −→ RP3, L


x
y
z
w

 =


a b c d
e f g h
k l m n
p q r s




x
y
z
w

 =


ax + by + cz + dw
ex + f y + gz + hw
kx + ly + mz + nw
px + qy + rz + sw

 , (14.2)

where a, b, c, d, e, f , g, h, k, l, m, n, p, q, r, s ∈ R. Note that
a b c d
e f g h
k l m n
p q r s


is called the homogeneous transformation matrix of L.
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Observe that a projective transformation (14.2) is well defined since

L


tx
ty
tz
tw

 =


atx + bty + ctz + dtw
etx + f ty + gtz + htw
ktx + lty + mtz + ntw
ptx + qty + rtz + tsw

 =


t(ax + by + cz + dw)
t(ex + f y + gz + hw)
t(kx + ly + mz + nw)
t(px + qy + rz + sw)

 .

If p = q = r = 0 and s 6= 0, then the projective transformation (14.2) is said to be affine. The restriction
of the affine transformation (14.2), which corresponds to the situation p = q = r = 0 and s = 1, to
the subspace w = 1, has the form

L


x
y
z
1

=


a b c d
e f g h
k l m n
0 0 0 1




x
y
z
1

 =


ax + by + cz + d
ex + f y + gz + h
kx + ly + mz + n

1

 , (14.3)

i.e. 
x′ = ax + by + cz + d
y′ = ex + f y + gz + h
z′ = kx + ly + mz + n.

(14.4)

Remark 14.2. If L1, L2 : RP3 −→ RP3 are two projective applications, then their product (concatena-
tion) transformation L1 ◦ L2 is also a projective transformation and its homogeneous transformation
matrix is the product of the homogeneous transformation matrices of L1 and L2 .

Indeed, if

L1


x
y
z
w

=


a1 b1 c1 d1
e1 f1 g1 h1
k1 l1 m1 n1
p1 q1 r1 s1




x
y
z
w


and

L2


x
y
z
w

=


a2 b2 c2 d2
e2 f2 g2 h2
k2 l2 m2 n2
p2 q2 r2 s2




x
y
z
w


then

(L1 ◦ L2)


x
y
z
w

 =




a1 b1 c1 d1
e1 f1 g1 h1
k1 l1 m1 n1
p1 q1 r1 s1




a2 b2 c2 d2
e2 f2 g2 h2
k2 l2 m2 n2
p2 q2 r2 s2





x
y
z
w


Remark 14.3. If L1, L2 : RP3 −→ RP3 are two affine applications, then their product L1 ◦ L2 is also
an affine transformation.

14.3 Transformations of the space in homogeneous coordinates
14.3.1 Translations

The homogeneous transformation matrix of the translation

T(h, k, l) : R3 → R3, T(h, k, l)(x1, x2, x3) = (x1 + h, x2 + k, x3 + l)

is 
1 0 0 h
0 1 0 k
0 0 1 l
0 0 0 1

 .
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14.3.2 Scaling about the origin

The homogeneous transformation matrix of the scaling

S(sx, sy, sz) : R3 −→ R3,
[
S(sx, sy, sz)

]
(x, y, z) = (sx · x, sy · y, sz · z)

is 
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 .

14.3.3 Reflections about planes

1. The homogeneous transformation matrix of the reflection

rxy : R3 → R3, rxy(x1, x2, x3) = (x1, x2,−x3)

of R3 through the xy-plane is 
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


2. The homogeneous transformation matrix of the reflection

ryz : R3 → R3, ryz(x1, x2, x3) = (−x1, x2, x3)

of R3 through the yz-plane is 
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


3. The homogeneous transformation matrix of the reflection

rxz : R3 → R3, ryz(x1, x2, x3) = (x1,−x2, x3)

of R3 through the xz-plane is 
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


4. The homogeneous transformation matrix of the reflection rπ : R3 → R3

rπ(x, y, z) =

(
(−a2 + b2 + c2)x− 2aby− 2acz− 2ad

a2 + b2 + c2 ,

−2abx + (a2 − b2 + c2)y− 2bcz− 2bd
a2 + b2 + c2 ,

−2acx− 2bcy + (a2 + b2 − c2)z− 2cd
a2 + b2 + c2

)
.
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through an arbitrary plane π : ax1 + bx2 + cx3 + d = 0 is

−a2 + b2 + c2

a2 + b2 + c2
−2ab

a2 + b2 + c2
−2ac

a2 + b2 + c2
−2ad

a2 + b2 + c2

−2ab
a2 + b2 + c2

a2 − b2 + c2

a2 + b2 + c2
−2bc

a2 + b2 + c2
−2bd

a2 + b2 + c2

−2ac
a2 + b2 + c2

−2bc
a2 + b2 + c2

a2 + b2 − c2

a2 + b2 + c2
−2cd

a2 + b2 + c2

0 0 0 1


Since in homogeneous coordinates multiplication by a factor does not affect the result, the
above matrix can be multiplied by a factor a2 + b2 + c2 to give the homogeneous matrix of a
general reflection 

−a2 + b2 + c2 −2ab −2ac −2ad
−2ab a2 − b2 + c2 −2bc −2bd
−2ac −2bc a2 + b2 − c2 −2cd

0 0 0 a2 + b2 + c2

 .

14.3.4 Rotations

1. The homogeneous transformation matrix of the counterclockwise rotation about the positive
x-axis through an angle θ is 

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 .

2. The homogeneous transformation matrix of the counterclockwise rotation about the positive
y-axis through an angle θ is 

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

 .

3. The homogeneous transformation matrix of the counterclockwise rotation about the positive
z-axis through an angle θ is 

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 .

14.4 Problems
1. Find the homogeneous transformation matrix of the product (concatenation)

T(1, 1,−2) ◦ Roty(π/6),

where Roty(π/6) stands for the rotation about the positive y-axis through an angle θ.

2. Find the homogeneous transformation matrix of the rotation through an angle θ, of the space,
about an arbitrary line.

3. Find the homogeneous transformation matrix of the rotation through an angle θ about the line
PQ, where P(2, 1, 5) and Q(4, 7, 2).
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