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1 Week 1: Vector algebra

1.1 Free vectors

Vectors Let P be the three dimensional physical space in which we can talk about points,
lines, planes and various relations among them. If (A, B) € P x P is an ordered pair, then
A is called the original point or the origin and B is called the terminal point or the extremity of
(A, B).

Definition 1.1. The ordered pairs (A, B), (C, D) are said to be equipollent, written (A, B) ~
(C, D), if the segments [AD] and [BC]| have the same midpoint.

Pairs of equipollent points (A, B) ~ (C,D)

Remark 1.1. If the points A, B, C, D € P are not collinear, then (A, B) ~ (C, D) if and only
if ABDC is a parallelogram. In fact the length of the segments [AB] and [CD] is the same
whenever (A, B) ~ (C,D).

Proposition 1.1. If (A, B) is an ordered pair and O € P is a given point, then there exists a unique
point X such that (A,B) ~ (O, X).

Proposition 1.2. The equipollence relation is an equivalence relation on P x P.

Definition 1.2. The equivalence classes with respect to the equipollence relation are called
(free) vectors.

— —

Denote by AB the equivalence class of the ordered pair (A, B), that is AB= {(X,Y) €
H

PxP|(XY)~ (AB)}andletV = P ><7>/ — {AB |(A,B) € P x P} be the set of

— — —
(free) vectors. The length or the magnitude of the vector AB, denoted by || AB || orby | AB |,
is the length of the segment [AB].

H
Remark 1.2. If two ordered pairs (A, B) and (C, D) are equippllent, i.e. the vectors AB and

H
CD are equal, then they have the same length, the same direction and the same sense. In

fact a vector is determined by these three items.

— = — —

Proposition1.3. 1. AB=CD AC=BD.
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— —

2. YA,B,O € P, 3'X € P such that AB=0X.
— - = — —

3. AB=A'B’, BC=B'C'=AC=A'C".

E—
Definition 1.3. If O, M € P, the the vector OM is denoted by 7M and is called the position
vector of M with respect to O.

Corollary 1.4. The map ¢, : P =V, ¢,(M) :7M is one-to-one and onto, i.e. bijective.

1.1.1 Operations with vectors

— A S 4
° The addition of vectors Let a, b eV and O € P be such that a =0A, b AB The vector

— —

OB is called the sum of the vectors a and b and is written OB=0OA + AB u + b

S

ST

/ : Y YV A AT
Let O’ be another point and A’, B’ € P be such thatOA—u AB b. Since OA=0'A

—

e
and AB A'B' it follows, according to Proposition|1.3 .tl) that OB= O’ B’. Therefore the vector
a4+ b is independent on the choice of the point O.

¢

Proposition 1.5. The set V endowed to the bmary opemtzon VXV =YV, ( a,b) —a + B is

—

an abelmn group whose zero element is the vector AA BB 0 and the opposite of AB, denoted by
— AB, is the vector BA.

In particular the addition operation is associative and the vector

( )

_>
is usually denoted by 4+ b + c. Moreover the expression

— - =
a a

_>
+ b))t c=

—
c

_)
+(b +

(- (a1 + @)+ Az 4+ an)---), (1.1)

is independent of the distribution of paranthesis and it is usually denoted by

— — —
A1+ do+-+ dy.
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Example 1.1. If A, Ay, A3z, ..., A, € P are some given points, then
— — — —
A1Ay + A2As +- -+ Ay 1 A=A Ay

— — — — N
This shows that AjAy + AyAz +---+ A,_1A;, + A,A1=0, namely the sum of vectors
constructed on the edges of a closed broken line is zero.

— — — —
Corollary 1.6. If a=0A, p=0B are gwen vectors, there exzsts a unique vector X€ V such that

a + ;:Z In fact ?:; +(—

S

2|

e The multiplication of vectors with scalars
—
_I;et 2 € Rbea s_c)ala_r} anci Zier V be a vector. We define the vector a- a as follows:
a- a=0ifa =00r a=0;if a#0 and a > 0, there exists a unique point on the half line |OA

H
such that ||OB|| = a - ||OA|| and define a- 4=0B; if x < 0 we define a- 4= — (|- Z) The

external binary operation
—

RxV—=V, (0, a)— a

is called the multiplication of vectors with scalars.

ﬁ
a

Cornel Pintea Page 3 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

Proposition 1.7. The following properties hold:
(v1) (a+pB)- i=aa +p- q, Va,BeR, deV.

- — —
+p)=ad+a b, Ya€eR, a,be V.
%

a

Application 1.1. Consider two parallelograms, A; Ay Az A4, B1B2B3Bs in P, and My, My, M3,
M, the midpoints of the segments [A1B;], [A2Bz], [A3B3], [A4B4] respectively. Then:

— —

— — —
e 2 MiM>=A1A + B1By and 2 M3My=A3A4 + B3By.

* My, My, M3, My are the vertices of a parallelogram.

1.1.2 The vector structure on the set of vectors

Theorem 1.8. The set of (free) vectors endowed with the addition binary operation of vectors and the
external binary operation of multiplication of vectors with scalars is a real vector space.

Example 1.2. If A’ is the midpoint of the egde [BC] of the triangle ABC, then

— 1, — —
AA'= S (AB + AC).
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A few vector quantities:

1. The force, usually denoted by ?

2. The velocity % of a moving particle P, is usually denoted by 5; or simply by v.

3. The acceleration % of a moving particle P, is usually denoted by ZP or simply by a.

(to)

O

e Newton’s law of gravitation, statement that any particle of matter in the universe attracts
any other with a force varying directly as the product of the masses and inversely as the
square of the distance between them. In symbols, the magnitude of the attractive force F is
equal to G (the gravitational constant, a number the size of which depends on the system
of units used and which is a universal constant) multiplied by the product of the masses
(mq and m;) and divided by the square of the distance R: F = G(mymy)/R?. (Encyclopdia
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Britannica)

e Newton’s second law is a quantitative description of the changes that a force can produce
on the motion of a body. It states that the time rate of change of the momentum of a body
is equal in both magnitude and direction to the force imposed on it. The momentum of a
body is equal to the product of its mass and its velocity. Momentum, like velocity, is a vector
quantity, having both magnitude and direction. A force applied to a body can change the
magnitude of the momentum, or its direction, or both. Newtons second law is one of the
most important in all of physics. For a body whose mass m is constant, it can be written in
the form F = ma, where F (force) and a (acceleration) are both vector quantities. If a body
has a net force acting on it, it is accelerated in accordance with the equation. Conversely, if a
body is not accelerated, there is no net force acting on it. (Encyclopdia Britannica)

1.2 Problems

1. Consider a tetrahedron ABCD. Find the the following sums of vectors:

— = —

(a) AB + BC + CD.
— — —
(b) AD + CB + DC.

—

— — —
(c) AB + BC + DA + CD.

— — -
2. ([4, Problem 3, p. 1]) Let OABCDE be a regular hexagon in Which OA=a and OE= b

— — —

Express the vectors OB, OC OD in terms of the vectors a and b Show that OA + OB

— —

+OC+OD+OE 3OC

3. Consider a pyramid with the vertex at S and the basis a parallelogram ABCD whose
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s s

H
diagonals are concurrent at O. Show the equality SA + SB + SC + SD= 4 SO.

4. Let E and F be the midpoints of the diagonals of a quadrilateral ABCD. Show that

— 1 /— — 1/— —
EF:§<AB+CD):§<AD+CB).

5. In a triangle ABC we consider the height AD from the vertex A (D € BC). Find the
— - —
decomposition of the vector AD in terms of the vectors ?:AB and p=AC.

6. ([4, Problem 12, p. 3]) Let M, N be the midpoints of two opposite edges of a given
quadrilateral ABCD and P be the midpoint of [MN]. Show that

— = —

H
PA 4+ PB 4 PC + PD=0
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7. ([4, Problem 12, p. 7]) Consider two perpendicular chords AB and CD of a given circle
and {M} = ABNCD. Show that

— = = —

e
OA+ OB+ 0OC+ OD=20M.

8. ([4, Problem 13, p. 3]) If G is the centroid of a tringle ABC and O is a given point, show

that
— OA+OB+0C
OG= . .

9. ([4, Problem 14, p. 4]) Consider the triangle ABC alongside its orthocenter H, its cir-
cumcenter O and the diametrically opposed point A’ of A on the latter circle. Show
that:

—  —

— —
(a) OA + OB + OC=0H.
— - —
(b) HB + HC=HA'.
— — — —
(c) HA + HB + HC= 2 HO.

Cornel Pintea Page 8 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

10. ([4, Problem 15, p. 4]) Consider the triangle ABC alongside its centroid G, its ortho-

— —
center H and its circumcenter O. Show that O, G, H are collinear and 3 HG= 2 HO.

11. ([4, Problem 27, p. 13]) Consider a tetrahedron A;A;A3A4 and the midpoints A;; of
the edges A;Aj, i # j. Show that:
(@) The lines A1pAs4, A13A24 and Aj4Ap3 are concurrent in a point G.

(b) The medians of the tetrahedron (the lines passing through the vertices and the
centroids of the opposite faces) are also concurrent at G.
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(c) Determine the ratio in which the point G divides each median.
— — —

— —
(d) Show that GA; + GAy + GAz + GA4=0.
— — — — —
(e) If M is an arbitrary point, show that MA; + MA, + MAsz + MA;= 4 MG.
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12. In a triangle ABC consider the points M, L on the side AB and N, T on the side AC

— —  — — —  — — — —
such that 3 AL=2 AM=AB and 3 AT= 2 AN=AC. Show that AB + AC= 5 AS,
where {S} = MT N LN.

13. Consider two triangles A1B1C; and A;B>C», not necesarily in the same plane, along-
— — — —
side their centroids Gq, G;. Show that A1A; + B1By + C1Co= 3 G1Go.
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2  Week 2: Straight lines and planes

2.1 Linear dependence and linear independence of vectors

— —
Definition 2.1. 1. The vectors OA, OB are said to be collinear if the points O, A, B are

— —
collinear. Otherwise the vectors OA, OB are said to be noncollinear.

— — —

2. The vectors OA, OB,OC are said to be coplanar if the points O, A, B, C are coplanar.

— — —
Otherwise the vectors OA, OB, OC are noncoplanar.

— —
Remark 2.1. 1. The vectors OA, OB are linearly (in)dependent if and only if they are
(non)collinear.

— — —
2. Thevectors OA, OB, OC are linearly (in)dependent if and only if they are (non)coplanar.

— — —
Proposition 2.1. The vectors OA, OB, OC form a basis of V if and only if they are noncoplanar.
Corollary 2.2. The dimension of the vector space of free vectors V is three.

Proposition 2.3. Let A be a straight line and let A € A be a given point. The set

— —
A= {AM | M € A}

is an one dimensional subspace of V. It is independent on the choice of A € A and is called the
director subspace of A or the direction of A.
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/
Remark 2.2. The straight lines A, A are parallel if and only if X:Z

- =
Definition 2.2. We call director vector of the straigh line A every nonzero vector d €A.

_>
If 4€ V is a nonzero vector and A € P is a given point, then there exits a unique straight

line which passes through A and has the direction (2) This stright line is
—
A={MecP| AMe (d)}.

A is called the straight line which passes through O and is parallel to the vector ;

H
Proposition 2.4. Let 7t be a plane and let A € 7t be a given point. The set = {AMeV | M e t}
is a two dimensional subspace of V. 1t is independent on the position of A inside 7t and is called the
director subspace, the director plane or the direction of the plane .

Remark 2.3. e The planes t, 7t are parallel if and only if =7
- =
o If 41, d are two linearly independent vectors and A € P is a fixed point, then there

exists a unique plane through A whose direction is <§1, Zz) This plane is

— 5 o
n={MeP| AME (d1,d2)}.
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We say that 7t is the plane which passes through the point A and is parallel to the vectors
—

—

d1and d».

Remark 2.4. Let A C P be a straight line and 7t C P be given plane.

1. If A € Ais a given point, then ¢o(A) :7A A

2. If B € Ais a given point, then ¢o(7) :73 + 7.

Generally speaking, a subset X of a vector space is called linear variety if either X = @ or
there exists 2 € V and a vector subspace U of V, such that X = a + U.

. —1 daca X =@
dim(X) = { dim(U) daca X =a+U,

Proposition 2.5. The bijection ¢, transforms the straight lines and the planes of the affine space P
into the one and two dimnensional linear varieties of the vector space V respectively.

2.2 The vector ecuations of the straight lines and planes
Proposition 2.6. Let A be a straight line, let 7t be a plane, {Z} be a basis of Z and let [21, ;2] be
an ordered basis of 7.

1. The points M € A are characterized by the vector equation of A

*>

— —
ru=r,+Ad, AeR (2.1)
where A € A is a given point.

2. The points M € 1t are characterized by the vector equation of 7

—

— — —
Fu="r, +tA1 d1 +A2 d2, M, A2 ER, (2.2)

where A € 1T is a given point.
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PROOF.

O
Corollary 2.7. If A, B € ‘P are different points, then the vector equation of the line AB is
F=01=A)7,4A7, AER (2.3)
PROOF.
O

Corollary 2.8. If A, B, C € P are three noncolinear points, then the vector equation of the plane
(ABC) is

— — — —

T oy= (1—/\1—/\2) I’A—{—/\l T’B—l—)\z T A, A €R. (2.4)

PROOF.

O]

Example 2.1. Consider the points C’ and B on the sides AB and AC of the triangle ABC such
— — — —

that AC'= A BC/, AB’= u CB’. The lines BB’ and CC’ meet at M. If P € P is a given point

and r ,=PA, r ;=PB, r .=PC are the position vectors, with respect to P, of the vertices A,

B, C respectively, show that
S TP, AT, -ur
— A B C
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SOLUTION.

2.3 Problems
1. ([4) Problem 17, p. 5]) Consider the triangle ABC, its centroid G, its orthocenter H,

its incenter I and its circumcenter O. If P € P is a given point and r ,=PA, r ,=PB,
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L —
r .=PC are the position vectors with respect to P of the vertices A, B, C respectively,
show that:

—

?G::ﬁé: Tat st e ?3’3 + ?C.

2. i ar,+tbr,tcr,
T i=Pl= .
! a+b+c

—  (tanA) 7, +(tanB) 7, +(tanC) 7,

r=PH=
" tan A 4+ tan B + tan C
= PO (sin2A) 7, +(sin2B) 7, +(sin2C) 7,
o sin2A +sin 2B + sin2C' |
SOLUTION.

2. Consider the angle BOB' and the points A € [OB], A" € [OB’]. Show that

— — 1_m —

—>
OM=m OA + n OA’
— mn 1—mn

— -1 — -1 —
ON=m'—~0A + n' =2 0A".

n—m m—n

T — —
where {M} = AB'NA'B, {N} = AA'N BB/, u=0A, v=0A’, OB=m OA and OB'=
4>

n OA'.
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SOLUTION.

3. Show that the midpoints of the diagonals of a complet quadrilateral are collinear
(Newton’s theorem).

SOLUTION.

4. Let d, d’ be concurrent straight lines and A,B,C € d, A’,B',C" € d'. If the following
relations AB’ |JA’B, AC' JJA'C, BC' }|B'C hold, show that the points {M} := AB'N
A’B,{N} := AC'n A’C, {P} := BC' N B'C are collinear (Pappus’ theorem).
SOLUTION.
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5. Let d, d’' be two straight lines and A, B,C € d, A’,B’,C" € d’ three points on each line
such that AB’||BA’, AC'||CA’. Show that BC'||CB’ (the affine Pappus’ theorem).

SOLUTION.

6. Let us consider two triangles ABC and A’B’C’ such that the lines AA’, BB/, CC’ are
concurrent at a point O and AB JJA’B’, BC }fB'C' and CA JC'A’. Show that the points
{M} =ABNA'B’, {N} = BCNB'C’"and {P} = CANC'A’ are collinear (Desargues).
SOLUTION.
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3 Week 3: Cartezian equations of lines and planes

3.1 Cartesian and affine reference systems

Ifb = [7, 3, 5] is an ordered basis of V and x € V, recall that the column vector of the
coordinates of ¥ with respect to b is denoted by [?]b In other words
X1

]b = X2
X3

—
X

[

— — — — . . - .
whenever x= x; u +x, v +x3 w. To emphasize the coordinates of x with respect to b, we

%
shall use the notation x (x1,x2,x3).

Definition 3.1. A cartesian reference system R = (O, Z, 5), 5) of the space P, consists in a

point O € P called the origin of the reference system and an ordered basis b = [7, v, 5] of
the vector space V.
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— — —
Denote by Ej, E, E3 the points for which Z:OEl, ?:OEZ, ;):OE&

Definition 3.2. The system of points (O, E1, Ep, E3) is called the affine reference system associ-
ated to the cartesian reference system R = (O, Z, 5), 5)

The straight lines OE;, i € {1,2,3}, oriented from O to E; are called the coordinate axes.
H
The coordinates x,y,z of the position Vector7M:OM with respect to the basis [Z, 5), Z_(;]
are called the coordinates of the point M with respect to the cartesian system R written
M(x,y,z). Also, for the column matrix of coordinates of the vector 7 4 We are going to use
] L — — —
the notation [M],. In other words, if 7 ,,= x u +y v +z w, then

[M]R = [()_]>\/I]b =1 Y

Remark 3.1. If A(x,,y,,z,), B(x,,y,,2z,) are two points, then

— —

H
AB = OB —-0OA
— — — — — —
= Xz U +Yy U +Zy W _(xA u+y, v +z, w)
— — N
= (xB _xA) u +(y3 _yA) v +(ZB _ZA) w,

—
i.e. the coordinates of the vector AB are being obtained by performing the differences of the
coordinates of the points A and B.

Remark 3.2. If R = (O, D) is a cartesian reference system, where b = [ﬁ, v, 5] is an or-

dered basis of V, recall that o : P — V, ¢o(M) —OM is bijective and ¥, : R> — V),
Pp(x,y,2) = x u +y ¥ 4z wisalinear isomorphism. The bijection ¢ defines a unique vec-
tor structure over P such that ¢p becomes an isomorphism. This vector structure depends
on the choice of O € P. Therefore a point M € P could be identified either with its position
vector 7M: ¢o0(M), or, with the triplet (¢, Lo o) (M) € R3 of its coordinates with respect

to the reference system R. If f : X — R3is a given application, then (p51 oyppof: X — P
will be denoted by M,. A similar discussion can be done for a cartesian reference system

/ /
R’ = (O,V') of a plane 71, where b’ = [ﬁ 0 ] is an ordered basis of 7.

Example 3.1 (Homework). Consider the tetrahedron ABCD, where A(1,—1,1), B(—1,1,-1),
C(2,1,—1) and D(1,1,2). Find the coordinates of:

1. the centroids G,, G,;, G., G, of the triangles BCD, ACD, ABD and ABCH respectively.

2. the midpoints M, N, P, Q, R and S of its edges [AB], [AC], [AD], [BC], [CD] and [DB]
respectively.

IThe centroids of its faces
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SOLUTION.

3.2 The cartesian equations of the straight lines

Let A be the straight line passing through the point Ag(xo, yo, zo) which is parallel to the
%
vector d (p,q,r). Its vector equation is

- =
"m=T4

%
A d, AER. 3.1)

Denoting by x,y, z the coordinates of the generic point M of the straight line A, its vector
equation (3.1) is equivalent to the following system of relations

X =xg+Ap
y=yo+Ag , AR (3.2)
z=2zy+ Ar

Indeed, the vector equation of A can be written, in terms of the coordinates of the vectors

- = -
Tair Ty and 4, as follows:

— — — — — — — — —
XU +Y v F+zw=x0U +Yo v +20 W +A(p u +9 v +r w)
<:>xﬁ+y5>+z£: (x0+p)t);+(yo+q)\);+(zo+r)\) w, A € R

which is obviously equivalent to (3.2). The relations (3.2)) are called the parametric equations
of the straight line A and they are equivalent to the following relations

X—X0 Y—Yo Z—2
P q
If r = 0, for instance, the canonical equations of the straight line A are
Y—X _Y~Y¥ ,
P q
If A(x,,v,,2,), B(x,,y,, 2,) are different points of the line A, then

(3.3)

Z = Zp.

_)
AB (xB X Yp = YarzZp — ZA)

is a director vector of A, its canonical equations having, in this case, the form

x_xA — y_yA — Z_ZA (34)

Xp — X, Ys = VYa Zp =2,
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Example 3.2. Consider the tetrahedrom ABCD, where A(1,—-1,1), B(—1,1,-1),C(2,1,—-1)
and D(1,1,2), as well as the centroids G,, G,, G., G, of the triangles BCD, ACD, ABD and
ABCH respectively. Show that the medians AG,, BG,, CG- and DG, are concurrent and find
the coordinates of their intersection point.

SOLUTION. One can easily see that the coordinates of the centroids G,, G,, G., G, are
(2/3,1,0),(4/3,1/3,2/3),(1/3,1/3,2/3) and (2/3,1/3, —1/3) respectively. The equations
of the medians AG, and BG,; are

x—1  y+1  z-—1 x—1 y+1 z—1
(AG)2/3—1 1—(-1) 0-1° —1/3 2 1
x+1 y—-1  z+1 x+1 y—1 z+1

BG) 3 1= 1312331 7/3 23" 5/3°

Thus, the director space of the median AG, is <<—%,2, —1>> = ((—1,6,—-3)) and the di-

rector space of the median BG, is ((3,—%,3)) = (7, —2,5)). Consequently, the parametric
equations of the medians AG, and BG, are

x=1-—t x=-1+47s
(AG,) S y=-1+6t ,teRand (BG) { y=1-25s ,seR
z=1-3t z=—1+5s

Thus, the two medians AG, and BG, are concurrent if and only if there exist s, € R such
that
1—t=-1+47s 7s+t=2 7s+1t=2
—14+6t=1-25 <— 2s+6t=2 <— s+3t=1
1—-3t=—-1+D5s 55 +3t=2 5s + 3t = 2.

This system is compatible and has the unique solution s = t = }, which shows that the two
medians AG, and BG, are concurrent and

scnsg = (311)).

One can similarly show that BG, N CG. = CG- N AG, = {G <%, %, %) }

Example 3.3 (Homework). Consider the tetrahedrom ABCD, where A(1,—1,1), B(—1,1,—1),
C(2,1,—1) and D(1,1,2), as well as the midpoints M, N, P, Q, R and S of its edges [AB],
[AC], [AD], [BC], [CD] and [DB] respectively. Show that the lines MR, PQ and NS are
concurrent and find the coordinates of their intersection point.

SOLUTION.

2The centroids of its faces
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3.3 The cartesian equations of the planes

—

Let Ao(x0,Y0,20) € P and ;1 (p1,91,71), d2 (p2,92,12) € V be linearly independent vectors,
that is
rank( Prom-n ) =2
p2 q2 12
The vector equation of the plane 7 passing through Ay which is parallel to the vectors 21

g
(p1,91,711), d2 (p2,q2,12) is

— — —
=T 4 tA d1+A2 d2, M, A2 ER. (3.5)

If we denote by x,y, z the coordinates of the generic point M of the plane 7, then the vector
equation (3.5) is the equivalent to the following system of relations

X = x0+AMp1+ A2
y=vyo+Mg1+Aq2 , M, A2 ER (3.6)
z =z9+ A1+ Ao

Indeed, the vector equation of 77 can be written, in terms of the coordinates of the vectors

- = -
Tagr Tagr d1 and (», as follows:

— — — — — — — — — — — —
XU 4y v tzw=xg U +yp v +z0 W +A(p1 U +q1 0 +r1 W) + Ax(p2 U +q2 v +1p W)

= X Z —|—y ? +z 52 (XQ + /\1P1 + )szz) Z +(y0 + )\10]1 + )\26]2) ; —|—(ZQ —+ )\171 —+ )in’z) 5,
A, A2 €RR,

which is obviously equivalent to (3.6). The relations characterize the points of the plane
7t and are called the parametric equations of the plane 7t. More precisely, the compatibility of
the linear system with the unknowns A1, A, is a necessary and sufficient condition for
the point M(x, y,z) to be contained within the plane 7z. On the other hand the compatibility
of the linear system (3.6) is equivalent to

X — X ]/ — y() Z— 2
p1 71 rno | =0 (3.7)
p2 q2 ]
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which expresses the equality between the rank of the coefficient matrix of the system and
the rank of the extended matrix of the system. The equation is a characterization of
the points of the plane 7t in terms of the Cartesian coordinates of the generic point M and is
called the cartesian equation of the plane 7r. On can put the equation in the form

A(x —x9) +B(y —yo) + C(z —z9) =0o0r (3.8)

Ax+By+Cz+D =0, (3.9)

where the coefficients A, B, C satisfy the relation A? + B + C? > 0. It is also easy to show
that every equation of the form (3.9) represents the equation of a plane. Indeed, if A # 0,
then the equation (3.9) is equivalent to

X+ % y Z
B —-A 0 |=0.
C 0 —-A
We observe that one can put the equation in the form

AX+BY+CZ=0 (3.10)

_>
where X = x —xg, Y =y — Yo, Z = z — z( are the coordinates of the vector AoM.

Example 3.4. Write the equation of the plane determined by the point P(—1,1,2) and the

line (A) 331 = § = ztL,

SOLUTION. Note that P ¢ A, as # # % # —3 = %, i.e. the point P and the

line A determine, indeed, a plane, say 7. One can regard 7t as the plane through the point
— —
Ap(1,0, —1) which is parallel to the vectors AgP (-1 —1,1—-0,2—(—1)) =AoP (-2,1,3)
—
and 4 (3,2, —1). Thus, the equation of 7 is

x—1y z+1
-2 1 3 |=0<=x—-—y+z=0.
3 2 -1

Example 3.5 (Homework). Generalize Example Write the equation of the plane deter-

mined by the line (A) x;xo = y—qyo = =2 and the point M(x,;, v, 2,) & A.
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SOLUTION.

Remark 3.3. If A(x,,y,,2,), B(x;,Y,,25), C(x., Y., 2. ) are noncollinear points, then the plane
(ABC) determined by the three pomts can be V1ewed as the plane passing through the pomt

A which is parallel to the vectors d 1—AB d = AC The coordinates of the vectors d 181 d 5
are

(X5 =%, Y5 —Yar 25 —24) and (xo — X, Yo — Y, 20 — Z,) respectively.
Thus, the equation of the plane (ABC) is

X=X, Y=Yy, 2z2—2,
Xp—X, Yp—Y, Z,—2, | =0, (3.11)
Xe =Xy Ye—VYa 2c— 2,4

or, echivalently

x y z 1
Yoo Ya Za 1)y 3.12
xB yB ZB 1 ( )
Xe Yo zo 1

Thus, four points A(x,,v,,2z,), B(x,,Y5,25), C(x., Yo 2.) and D(x,,y,,2,) are coplanar if
and ony if

=

A yA
B yB
Ye
D yD

S

=
w

—o. (3.13)

R =
O

N N NN
9

[ S W

ol

Example 3.6 (Homework). Write the equation of the plane determined by the points M; (3, —2,1),
M>(5,4,1) and M3(—1,-2,3).

SOLUTION.
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Remark 3.4. If A(a,0,0), B(0,b,0), C(0,0,c) are three points (abc # 0), then for the equation
of the plane (ABC) we have successively:

=0«

oOT O
a O O N

Xy
=0<«=1|a 0 —c | =0
0 b

|
a
[EE T U

x
a
0
0

O O Q=
JEE U G

<= ab(z —¢) + bex +acy = 0 <= bex + acy + abz = abc

<:>f+z+§:1. (3.14)
a b ¢

The equation (3.14) of the plane (ABC) is said to be in intercept form and the x,y, z-
intercepts of the plane (ABC) are 4, b, c respectively.

Example 3.7 (Homework). Write the equation of the plane (7r) 3x —4y + 6z —24 = 0 in
intercept form.

SOLUTION.

3.4 Appendix: The Cartesian equations of lines in the two dimensional
setting

3.4.1 Cartesian and affine reference systems

5
If b = [?, f11is an ordered basis of the director subspace 7T of the plane 77 and Y€, recall
that the column vector of X with respect to b is being denoted by [?]b In other words

ae()

— - 4
whenever x=x1 ¢ +x; f.

%
Definition 3.3. A cartesian reference system of the plane 7, is a system R = (O, e, f), where
%

O is a point from 7t called the origin of the reference system and b = [?, f]is a basis of the
vector space 7.

— = —

Denote by E, F the points for which ?zOE, f=OF.

Definition 3.4. The system of points (O, E, F) is called the affine reference system associated to

‘>
the cartesian reference system R = (O, e, f).
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The straight lines OE, OF, oriented from O to E and from O to F respectively, are called

, . e D AN s
the coordinate axes. The coordinates x,y of the position vector r ,,=OM with respect to the

o =
basis [ e, f] are called the coordinates of the point M with respect to the cartesian system R
%
written M(x,y). Also, for the column matrix of coordinates of the vector r ,, we are going

— — 4
to use the notation [M],. In other words, if ¥ ,,= x e +y f, then

M = fown, = ().

Remark 3.5. If A(x,,y,), B(x,,y,) are two points, then
— — — N — N -
AB = OB — OA=1x, e +y, f;(er+yAf)
%
= (xp—x,)e +(y3_yA) fi

N
i.e. the coordinates of the vector AB are being obtained by performing the differences of the
coordinates of the points A and B.

3.4.2 Parametric and Cartesian equations of Lines

Let A be a line passing through the point Ay(xg,y9) € 7 which is parallel to the vector
—
d (p,q). Its vector equation is

Fy=7, ttd tER (3.15)

M

If (x,y) are the coordinates of a generic point M € A, then its vector equation (3.15) is
equivalent to the following system

X = Xxo+ pt
{y:yo+qt , teR. (3.16)
The relations are called the parametric equations of the line A and they are equivalent to the
following equation

TTA_YTH (3.17)

p q
called the canonical equationof A. If ¢ = 0, then the equation becomes y = yo.
—

If A(xa,y4) are two different points of the plane 7, then AB (x, —x,,y, —Vy,) is a
director vector of the line AB and the canonical equation of the line AB is

YA _ VYA (3.18)
XBp—XA YB— VYA
The equation (3.18) is equivalent to

B B X—x4 Y—ya 1 x oy 1
A S I P Xp—XA Yp—yYa 1| =0 |xq4 ya 1 |=0.
XBp—XA YB—YA 0 0 1 xg yp 1

Thus, three poins P;(x1,y1), P2(x2,y2) and P3(x3,y3) are collinear if and only if

X1 yl 1
X2 Y2 1|=0. (3.19)

X3 ygl
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3.4.3 General Equations of Lines
We can put the equation (3.17) in the form
ax+by+c=0, with a?+a% >0, (3.20)

which means that any line from 7t is characterized by a first degree equation. Conversely,
such of an equation represents a line, since the formula (3.20) is equivalent to
x+37 oy
b
a

and this is the symmetric equation of the line passing through P <_2’ 0> and parallel to

b
[ <_E' 1) . The equation (3.20) is called general equation of the line.

Remark 3.6. The lines

X—Xp X—Xp
p q

are parallel if and only if ap + bg = 0. Indeed, we have:

(d) ax +by+c=0and (A)

d|a == d=A (i (p,q)) = (0 (~£1)) <=3t eRst i (pg) =17 (-L1)
<= dt € Rs.t. :—tgandq:t<:>ap+bq20.

3.4.4 Reduced Equations of Lines

Consider a line given by its general equation Ax + By + C = 0, where at least one of the
coefficients A and B is nonzero. One may suppose that B # 0, so that the equation can be
divided by B. One obtains

y=mx+n (3.21)

which is said to be the reduced equation of the line.

C
Remark: If B = 0, (3.20) becomes Ax 4 C = 0, or x = —a line parallel to Oy. (In the same

way, if A = 0, one obtains the equation of a line parallel to Ox).

Let d be a line of equation y = mx + n in a Cartesian system of coordinates and suppose
that the line is not parallel to Oy. Let P;(x1,y1) and P»(x2,y2) be two different points on d
and ¢ be the angle determined by d and Ox (see Figure[I); ¢ € [0, 7] \ {rr/2}. The points
Pj(x1,y1) and P>(xp, y2) belong to d, hence

Y1 =mx;+n
yzzmx2+n/

and xp # x1, since d is not parallel to Oy. Then,
m="2"Y _tano. (3.22)

The number m = tan ¢ is called the angular coefficient of the line d. It is immediate that the
equation of the line passing through the point Py(x¢, yo) and of the given angular coefficient
mis

¥ — Yo = m(x — xp). (3.23)
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Y

Py(22,y2)

Pi(z1,91)

Figure 1:

3.4.5 Intersection of Two Lines
Letd; : a1x + b1y +c1 = 0and d; : axx + by + ¢ = 0 be two lines in &. The solution of the

system of equation

ax+byy+c; =0
ax +byy+cp; =0

will give the set of the intersection points of d; and d5.

a b
1) If a_l #* b—l, the system has a unique solution (xp, yo) and the lines have a unique inter-
2
section point Py(xo, yo). They are secant.

ap by ¢
2) It a—l = b—l 7~ C—l, the system is not compatible, and the lines have no points in common.
2 b &
They are parallel.
a b o o , : .
3) It Pl et the system has an infinity of solutions, and the lines coincide. They
2 2 2

are identical.

Ifd; : ajx + bjy +c; = 0,i = 1,3 are three lines in &;, then they are concurrent if and only if

a; by
an bz Cor| = 0. (3.24)
az bz c3

3.4.6 Bundles of Lines ([1])

The set of all the lines passing through a given point P is said to be a bundle of lines. The
point Py is called the vertex of the bundle.
If the point Dy is of coordinates Py(xo, yo), then the equation of the bundle of vertex P is

r(x —x0) +s(y —yo) =0, (r,5) € R%\ {(0,0)}. (3.25)
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Remark: Tthe reduced bundle of line through P, is,
y—1yo=m(x —xp), m e R, (3.26)

and covers the bundle of lines through Py, except the line x = x(. Similarly, the family of
lines
x—xo=k(y—yo), keER, (327)

covers the bundle of lines through Py, exceptthe line y = yo.
If the point P is given as the intersection of two lines, then its coordinates are the solution
of the system
{ dl : a1x+b1y+c1 =0
ds : azx+b2y+C2 =0

assumed to be compatible. The equation of the bundle of lines through P, is

r(ax + by +c1) +s(ax+by+c) =0, (r,s) € R*\{(0,0)}. (3.28)
Remark: As before, if r # 0 (or s # 0), one obtains the reduced equation of the bundle,
containing all the lines through Py, except d; (respectively d»).
3.4.7 The Angle of Two Lines ([1])
Let di and d; be two concurrent lines, given by their reduced equations:

di:y=mx+n; and dp:y = mox+ ny.

The angular coefficients of d; and d, are m; = tan ¢; and m, = tan ¢, (see Figure[2). One

T T T
may suppose that ¢ # > #2 #+ 5 #2 > ¢1,such that ¢ = @2 — @1 € [0, 77| \ {E}

Figure 2:

The angle determined by d; and d; is given by

tan ¢ — tan ¢

tang = tan(¢z — ¢1) = 1+ tan ¢q tan ¢y’

hence
nmyp — mp

— 3.29
1+ mymy ( )

tangp =
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1) The lines d; and d; are parallel if and only if tan ¢ = 0, therefore

dq || dr <— my = my. (3.30)

T
2) The lines d; and d; are orthogonal if and only if they determine an angle of 5 hence

dildy, < mmy+1=0. (3.31)

3.5 Problems

1. Write the equation of the plane which passes through My(1, —2,3) and is parallel to
the vectors v1 (1, —1,0) and v (—3,2,4).

HINT.
x—0 y+2 z-3
1 —1 0 =0.
-3 2 4

2. Write the equation of the line which passes through A(1, —2,6) and is parallel to

(a) The x-axis;

-1 y+5 =z-1
2 -3 4
(1,0,2).

(b) The line (d;) >
(c) The vector v

SOLUTION.

3. Write the equation of the plane which contains the line

x—3 y+4 z-2

and is parallel to the line

x+5 y—-2 z-1

(d2) = 2 2
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HINT.
x—3 y+4 z-2
1 —1 0 = 0.
2 1 -3

4. Consider the points A(«,0,0), B(0, 3,0) and C(0,0,y) such that

1 1 1 1 .
— 4+ — + — = — where a is a constatnt.
« p oy a

Show that the plane (A, B, C) passes through a fixed point.
SOLUTION. The equation of the plane (ABC) can be written in intercept form, namely

E+Z+E:1_
By

The given relation shows that the point P(a,a,a) € (ABC) whenever a, 8, verifies
the given relation.

5. Write the equation of the line which passes through the point M(1,0,7), is parallel to
the plane (77) 3x — y + 2z — 15 = 0 and intersects the line

x—1_y-3_z
D=7 =71

6. Write the equation of the plane which passes through My(1, —2,3) and cuts the posi-
tive coordinate axes through equal intercepts.

SOLUTION. The general equation of such a plane is x + v + z = a. In this particular
case a = 1+ (—2) + 3 = 2 and the equation of the required planeis x +y +z = 2.

7. Write the equation of the plane which passes through A(1,2,1) and is parallel to the
straight lines

x + 2y —z + 1 =0 2x — y + z =1
COR S St SNCOR S At

SOLUTION. We need to find some director parameters of the lines (d;) and (d;). In this
respect we may solve the two systems. The general solution of the first system is

and the general solution of the second system is
x=1
y=t+1 ,teR
z=t

and these are the parametric equations of the lines (d;) and (dy). Thus, the direction
of the line (d7) is the 1-dimensional subspace

<<_égﬂ)>:<¢4gﬁw,
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and the direction of the line (d;) is the 1-dimensional subspace ((0,1,1)).

Consequently, some director parameters of the line (d1) are py = —1,91 = 2,11 = 3
and some director parameters of the line (dy) are p = 0,42 = r, = 1. Finaly, the
equation of the required plane is

x—1 y—-2 z—-1
-1 2 3 =0.
0 1 1

The computation of the determinant is left to the reader.

A few questions in the two dimensional setting ([1])

8. The sides [BC]|, [CA], [AB] of the triangle AABC are divided by the points M, N re-
spectively P into the same ratio k. Prove that the triangles AABC and AMNP have the
same center of gravity.

SOLUTION.

9. Sketch the graph of x? — 4xy + 3y? = 0.
SOLUTION.

10. Find the equation of the line passing through the intersection point of the lines
dy:2x =5y —1=0, dy:x+4y—-7=0
and through a point M which divides the segment [AB], A(4, —3), B(—1,2), into the

tiok = —.
ratio 3
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SOLUTION.

1 1
11. Let A be a mobile point on the Ox axis and B a mobile point on Oy, so that OA + OB~

k (constant). Prove that the lines AB passes through a fixed point.
SOLUTION.

12. Find the equation of the line passing through the intersection point of
dy:3x—2y+5=0, dy:4x+3y—1=0

and crossing the positive half axis of Oy at the point A with OA = 3.
SOLUTION.

13. Find the parametric equations of the line through P; and P,, when

(@) P1(3,-2), P»(5,1);
(b) Pi(4,1), Po(4,3).
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SOLUTION.

14. Find the parametric equations of the line through P(—5,2) and parallel to (2, 3).
SOLUTION.

15. Show that the equations
x=3—-ty=1+2t and x=-1+4+3t,y=9—6t

represent the same line.

SOLUTION.

16. Find the vector equation of the line P; P, where

(@) P1(2,-1), P(-5,3);
(b) P1(0,3), P2(4,3).

SOLUTION.
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17. Given the line d : 2x + 3y + 4 = 0, find the equation of a line d; through the point
Mj(2,1), in the following situations:

(a) d; is parallel with d;
(b) d; is orthogonal on d;
(c) the angle determined by d and d; is ¢ = g

SOLUTION.

18. The vertices of the triangle AABC are the intersection points of the lines
dy:4x+3y—5=0, dy:x—-3y+10=0, d3:x—2=0.
(a) Find the coordinates of A, B, C.

(b) Find the equations of the median lines of the triangle.

(c) Find the equations of the heights of the triangle.

SOLUTION.
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4 Week4

4.1 Analytic conditions of parallelism and nonparallelism

4.1.1 The parallelism between a line and a plane

Proposition 4.1. The equation of the director subspace 7, of the plane t: Ax + By+Cz+D =0
is AX+BY+CZ=0.

Proof. We first recall that
% _>
n={AM | M € m}, (4.1)

where A( € 7 is an arbitrary point, and the representation of 7T is independent on the
choice of Ay € 7. According to equation (3.8), the equation of a plane 7t can be written in
the form

A(x —x9)+B(y —yo) + C(z —29) =0,

where Ag(xo, Yo, 20) is a point in 7. In other words,
M(x,y,z) € m <= A(x —x0) +B(y —yo) + C(z —z9) =0,
which shows that
N —
T = {AOM (X — X0, Y —Yo,2 — ZO) | M(x/ylz) < 7-(}
*)
= {AoM (x — x0,y — Yo,z — z0) | A(x — x0) + B(y — yo) + C(z — z0) = 0}
= {0 (X,Y,Z) € V| AX+BY +CZ = 0}.

Thus, the equation AX 4 BY + CZ = 0 is a necessary and sufficient condition for the vector
v (X,Y,Z) to be contained within the direction of the plane

m: A(x —x9) +B(y —yo) + C(z —z0) =0.
In other words, the equation of the director subspace mis AX+BY +CZ =0. O
Corollary 4.2. The straight line

X — X0 :y—yo :Z—ZO
p q r

is parallel to the plane 7t : Ax + By + Cz 4+ D = 0 if and only if

A

Ap+Bg+Cr=20 4.2)

Proof. Indeed,
Al <= ACT< ((p,q,7)) CTt
—d (p,q,7) e Ap+Bqg+Cr=0.

]
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4.1.2 The intersection point of a straight line and a plane
Proposition 4.3. Consider a straight line

d.x—xozy—yozz—zo
P q r

and a plane 7t : Ax 4+ By + Cz + D = 0 which are not parallel to each other, i.e.
Ap+Bg+Cr #0.

The coordinates of the intersection point d N 7t are

([ —y F(xy, Yo, Zy)
* TAp+Bq+Cr
F (x5, Yo, Zo)
Yo T Ay ¥ Bg+ Cr (4.3)
o F(XO’yO’ZO)
. * Ap+Bg+Cr’

where F: R> — R, F(x,y,z) = Ax+ By + Cz+ D.

Proof. The parametric equations of (d) are

X =x,+ pt
y=y,+qt ,teR. (4.4)
z=2z,+rt

The unique value of ¢ € R, which corresponds to the intersection point d N 7, can be found
by solving the equation

A(xy+ pt) + By, + qt) + C(z, +rt) + D = 0.
Its unique solution is

_AXO+By0—|—CZO+D B F(xo,yo,zo)

t = = -
Ap+ Bg+Cr Ap + Bg+Cr

and can be used to obtain the required coordinates by replacing this value in (4.4). O

-

d(p,q,r)

AO(CEOvyOvZO)

/
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Example 4.1 (Homework). Decide whether the line 4 and the plane 7 are parallel or concur-
rent and find the coordinates of the intersection point of of A and 7t whenever A |} 7t

1. d:xTH:yT_lzﬁandﬂ:x—y+ZZ:1.
2. d:%z%:%andn:Zx—erSz—l:O.

SOLUTION.

4.1.3 Parallelism of two planes

Proposition 4.4. Consider the planes
(1) A1x + By +Ciz+ D1 =0, (7m12) Aox + Boy + Coz + Dy = 0.
Then dim(%l N ;2) € {1,2} and the following statemenets are equivalent
1. .

2. dim(ﬁl N %2) =2, ie. ;1:%2.

A1 By G\
3. nmk(A2 B, Cz)_l'

4. The vectors (A1, B1,C1), (Az, By, Co) € R3 are linearly dependent.

Remark 4.1. Note that

Ay B (4 . Al By _A1 G _B1 G
ra“k(Az B, cz)_“:)‘A2 B, _‘Az C, _‘Bz C,

< A1Bp — ApBy = A1Cy — ApCp = B1Cy, — CpB = 0. (4.5)

=0

The relations (4.5) are often written in the form

A _B_G we)
Ay By G '
although at most two of the coefficients Ay, B, or C; might be zero. In fact relations
should be understood in terms of linear dependence of the vectors (A1, B1,C1), (A, By, C2) €
R3, i.e. (Aq,B1,C1) = k(Az, By, Cy), where k € R is the common value of those ratios
which do not involve any zero coefficients. Let us finally mention that the equivalences
prove the equivalence (3) <= (4) of Proposition 4.4
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Example 4.2. The equation of the plane a passing through the point Ag(x, vo, zo), which is
parallel to the plane 7 : Ax+By+Cz+ D =0is

a: A(x —x9) +B(y —yo) + C(z —z9) = 0.

4.1.4 Straight lines as intersections of planes

Corollary 4.5. Consider the planes
(111) A1x + By + C1z+ D1 =0, (712) Aox + Boy + Coz + Dy = 0.
The following statements are equivalent
1. mp .

2. dim(7, N 7)) = 1.

A1 By C Y\
3. mnk(A2 B, CZ)—Z

4. The vectors (A1, By,C1), (A, By, Co) € R3 are linearly independent.

By using the characterization of parallelism between a line and a plane, given by Proposi-
tion 4.2} we shall find the direction of a straight line which is given as the intersection of two
planes. Consider the planes (711) A1x + Biy +Ciz+ D =0, (712) Aax + By + Coz+ Dy =0

such that
A1 Bl C1 .
rank( Ay By Gy ) =2,

alongside their intersection straight line A = 711 N 71, of equations

(A) A1x+B1y+Clz+D1:0
Apxx + By + Coz+ Dy = 0.

- = —
Thus, A=71 N 715 and therefore, by means of some previous Proposition, it follows that the

—
equations of A are

(A) Y A, X 4 ByY + Gz = 0.
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By solving the system (@) one can therefore deduce that ; (p,q71) EX@ JA € R such that

_ Bi ¢ G A A1 B
(p.g,r) =2 <’ B, & " G A " Ay By > ' (48)
The relation is usually written in the form
P ___ 49 T (4.9)
Bl C1 C1 Al Al Bl
B, & G Az Ay By
Let us finaly mention that we usually choose the values
Bi G C A .| A1 By
‘ B, G|’ ‘ C A | ¥ ‘ Ay By (4.10)

for the director parameters (p, g,7) of A.

Example 4.3. Write the equations of the plane through P(4, —3,1) which is parallel to the lines

2x -z + 1=0 x +y + z =0
(Al){ 3y + 2z — 2=0. and(Az){Zx -y + 3z =0.

SOLUTION. One can see the required plane as the one through P(4, —3,1) which is parallel to the

director vectors 31 (p1,91,71) and Zz (p2,92,12) of Ay and A; respectively. One can choose

0 —1 11
n=|3 2]=3  m=| |-t
-1 2 11
ql—’ 20‘—4 and 6]2—‘32’—1
20 L1,
=10 3|~ =1, 1|77

Thus, the equation of the required plane is

Figure 3:

x—4 y+3 z—-1
3 —4 6 =0 <= 12(x—4)—-3(z—1)+24(y+3)+16(z—1)+6(x—4)+9(y+3) =0
4 -1 -3

<= 18(x —4)+33(y+3)+13(z—1) =0

<= 18x+33y +13z—-72+99-13 =0

<= 18x+33y + 13z + 14 = 0.
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4.2 Pencils of planes

Definition 4.1. The collection of all planes containing a given straight line

(A) Aix+Biy+Ciz+D; =0
Axx + Boy + Coz+ Dy =0

is called the pencil or the bundle of planes through A.

Proposition 4.6. The plane 7 belongs to the pencil of planes through the straight line A if and only if the
equation of the plane 7t is

/\(A1x -+ B1y + Ciz+ D1) -+ ]J(Azx + Bzy + Crz + D2) = 0. (4.11)
for some A, i € R such that A*> + u? > 0.

Proof. Every plane in the family obviously contains the line A.

Conversely, assume that 77 is a plane through the line A. Consider a point M € 7\ A and recall
that 77 is completely determined by A and M. On the other hand M and A are obviously contained in
the plane Fy (xp, ym, zm) F2(x, v, 2) — FBa(xm, ym, z2m) Fi(x,y,2) = 0 of the family (4.11), where Fy, F, :
R® — R, Fi(x,y,z) = Aix+ Bjy + Ciz+ D;, for i = 1,2. Thus the plane 7 belongs to the family
and its equation is

Fi(xm,ym zm)Fa(x,y,2) — Ba(xm, ym, zm) Fi(x,y,2) = 0.
O

Remark 4.2. The family of planes A1x + By + C1z + D1 + A(Azx + By + Coz + Dy) = 0, where A
covers the whole real line RR, is the so called reduced pencil of planes through A and it consists in all
planes through A except the plane of equation Ax 4 Boy + Coz + D, = 0.

Example 4.4. Write the equations of the plane parallel to the line d : x = 2y = 3z passing through
the line
A { x+y+z=0
| 2x—y+3z=0.

SOLUTION. Note that none of the planes x + y 4+ z = 0 and x — y + 3z = 0, passing through (A),
is parallel to (d),as1-1+1-1+1-2 #0and2-1+(—1)- 3 +3-1 # 0. Thus, the required plane
is in a reduced pencil of planes, such as the family 77, : x +y+z+A(2x —y+3z) =0, A € R. The
parallelism relation between (d) and 7t : A +1)x+ (1 —A)y+ (BA+1)z =0is

11
=0<= 121 4+6+3-3A4+6A4+2=0<= A= ——

(A1) 14 (1-2)- 2+ (BA+1)- =

QW[

Thus, the required plane is

11 11 11
Ty (215+1> X+ (1+15)y+ (315+1>Z—0<:> —7x 426y — 18z = 0.
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Appendix

4.3 Projections and symmetries
4.3.1 The projection on a plane parallel with a given line

Consider a straight line
d: X—X _Y—VYo _z2—20
p q r
and a plane 77 : Ax + By + Cz + D = 0 which are not parallel to each other, i.e.

Ap+ Bq+ Cr # 0.

For these given data we may define the projection p, 4 : P — 7 of P on 7 parallel to d, whose value
pra(M) at M € P is the intersection point between 7t and the line through M which is parallel to d.
Due to relations (4.3), the coordinates of p, ;(M), in terms of the coordinates of M, are

v p E Y Zu)
w P Ayt Bgy Cr

F(Xy, Yo Zu)
e _rF(xM/yM’ZM)
M Ap+Bg+Cr’

where F(x,y,z) = Ax+ By + Cz+ D.
Consequently, the position vector of p, ;(M) is

_—

F(M) -

—
Opra(M)=OM TAptBgrcr (4.13)
Proposition 4.7. If R = (O, b) is the Cartesian reference system behind the equations of the line
(d) X — X0 _ Y —Yo _ Z—Z0
p q r
and the plane (1) Ax + By + Cz+ D = 0, concurrent with (d), then
1 Bg+Cr  —Bp —Cp D .
Pra(M)ly = ——5—= | —A9 Ap+Cr —Cq | [Mg— o —="[d],
Ap+ Bg+Cr _Ar _Br  Ap+Bg Ap+ Bg+Cr

where z (p,q,r) stands for the director vector of the line (d).
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8 M(a, 3,
d(p,q,r) (@ 6:7)

Ao(o, Yo, 20)

/ / pw,d(M)

4.3.2 The symmetry with respect to a plane parallel with a given line

We call the function s 4 : P — P, whose value s, (M) at M € P is the symmetric point of M
with respect to p, (M) the symmetry of P with respect to 7t parallel to d. The direction of d is equally
called the direction of the symmetry and 7t is called the axis of the symmetry. For the position vector

of s 4(M) we have

H
————~ OM+ Os M
Opn,d(M): ) n,d( )

s, /(M)= 2 Op.. 4(M) — OM=OM —2— LM
Sn,d = Prd = Ap+BgrcCr

, l.e.

Proposition 4.8. If R = (O, b) is the Cartesian reference system behind the equations of the line

(d)x—X():y—y():Z—Zo
p q r

and the plane (1) Ax + By + Cz + D = 0, concurrent with (d), then

—Ap+Bq+Cr —2Bp —2Cp .
(Ap+Bg+Cr)[spa(M)] = —2Aq Ap—Bg+Cr —2Cq [M]r—2D|[d]p,
—2Ar —2Br Ap+Bqg—Cr

where z (p,q,r) stands for the director vector of the line (d).

4.3.3 The projection on a straight line parallel with a given plane

Consider a straight line
g.-X-% _ Y=Y _ 272
p q r

(4.14)

(4.15)

(4.16)
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and a plane 77 : Ax + By 4+ Cz + D = 0 which are not parallel to each other, i.e.
Ap+Bq+Cr #0.

For these given data we may define the projection p;  : P — d of P on d, whose value p; (M) at
M € P is the intersection point between d and the plane through M which is parallel to 77. Due to
relations (£.3), the coordinates of p; (M), in terms of the coordinates of M, are

( X, —p GM(JCU,]/O,ZO)
* TAp+Bg+Cr
GM(xU’yO’ZO)
— a7
Yo Ap+Bg+Cr (417)
z —7 GM(xO’yO’ZO)
"  Ap+Bg+Cr’

where G,,(x,y,z) = A(x —xpm) + B(y —ym) + C(z — zm). Consequently, the position vector of
pd,n(M) is
. ;, where Ao (X0, Yo, 20)- (4.18)

Note that G,,(Ag) = A(xo — xm) + B(yo — ym) + C(z0 — zm) = F(Ao) — F(M), where F(x,y,z) =
Ax + By + Cz + D. Consequently the coordinates of p; (M), in terms of the coordinates of M, are

( F(M)

0

(4.19)

Zytr— o,
(" Ap+Bg+Cr
and the position vector of p; (M) is

————— 7 FOM) A
Ap+Bq+Cr d, where Ao(xo, ¥o, 20)- (4.20)

Pd.x j\[ /
sax(M) Pur(M) M@, yass 20)

d(p,q,7)

Ao(z0, Yo, Zo)

4.3.4 The symmetry with respect to a line parallel with a plane

We call the function s; , : P — P, whose value s; (M) at M € P is the symmetric point of M
with respect to py (M), the symmetry of P with respect to d parallel to rt. The direction of 7 is equally
called the direction of the symmetry and d is called the axis of the symmetry. For the position vector
of s; (M) we have
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— T —
77777 — OM+O0 M
Opa(M)= = st,n( ) e (4.21)
,,,,,, . I
Osg(M) =20p;-(M)—OM
— 204 — OM 4o FM) — F(Ao) —~ 4.22)
- ' Ap+Bg+Cr

4.4 Problems

1. Write the equation of the plane determined by the line

x — 2y + 3z =0
(d){Zx + z — 3 =0

and the point A(—1,2,6).
SOLUTION.

2. Write the equation of the line which passes through the point M(1,0,7), is parallel to the plane
(1) 3x — y + 2z — 15 = 0 and intersects the line

x—1 y—-3 =z
() 4 2 T

SOLUTION 1. The equation of the plane a passing through the point M(1,0,7), which is parallel
to the plane (1) 3x —y+2z—15=0,is (a) 3(x —1) = (y —0) +2(z—7) =0,1e. (a) 3x —y +
2z —-17 =0.
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The parametric equations of the line d are

x=1+4t
y=3+2t ,teR.
z=1t

The coordinates of the intersection point N between the line (d) and the plane a can be obtained
by solving the equation 3((1 + 4t) — (3 + 2t) 4+ 2t — 17 = 0. The required line is MN.

SOLUTION 2. The required line can be equally regarded as the intersection line between the
plane & (passing through the point M(1,0,7), which is parallel to the plane (7)) and the plane
determined by the given line (d) and the point M. While the equation 3x — y + 2z — 17 = 0 of
« was already used above, the equation of the plane determined by the line (d) and the point
M can be determined via the pencil of planes through

x—1 y-3
4 2 x—=2y+5=0
@9 yZs = @(d){y—22—3:0.
2 1

Note that none of the planes x — 2y +5 = 0 or y — 2z — 3 = 0 passes through M, which means
that the plane determined by d and M is in the reduced pencil of planes

(my) x—2y+5=0+A(y—2z—-3) =0.

The plane determined by d and M can be found by imposing on the coordinates of M to verify
the equation of 7T,.

3. Write the equations of the projection of the line

2x —y + z — 1 =0
@{} tronz

Cornel Pintea Page 48 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

on the plane 7 : x + 2y — z = 0 parallel to the direction u (1,1, —2). Write the equations of
the symmetry of the line d with respect to the plane 7r parallel to the direction W (1,1,-2).

SOLUTION.

4. Prove Proposition 4.7
SOLUTION.
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5. Prove Proposition @]
SOLUTION.
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6. Show that two different parallel lines are either projected onto parallel lines or on two points
by a projection p, 4, where

m:Ax+By+Cz+D =0, P . [ —")

p q r
and 7t J{d.
SOLUTION.

7. Show that two different parallel lines are mapped onto parallel lines by a symmetry s, 4, where

m:Ax+By+Cz+ D=0, d:x_pr:y—qyo:Z—rZo

andr Jfd.
SOLUTION.
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8. Assume that R = (O,b) (b = [ﬁ, v, ?u]) is the Cartesian reference system behind the equations
of a plane 77 : Ax + By + Cz+ D = 0 and a line
d- X — Xp _ Y —Yo _ zZ—2p
p q r

If 7r J{d, show that

SN N
@) prag(M)pria(N)= p(MN), for all M, N € V, where p : V — V is the linear transforma-
tion whose matrix representation is

1 Bqg+Cr —Bp —Cp
= ———F—"= —Aq Ap+Cr (g .
Ap+ B+ Cr —Ar —Br  Ap+Bgq

SOLUTION.

- N
() s74(M)sr4(N)=s(MN),forall M, N € V, wheres : )V — V is the linear transformation
whose matrix representation is

1 —Ap+ Bqg+Cr —2Bp —2Cp
[/ — “2Ag Ap—Bg+Cr  —2Cq
Ap+Bg+Cr 247 —2Br  Ap+Bq—Cr

SOLUTION.
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9. Consider a plane 77 : Ax + By +Cz + D = 0 and a line

d:x—xO:y—y():Z—Zo‘

p q
If 7r J{d, show that
(a) Prd©°Prd = Prd-
(b) spa08pa=idp.

SOLUTION.

r

4.5 Projections and symmetries in the two dimensional setting

4.5.1 The intersection point of two concurrent lines

Consider two lines

R A

p q
si A : ax + by 4 ¢ = 0 which are not parallel to each other, i.e.
ap +bg # 0.

The parametric equations of d are:

X =x9+ pt
,tER
{ y=yo+qt

(4.23)
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The value of t € R for which this line (4.23) punctures the line A can be determined by imposing
the condition on the point of coordinates

(%0 + pt, yo + qt)
to verify the equationof the line A, namely
a(xo+ pt) +b(yo +qt) +c =0.

Thus
__axotbyo+c _ _F(xolyo)

- ap + bq ap+bg’

where F(x,y) = ax + by +c.
The coordinates of the intersection point d N A are:

F(x0,40)
ap + bq
_F(xo,%0)
Yo—4q ap +bq

—p
(4.24)

4.5.2 The projection on a line parallel with another given line

Consider two straight non-parallel lines

il A A

p q

and A : ax + by + ¢ = 0 which are not parallel to each other, i.e. ap + bg # 0. For these given data
we may define the projection pp 4 : T — A of 71 on A parallel cu d, whose value p, 4 at M € 71 is the
intersection point between A and the line through M which is parallelt to d. Due to relations (4.24),
the coordinates of pp 4(M), in terms of the coordinates of M are:

F(xm,ym)
Xy — p———rt L
ap +bg
Y — F(xm,ym)
M ap+bg ’

where F(x,y) = ax + by +c.
Consequently, the position vector of p, 4(M) is

OPA,d(M3 —om— LM g

ap+bg '

where 7 = p? —|—g7.

Proposition 4.9. If R is the Cartesian reference system of the plane 7 behind the equations of the concurrent
lines
X — X0 _ Y —Yo

q

A:ax+by+c=0andd:

then

1 bg —bp c
paale = o (207 ) M= S .29
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4.5.3 The symmetry with respect to a line parallel with another line

We call the function sp 4 : T — 71, whose value sp 5 at M € 7 is the symmetric point of M with
respect to pa 4(M), the symmetry of 7t with respect to A parallel to d. The direction of d is equally called
the direction of the symmetry and 7 is called the axis of the symmetry. For the position vector of
saq(M) we have

— ﬁ
OM + Osp (M
OpM(M3 — 2 ie

> , ie.
¢ = = F(M)
@) M) =20 M)—-OM=0M -2 ,
saa(M) paa(M) ap +bg
where F(x,y) = ax + by + c. Thus, the coordinates of s, 4(M), in terms of the coordinates of M, are
F(xm, ym)
_ oyt M IM)
M P ap + bg
Y — F(xm, ym)
M ap+bq

Proposition 4.10. If R is the Cartesian reference system of the plane 7t behind the equations of the concurrent
lines

A:ax+by+c=0andd: 0 =YY
p q
then ) ) ) )
o —ap+bg —2bp _ c
[saa(M)]r = ap +bg ( “2aq  ap—bg > [M]r ap+bq[7]b' (4.26)
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5 Week 5: Products of vectors

5.1 The dot product

Definition 5.1. The real number
N —
5 Z 0if a=0o0r p=0
a - — —
a1l 1| b |lcos(a, b)if a#0and p#0

—

is called the dot product of the vectors 4, b
- — - =
Remark5.1. 1. alpsa-p=0.

- = — — —
2.a-a=||al|-||allcos0O=]| a|*

Proposition 5.1. The dot product has the following properties:

(5.1)

1. a-b=b-d,Vd,beV.

2. 4-A0)=A(d-b), YAER 4, peV.

3. 4(b+¢c)=a-b+a-,Va,bpcev

4.d-a>0,V aeV.

5.4-a=0ea=0.

— - —

Deﬁniti0n52 Abasis of the vector space V is said to be orthonormal, if || i || = || j || =1 k || =
1, ZJ—] ]lk kJ—Z (1 : 1—] j=k - k=1 i -j=j - k= = 0). A Cartesian reference

system R = (O, H , ] k) is said to be orthonormal if the basis [ i, j, k| is orthonormal.

orthonormal basis

- —
1, ]

s13 - . - = — - ; - =
Proposition 5.2. Let [i, j, k| be an orthonormal basisand a, b€ V. If a=ay i +ay j +az k, b=b;

- —
+by j +Dbs k, then
-
a - b= a1by + axby + azbs

Proof. Indeed,

- = — - — — - —
a-p =(ayi +ﬂ2 j +as k) -(by i +ba j +b3 k)

— - 77 - =

=mby i - 1 +aby i -] +abs i -k

- - 2 + o

+axby j - 1 +agby j - ] 4axbs j -k

— - - =

+azby k - +ﬂ3bz k- j +asbs k - k

= + azbz + azbs.

—

(5.2)

O
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- 7 = - = — — - —
Remark 5.2. Let [i, j, k] be an orthonormal basis and a,pe V. If a= a; i +ay j +az k and

— — - —
b=b1 i +b, ] +bs k, then

1.d-da= a%—l—a%%—a%andwecomc:ludethat||E> Il =V a= \/a%ﬁ-a%%—a%.
2.
— - Z
- = a -
cos(d,5) = — U
[Fall-11 61l

(5.3)
a1by + axbr + azbs

VB3B3 /683 + 13

In particular

> = 1
cos(a,i)= ;
2, 24 2
aj+a; +a;z
- 77 an
cos(a,j)= ——
ay +a; + a3
g as
cos(a, k) =

- —
3. alps ayby +arby +azbs =0

5.1.1 Applications of the dot product
¢ The two dimensional setting

e The distance between two points Consider two points A(xa,y4), B(xp,yp) € 7. The norm

H
of the vector AB (xp — X4, Yp — Y4 iS

1 AB || = /(x5 — x4)% + (v — ya)2.

e The equation of the circle
Recall that the circle C(O, r) is the locus of points M in the plane such that dist(O, M) = r <=
H
|| OM || = r. If (a,b) are the coordinates of O and (x, y) are the coordinates of M, then

| OM || =r = J(x = a2 4 (v = b2 = r o= (x =)+ (v = b =2
= x4 y* —2ax —2by +c =0, (5.4)

where ¢ = a2 + b? — r2. Conversely, every equation of the form x> + y* + 2ex +2fy +¢ = 0
is the equation of the circle centered at (—e¢, —f) and having the radius r = \/e?2 + f2 —g,
whenever ¢ + f? > g. One can find the equation of the circle circumscribed to the triangle ABC
by imposing the requirement on the coordinates (x,,v,), (x,,y,) and (x.,y.) of its vertices
A, B,C to verify the equation x? + y2 + 2ex + 2fy + ¢ = 0. A point M(x,y) belongs to this
circumcircle if and only if

X2+ y?+2ex+2fy+g=0

X5+ Y5 +2ex4 +2fya+8 =0
x§ +yj + 2exp +2fyp + ¢ =0
X2 +yA+2exc+2fy.+¢=0

(5.5)

Cornel Pintea Page 57 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

On can regard the system (5.5)) as linear with the unknowns e, g, f, whose compatibility is given,
via the Kronecker-Capelli theorem, by

xz—i—yz X y
+Va xa ya
Xg+ys X Vs
xe+tye xc yc

e
Il
(=)
S

which is the equation of the circumcircle of the triangle ABC.

e The normal vector of aline If R = (O, ) is the orthonormal Cartesian reference sytem behind
—
the equation of a line (d) ax + by + ¢ = 0, then 2 (a,b) is a normal vector to the direction 4 of

N
d. Indeed, every vector of the direction 2 of d has the form PM, where P(x,,y,) and M(x, )
are two points on the line d. Thus, ax, + by, + ¢ = 0 = ax,, + by,, + ¢, which shows that

a(x, —x,) +b(yy — ) =0,
namely

— —
n-PM=0<=nlPM.

e The distance from a point to a line If (d) ax 4+ by + ¢ = O is a line and M(x,,,y,,) € 7 a given
point, then the distance from M to d is

5(M, d) = 1% W+l (5.6)

Va? 4 b?

— —
Indeed, 6(M,d) = |6|, where ¢ is the real scalar with the property PM= §—- and P(x,,y,) is

-
[

e
the orthogonal projection of M(x,,,y,,) ond. Thus PM (x,, — x,,y,, — y,) andul

— N
n _ |PM-n| |a(xM _xP)+b(yM _yp)’
|7 || [l Va2 + b2

— ’a'xM + byM —ax, — byp>| — ’axM + byM + C‘ )
Va2 +b? Va2 +b?

¢ The three dimensional setting

H
S(M,d) = 16| = |[PM -

e The distance between two points Consider two points A(x4,y4,z4), B(xp,yg,zg) € P. The

*)
norm of the vector AB (Xp — Xa,YB — YA,ZB — 24) 1S

1 AB || = /(x5 — x4)? + (v5 — ya)? + (25 — 24

e The equation of the sphere
Recall that the sphere S(O, r) is the locus of points M in space such that dist(O, M) = r <=

H
| OM || = r. If (a,b, c) are the coordinates of O and (x, y, z) are the coordinates of M, then

H
|| OM ||:1’<:>\/(x—a)z—l—(y—b)z—l—(z—c)z:r<:>(x—a)2+(y—b)2+(z—c)2:1’2
= 2+ y*+ 22 —2ax —2by —2cz+d =0,

where d = a% + b? + ¢® — 2. Conversely, every equation of the form

X2+ 2+ 22 + 2ex + 2fy +29z2+h =0
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is the equation of the sphere centered at (—e, —g, — f) and having the radiusr = \/e2 + f2 + g2 — h,
whenever e + f2 + ¢2 > h. One can find the equation of the sphere circumscribed to the tetra-
hedron ABCD by imposing the requirement on the coordinates (x4,y4,z4), (xB,yp,zp) and
(xc,yc,zc) and (xp,yp, zp) of its vertices A, B, C, D to verify the equation x + y + z% — 2ax —
2by — 2cz+d = 0. A point M(x,y, z) belongs to this circumcircle if and only if

X2+t 4+ 22+ 2ex+2fy+29z+h =0

X%+ Y4 + 25 +2ex +2fya+29z4+h =0

X2 + Y% + 25 + 2exp + 2fyp + 29z + h =0 (5.7)
X2 +yA +z2 + 2exc + 2fyc +28zc +h =0

X% +y3 + 23 + 2exp + 2fyp +2gz4 + h =0

On can regard the system as linear with the unknowns ¢, g, f, h, whose compatibility is
given, via the Kronecker-Capelli theorem, by

>4+y?+z2 x oy oz
YA +ZE XA ya za
XF+yi+25 X Yp Zp
X2+yi+z2 xc yc zc
Xh+yh+2h XD Yp Za

— Rl e
Il
()
S

which is the equation of the circumsphere of the tetrahedron ABCD.

e The normal vector of a plane. Consider the plane 7 : Ax + By 4+ Cz+ D = 0 and the point
P(x0,Y0,20) € 7. The equation of 7t becomes

A(x = x0) + B(y — yo) + C(z — z0) = 0. (5.8)

4)
If M(x,y,z) € 7, the coordinates of PM are (x — X9,y — Yo,z — zo) and the equation (5.8) tells

— —
us that 1 - PM= 0, for every M € r, that is n1LPM= 0, for every M € 7, which is equivalent
to n L7, where n (A, B, C). This is the reason to call n (A, B, C) the normal vector of the plane 7.

e The distance from a point to a plane. Consider the plane 7w : Ax 4 By + Cz+ D = 0, a point
—
P(xp,yp,zp) € P and M the orthogonal projection of P on 7r. The real number ¢ given by MP=

6- n g is called the oriented distance from P to the plane 71, where 70: HLH 1 is the versor
n

— — — —
of the normal vector n (A, B,C). Since MP= §- n y, it follows that (P, M) = || MP || = ||,
where 6(P, M) stands for the distance from P to 7r. We shall show that

_AXP+Byp+CZp+D
VAT B2+ C2

— —
Indeed, since MP= J- n o, we get successively:

)

— — —

§ = no-MP= <|\%’H 7)-MP: n_MP
A(xp —xpm) + B(yp —ym) + C(zp — zum)
VA2 4 B2+ C?

Axp + Byp + Czp — (Axp + Bym + Czym)
VA2 + B2 4 C?

Axp+ Byp+Czp+ D

VA? + B2 4 C?
Consequently, the distance from P to the plane 7 is

|Axp 4+ Byp + Czp + D|
VAL B2+ C2

4)
5(P,mt) = || MP || = |6] =
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Example 5.1. Compute the distance from the point A(3,1, —1) to the plane
m:22x +4y — 20z —45=0.

SOLUTION. 22.34+4.1-20-(—1)—45 45 45 3
5(A,n):’ 344120 (1) —45] _ =— ==
/222 + 42 + (—20)2 V900 30 2

5.2 Appendix: Orthogonal projections and reflections

5.2.1 The two dimensional setting

—
Asssume that R = (O, 7, j ) is the orthonormal Cartesian system of a plane 7 behind the equation
of the line A : ax + by +c = 0.

e The orthogonal projection of a point on a line. We define the projection of the ambient plane
pa : T — A on A, whose value pp at M € 7t is the intersection point between A and the line through
M perpendicular to A. Due to relations (4.24), the coordinates of pa(M), in terms of the coordinates
of M are:

F(xm, ym)
M e
_ Flxmym)
Ym 21
where F(x,y) = ax + by + c. Consequently, the position vector of pa(M) is
v EM)
OpA(M =OM — a2 + bznA/

- -
where 7, =ai +bj.
iy
i

7

%
Proposition 5.3. If R = (O, j
equations of the line

) is the orthonormal Cartesian reference system of the plane 7t behind the

A:ax+by+c=0,
then . )
b —ab [ —
[pa(M)]r = 2 < —ab 2 ) [M]R — 21 [Tl A]h, (5.9)

where b stands for the orthonormal basis [7, 7] of 7T.

e The reflection of the plane about a line. We call the functionrp : 7 — 71, whose valuery at M € 7
is the symmetric point of M with respect to pa (M), the reflection of 7t about A. For the position vector
of rp(M) we have

s ﬂ
Opa(M) = OM+S“(M e

? == = FM)
Orp(M) = 20ps(M) — OM = OM — 2(12(+b)2 w,,
where F(x,y) =ax+by+cand W, =a i +b j. Thus, the coordinates of s, 4(M), in terms of the

coordinates of M, are

F(xm, ym)
M= 2p a? + b2

F(xm, ym)
Ym — Zq 72 n B2
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- =
Proposition 5.4. If R = (O, i, j ) is the orthonormal Cartesian reference system of the plane 7t behind the

equations of the line

7

A:ax+by+c=0,
then

[ra(M)]r

1 (—a2+b2 —2ab )[ Ir 2c WA];,, (5.10)

T 2412 —2ab  a* —b? _a2+b2[

where b stands for the orthonormal basis [?, ?] of 7.

Example 5.2. Find the coordinates of the reflected point of P(—5,13) with respect to the line
d:2x -3y —3=0,

knowing that the Cartesian reference system R behind the coordinates of A and the equation of (d)
is orthonormal.

HINT. According to it follows that

Oz ( el AoCar )| v micr| 5] e

5.2.2 The three dimensional setting

e The orthogonal projection of a point on a plane. For a given plane
m:Ax+By+Cz+D =0

and a given point M(x,,,v,,,z,,), we shall determine the coordinates of its orthogonal projection on
the plane 71, as well as the coordinates of its (orthogonal) symmetric with respect to 7r. The equa-
tion of the plane and the coordinates of M are considered with respect to some cartezian coordinate

*>
system R = (O, 7, j, Z) In this respect we consider the orthogonal line on 7w which passes through
M.

T M@y %)

e p.(M)
4 5.0
Its parametric equations are
x =x, + At
y=y,+Bt ,teR (5.12)
z=2z,+Ct

The orthogonal projection p (M) of M on the plane 7 is at its intersection point with the orthogonal
line (5.12) and the value of t € R for which this orthogonal line (5.12) puncture the plane 7 can
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be determined by imposing the condition on the point of coordinates (x,, + At,y,, + Bt,z,, + Ct) to
verify the equation of the plane, namely A(x,, + At) + B(y,, + Bt) + C(z,, + Ct) + D = 0. Thus

_AxM +ByM +CZM +D _ _F(xM’yM’ZM)

t =
A2+ B2+ C2 EME

—
where F(x,y,z) = Ax+By+Cz+ Dsi Zﬂ: A 7 +B j +C z is the normal vector of the plasne 7.
e The orthogonal projection of the space on a plane.
The coordinates of the orthogonal projection p, (M) of M on th eplane 7t are

X — F(foyM'ZM)
M A2 + B2 + C?
v, — BF<XM’yM’ZM>
M A2+B2+C2
z _CF(XM,yM,ZM)
M A2+BZ+C2'

Therefore, the position vector of the orthogonal projection p, (M) is

_—

H
Op, (M)=OM —

F(M) -

—
(s

(5.13)

"

Proposition 5.5. If R = (O, b) is the orthonormal Cartesian reference system behind the equation of the plane
(m) Ax+By+Cz+ D =0, then

N
n

B2+ C* —AB —AC
(A2—|—B2+C2)[pn(M)]R( —AB A24+(C? -—BC )[M]RD[ o (5.14)

—AC —BC A%+ B2

Remark 5.3. The distance from the point M(x,,,y,,,z,,) to the plane 77 : Ax + By + Cz+ D = 0 can
be equally computed by means of (5.13). Indeed,

S(M,t) =| Mp,(M) | =] Op,(M)—OM]
|- Een g ) = EMOL
712 ’ | 7. |

o The reflection of the space about a plane. In order to find the position vector of the orthogonally
symmetric point r, (M) of M w.r.t. 7t, we use the relation

_—

Op, (M)~ 5 (OM -+ 0r, (),

namely

F(M

i
7l
The correspondence which associate to some point M its orthogonally symmetric point w.r.t. 7, is
called the reflection in the plane 7t and is denoted by 7.

— —
Or (M)=20p,(M) — OM=0OM -2 .-

Proposition 5.6. If R = (O, b) is the orthonormal Cartesian reference system behind the equation of the plane
() Ax+ By +Cz+ D =0, then

—A%2+B*+C*  -2AB —2AC .
(A24+-B2+C?)[re(M)] = —2AB A?2-B*+C?>  -2BC [M]g—2D[n_]p. (5.15)
—2AC —2BC  A?+B*-C?
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e The orthogonal projection of the space on a line. For a given line

X — X0 _y—yo _Z—Zo

p q r

and a point N(x,,y,,z, ), we shall find the coordinates of its orthogonal projection on the line A, as
well as the coordinates of the orthogonally symmetric point M with respect to A. The equations of
the line and the coordinates of the point N are considered with respect to an orthonormal coordinate

A

%
system R = (O, i j, z) In this respect we consider the plane p(x —x, ) +q(y —y,) +r(z—z,) =0
orthogonal on the line A which passes through the point N.

d(p,q,7)
Ao(xo, Yo, 20)

SA(N\
Ps(N) |

N(z_\n Y 2y

A

The parametric equations of the line A are

X =xo+ pt
y=yo+qt ,teR (5.16)
z=2zq9+7rt

The orthogonal projection of N on the line A is at its intersection point with the plane

p(x —xy) +q(y —yy) +r(z—2zy) =0,

and the value of t € R for which the line A puncture the orthogonal plane p(x — x,) +4q(y —y,) +

r(z —z,) = 0 can be found by imposing the condition on the point of coordinate (xo + pt, yo + qt, zo +

rt) to verify the equation of the plane, namely p(xo + pt — x,,) +q(yo +qt —y,) +r(zo+rt —z,) = 0.

Thus

pxo—xy) +q(o—yy) +r(z0—2zy) _  G(x,¥%)
P I d, 1P

t=—

7

—
where G(x,y,z) = p(x —x) +q9(y —y,) +1(z — z,) and Zn: p i +q ] +r ¥ is the director vectoir
of the line A. Ths coordinates of the orthogonal projection p, (N) of N on the line A are therefore

( _ G(xoryO/Zo)
S
y, — qG(XO,yO,ZO)

CpPP g2
z — rG(xo,yO,zo) )
C PPt gt

Thus, the position vector of the orthogonal projection p, (N) is

———  — G(Ay)
Op, (N)=04, _Ilé 0H)2 dy (5.17)
A

where Ao(x,,Y,,2,) € A.
e The reflection of the space about a line. In order to find the position vector of the orthogonally
symmetric point 7, (N) of N with respect to the line A we use the relation

Op, (N)= 3 (0N + 0, (N}
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ie.
—_— —_— — — —
Os,(N)=20p,(N) — ON=20Ap -2 G_(>A0) HA — ON.
| d, 7

The correspondence which associate to some point M its orthogonally symmetric point w.r.t. §,
is called the reflection in the line § and is denoted by r,.

5.3 Problems
1. (2p) Consider the triangle ABC and the midpoint A’ of the side [BC|. Show that

— 2 —2 —  —

4 AA" — BC =4 AB- AC.

2. (2p) Consider the rectangle ABCD and the arbitrary point M witin the space. Show that

H
@) MA - MC=MB - MD.

2 —2 2 — 2

(b) MA + MC =MB + MD .

3. (3p) Find the angle between:

(a) the straight lines

x + 2y + z — 1 =0 x —y —z — 1 =0
(dl){x—2y+z+1:0 (dz){x—y+22+120.

(b) the planes
m:x+3y+2z4+1=0and m:3x +2y —z = 6.
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(c) the plane xOy and the straight line M; M, where M;(1,2,3) and M»(—2,1,4).

— — —
4. (3p) Consider the noncoplanar vectors OA (1,—1,—-2), OB (1,0,—1), OC (2,2, —1) related to
%
an orthonormal basis 7, J, ? Let H be the foot of the perpendicular through O on the plane
H

ABC. Determine the components of the vectors OH.

5. (2p) Find the points on the z-axis which are equidistant with respect to the planes

m : 12x4+9y — 20z —19 = 0and 7 : 16x + 12y + 15z -9 = 0.
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6. (2p) Consider two planes
(7'[1) Aix + Bly +Ciz+D1 =0
(7‘(2) Apx 4+ Boy 4+ Coz+ Dy =0

which are not parallel and not perpendicular as well. The two planes 7y, 712 devide the space
into four regions R1, Ry, R3 and Ry, two of which, say R; and R3, correspond to the acute
dihedral angle of the two planes. Show that M(x,y,z) € R1 U Rg3, if and only if

Fi(x,y,2) F(x,y,z)(A1A2+ B1B, + C1(2) <0,

where Fy(x,y,z) = A1x + Biy + C1z + Dy and F(x,y,z) = Axx + Boy + Coz + Ds.
Hint. The non-parallellism relation between the two planes is equivalent with the condition

A1 By G\ _
1*::1nl<<A2 B, C2>—2.

M(@y, Y3 2:1)

—_—

The point M belongs to the union R; U R if and only if the angle of the vectors Mp, (M) and
Mp,, (M) is at leat 90°, as the quadrilateral OAMB is inscriptible. More formally

—

M(x,y,z) € R1URs < m(Mp, (M), Mp, (M)) > 90°

<:>Mp7r1 (M) ' Mpnz (M)< O/
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where p, (M), p,, (M) are the orthogonal projections of M on the planes 71y and 71, respectively.

7. (3p) Consider the planes (711) 2x+y —3z —5 =0, (712) x + 3y + 2z + 1 = 0. Find the equations
of the bisector planes of the dihedral angles formed by the planes 7r; and 71, and select the one
contained into the acute regions of the dihedral angles formed by the two planes.

8. (3p) Let a, b be two real numbers such that a> # b?. Consider the planes:
(a1)ax +by — (a+b)z =0
(ap)ax —by — (a—b)z=0
and the quadric (C) : a?x? — b?y? + (a® — b?)z? — 2a%xz + 2b%yz — a®b? = 0. If a®> < b?, show
that the quadric C is contained in the acute regions of the dihedral angles formed by the two

planes. If, on the contrary, a> > b?, show that the quadric C is contained in the obtuse regions
of the dihedral angles formed by the two planes.
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9. If two pairs of opposite edges of the tetrahedron ABCD are perpendicular (AB 1. CD, AD L
BC), show that

(a) The third pair of opposite edges are perpendicular too (AC L BD).
(b) AB?>+CD? = AC? + BD? = BC*>+ AD?.

(c) The heights of the tetrahedron are concurrent.
(Such a tetrahedron is said to be orthocentric)

—_— = — —
Solution. Denote by AB=p, AC=c and AD=4.

- =

@ ABLCD = p (d—¢)=0 = bd=bc=k
- 5 = = =
AD 1BC =>4 (¢ —bp)=0 = cd=bd=Fk,
6_i>e£>l —— — —
cb:cd:>c(b—d)—O:>ACJ_BD

- —
(b) AB 1 CD? =) +(d—c)=b +d +c -2k
— — —2 2 —2
AC2+BD2—c +(d—=b)?=b +c¢ +d -2k
o = =2 42 —2

(c) We shall show that there exists a point H such that AH L (DBC), BH L (ACD),CH L
— — — N —  —
(ABD) DH 1 (ABC) Let h =AH=m a +n b +p c. Writing the conditions AH_ L BC
—_— s — —
CD BHJ_AC AD CHLAB AD; DH1 AB, AC we obtain a consistent system with one
s1ng1e solution:
Vm+kn+kp =k
km+c*n+kp =k (5.18)
km +kn + d*p = k.

Indeed the the matrix of the system is

¥ k k
A=k &2 &k
k k d?

and for its determinant we have successively

N

b k k
det(A) = |k % k|=
k k

QLU o S
s
QUL
a O a
QU oo
QU R0

_QU
N

b% + b% + b% bic1 + bycy + bscs  bydq + bady + bads
= | c1b1 + c2by + c3b3 2 +c5+c3 c1dy + codo + c3d3
d1by + doby + dsbs  dyic1 + docy + dscs d% + d% + d%

by by b3| |b1 o di| bt b b3
=lc1 ¢ c|-|bi o dof=(b,c,d) |1 c2 c3|=1(b,
dl dz d3 b1 C3 d3 dl dz d3

— — — —
The linear independence of the vectors p, E) d ensure that (p, ?, d) # 0 and shows that the
linear system (5.18) is consistent and has one single solution.

10. Two triangles ABC si A’B'C’ are said to be orthologic if they are in the same plane and the
perpendicular lines from the vertices A/, B/, C’ on the sides BC, CA, AB are concurrent. Show
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that, in this case, the perpendicular lines from the vertices A, B, C on the sides B'C’, C'A’, A’B’
are concurrent too.

Solution Due to the given hypothesis, we have

— — — — - —
MA’ - BC=MB' - CA=MC' - AB=0 (5.19)

We now consider the perpendicular lines from the vertices A and B on the edges B'C’ and C' A’
and denote by N their intersection point.

Thus
— — — —
NA - B'C'=NB-C'A'=0.
By using the relations (5.19) we obtain
— — — — — —
MA’ BC+MB’ CA—I—MC’ AB 0
MA’ (NC NB)+ MB’ (NA NC)+ MC’ (NB NA) 0
—
(MB’ MC) NA +(MC’ MA') NB +(MA’ MB’)- NC=0
— —
C'B'- NA + A’C’ . NB + B'A’- NC: 0
— —
B'A’ - NC=0< NC L A'B.

Tt T e

11. (2p) Find the orthogonal projection

(a) of the point A(1,2,1) onthe plane r: x+y+3z+5=0.

(b) of the point B(5,0, —2) on the straight line (d) o ; 2_Y ; 1_z ; 3.
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A few questions in the two dimensional setting

12. (3p) Find the coordinates of the point P on the line d : 2x —y —5 = 0 for which the sum
AP + PB is minimum, when A(—7,1) and B(-5,5).

13. (2p) Find the coordinates of the circumcenter (the center of the circumscribed circle) of the
triangle determined by the lines4x —y+2=0,x —4y —8 =0and x +4y — 8 = 0.

14. (3p) Given the bundle of lines of equations (1 —f)x+ (2—t)y+t—3=0,f € Randx+y—1 =
0, find:

(a) the coordinates of the vertex of the bundle;
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(b) the equation of the line in the bundle which cuts Ox and Oy in M respectively N, such
that OM? - ON? = 4(OM? + ON?).

15. (2p) Let B be the bundle of lines of vertex My(5,0). An arbitrary line from B intersects the lines
di:y—2=0andd,:y—3 = 0in M respectively M,. Prove that the line passing through M;
and parallel to OM, passes through a fixed point.

16. (3p) The vertices of the quadrilateral ABCD are A(4,3), B(5, —4), C(—1,—3) and D((—3, —1).

(a) Find the coordinates of the intersection points {E} = AB N CD and
{F} = BCNAD;

(b) Prove that the midpoints of the segments [AC], [BD] and [EF] are collinear.

Cornel Pintea Page 71 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

17. (3p) Let M be a point whose coordinates satisfy

4x+2y+8 5
3x—y+1 2

(a) Prove that M belongs to a fixed line (d);
(b) Find the minimum of x* + y?>, when M € d \ {My(—1,-2)}.

18. (3p) Find the locus of the points whose distances to two orthogonal lines have a constant ratio.
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6 Week 6:

6.1 The vector product

N
Definition 6.1. The vector product or the cross product of the vectors 4, b€ Vis a vector, denoted by

a4 x Z, which is defined to be zero if Z, ; are linearly dependent (collinear), and if 3, ; are linearly
independent (noncollinear), then it is defined by the following data:

- -
1. 4 x b is a vector orthogonal on the two-dimensional subspace <3, b)ofV;

- = — -
2. if a=0A, b=0B, then the sense of a x }p is the one in which a right-handed screw, placed
%
along the line passing through O orthogonal to the vectors 4 and b, advances when it is being
. . — - - - =
rotated simultaneously with the vector a from a towards p within the vector subspace (4, b)
and the support half line of a sweeps the interior of the angle AOB (Screw rule).

3. the norm (magnitude or length) of a4 % ; is defined by

%
Remark 6.1. 1. The norm (magnitude or length) of the vector 4 x bis actually the area of the paral-
—
lelogram constructed on the vectors a, b

— = — - —
2. The vectors a, b€ V are linearly dependent (collinear) if and only if a x b=0.

Proposition 6.1. The vector product has the following properties:

1. axp=—pxa,Va, beV,;
2. Ad)x b=a x(Ab) =A(d x p),VAER, @, be V;
3. ;X(Z—i—?):Zx;—f—;x?,vz,;,?EV
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6.2 The vector product in terms of coordinates

— - — —
] is an orthonormal basis, observe that i x j& {— k, k}. We say that the orthonormal
- = . L - = — - —
, j, k|isdirectif i x j=k.If, on the contrary, i X j= — k, we say that the orthonormal
- =
, ], k] is inverse.

If 7,

basis [

~¢~¢\

basis [ i

i

direct orthonormal basis

Pr0p051t10n 6.2. If [
+bs k, then

sl

— — - —
x b= (a2b3 —asbz) i +(asby —abs) j +(arbz — azb1) k, (6.1)

or, equivalently,

— a as| — ap az| — a; az| —
a k (6.2)

%
X h=

by b3 by b3 by by

Proof. Indeed,

—

— — - —
axp =(ari+ayj +ask xw11+b]—w3w
- = -
=mb 1 X 1 4+a1by § X ] +a1b3 z X k
*>
+asxby ] X z +axby j x ] +asbs 1 X k
+asb; k X z +a3b2 k X ] +asbs; k X k
*>
=a1by Pt —a1b3 ] —azby Pt +asbs z +azby ] —azby i

%
= (apbz — azby) i +(asbl —a1b3) ] +(a1by — axb1) k

-4

1

O
One can rewrite formula in the form
> 77
N N 1 ] k
aXb=|a a a3 (6.3)
by by b3

the right hand side determinant being understood in the sense of its cofactor expansion along the
first line.
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- =
Remark 6.2. If R = (O, 7, j, k) is the direct Cartesian orthonormal reference system behind the
equations of the line

(A) Aix+Biy+Ciz+D; =0
Axx + By + Coz+ Dy =0,

then we can recover the director parameters (4.10) of A, in this particular case of orthonormal Carte-
sian reference systems, by observing that 1 X 13 is a director vector of A, where

- — - —
n=A11i+Bj+C k

— — - —
n2:A2i+Bz]+C2k.

Recall that
PR
N i ] Bi G |7 ,|C A |7, | A B |7
nyXn=1A, B 4 :‘ B, G i+ C, Ay ]+ A, By ’

Ay By (5

Note however that the director parameters were obtained before for arbitrary Cartesian reference

systems (See (4.10)).

6.3 Applications of the vector product

— — — — —
e The area of the triangle ABC. S,,. = 3|| AB ||-|| AC ||sinBAC = }|| AB x AC ||. On the
other hand . R .
— — 1 ] k
AB X AC= Xp = Xq Yp =Xy Zp—2, |/
Xe =Xy Ye—=%X4 207724

— —
as the coordinates of AB and AC are (x, — x,,y, —X,,2z, —2,) and (x. —x,,y. — X

respectively. Thus,

arZc _ZA)

2
+

Ye=Ya 2c724 ZeTEL XXy Xe=Xa Yo7 Y4

Yp~Y4 2724 Zp—Z, Xp=X, 12 Xp=X, Yp—Y, |2

46% =

ABC
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e The distance from one point to a straight line.

(@) The distance (A, BC) from the point A(x,,y,,z,) to the straight line BC, where B(x,,Y,,2;)
and C(x.,y.,z.). Since

H
|| BC || - 6(A, BC)
SABC = >
it follos that
) 452
0°(A,BC) = —=F—.
|| BC [|?

Thus, we obtain

2
+

Yp=Ya % %4 2

+

X,—X

ZpTZ4 X4 B %4 Yg=Ya |2

yC*yA ZC*ZA z X

6*(A,BC) =

c %A ¥c¥a c *a ¥YcYa

(xc o xB)Z + (yc _ys)z + (Zc _ZB)Z

(b) The distance from 6(A,d) from one point A(A,,y,,z,) to the straight line

d_x—xozy—yozz—zo
p q ¥

4 x AgA
5(A,d)_”dx 0 H

— , (6.4)
]|
where Ao(xo,Yo,20) € 9.
Since
— = —
Xp—=X0 Yoa—Yo Z, —Z20
Tr 7 r e P9 =
i+ j +
yAfy()ZAfzg ZAfz[)foxO foxOyAfyO
it follows that
q r 2 r 14 2 p q 2
- +
y—yZ—Z Z,—Zog X, —Xi X—X}/—y
(5(A,d): AT J02 740 AT 0T AT TATY0
2+ 2+ 12
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6.4 The double vector (cross) product

—- = — - —
The double vector (cross) product of the vectors a, b, ¢ is the vector a x(p X c)
Proposition 6.3.
— — — Z <l —
Ax(bxc)=@-)b—(a-b)c=|.._..| Yabpcevw (6.5)
a-p a-c

Proof. (Sketch) If the vectors Z and ¢ are linearly dependent, then both sides are obviously zero.

. R N 5
Otherwise one can choose an orthonormal basis [ i, j, k], related to the vectors a, p and ¢, such
that

e Bl = Fl = 7 Py
b=Dbi,c=c1 i+ ]/a:al i +ax ] +az k.
— —
For example one can choose i tobe b / H | and ] a unit vector in the subspace (b c) which is
- =
perpendicular on b Finally, one can choose k=i X ] By computing the two sides of the equality
- 7 =
in terms of coordinates and the vectors i, j, k, one gets the same result. O
— — — by o4 —
Corollary64. 1. (A x b)x c=(a-c)b—(b-¢)a=|....,Va, b ceV;
c-bhc

— - —

2. a x(z X c)+ b x(c x 7)4— ¢ x(; X Z) :6, VZ,Z,?G V (Jacobi’s identity).

Proof. While the first identity follows immediately via for the Jacobi’s identity we get succes-
sively:

— —

a x(p x

—
- C

—(a

6.5 Problems
— - — —
1. @p)Show that||a x p [|[<|a | || b,V

Solution.
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— o —

H
2. (3p) Let 4, b, C be pairwise noncollinear vectors. Show that the necesssary and sufficient
CA=b, AB=C is

—_—
condition for the existence of a triangle ABC with the properties BC —a,
— - —
ax b=b X
From the equalities of the norms deduce the low of sines.

Solution.

3. (3p) Show that the sum of some outer-pointing vectors perpendicular on the faces of a tetrahe-
dron which are proportional to the areas of the faces is the zero vector.

Solution.

D

The proportionality of m, 7, p, ¢
with the areas of the corresponding faces of
the tetrahedron show that
i = kBD x BC, ii = kAC' x AD
7=kAD x AB, §=kAB x AC
Thus, M+ 7 +p+¢q
=kBD x BC + kAC x AD+
+kAD x AB + kAB x AC
D _ k(AD — AB) x (AC' — AB) + kAC x AD
+EAD x AB + kAB x AC =
= kAD x AC — kAD x AB — kAB x AC + kAB x AB =
+kAC x AD + kAD x AB + kAB x AC = 0.

4. (2p) Find the distance from the point P(1,2, —1) to the straight line (d) x =y = z.
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Solution.

5. (3p) Find the area of the triangle ABC and the lengths of its hights, where A(—1,1,2), B(2,—-1,1)

and C(2, -3, -2).

6. (3p) Let dy, dy, d3, d4 be pairwise skew straight lines. Assuming that dip L d3s and di3 L doy,
show that di4 L dp3, where dj; is the common perpendicular of the lines d; and dy.

— — —
Solution. A director vector of the common perpendicular d;; is d; x d;, where d, stands for a
director vector of d,. Therefore we have successively:

- - = - - - - -
dip Ldsy <di1 X dolds X daes (d1 X d2)-(ds X da) =0

-

= =

Similalry

s T
di1-ds di-da
- = =

d2-ds d2-da

— — - =

=0& (21 . 23)(112 . 24) = (d1 - 24)(012 - d3).

- . - - - - -
diz Ldy <di X dslda X dae (d1 X ds)-(d2 X da) =0

- = 2 >
N il'iZ il'gzl
ds-dzx dsz- da

— - = =

=0& (31 -22)(073 . 24) =(d1-ds)(ds- 32)
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Therefore we have
- - = = — —

(di-ds)(da- da) = (d1- da)(d2- ds3) = (d1- d2)(d3 - da),

which shows that
di-dy di-d
- = = s N . .
(di-ds)(da-da) —(d1-d2)(ds-da) =0e | G152 G103 01— 0o dy 1| dy.
da-d2 da-ds
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7 Week 7: The triple scalar product

— — —
The triple scalar product (;, b, ) of the vectors 4, b, ¢ is the real number (Z X b)- c.
- T T .
Proposition 7.1. If [ i, j, k] is a direct orthonormal basis and
— — - —
a=ay i +ax ] +as k
— — - —
b=>b1 i +by ] +b3 k
— — - —
c=c1i +c2 ] 3k
then
a; dp das
- 7 =
(al brc): bl b2 b3 (71)
c1 C C3
Proof. Indeed, we have successively:
- = — -y =
(a,b,c)=(a xp) c
ay az| — ap ag| — ap ay| — — - —
= | — k) (e1i+c2j +cs k)
bz b3 bl b3 bl b2
ay dp das
= Bl Plo+| D Pla=|bh b b
by b3 by b3 b1 by
c1 C2 C3

O
Remark 7.1. Taking into account the formula (7.2)) for the distance (N, A) from the point N(x,, y,,z,)

to the straight line A : T _YTh _z —rZo as well as Proposition |6.3lwe deduce that

q
A
—_—
5(N, &) = || Np,(N) | 72)

L NA -

: 0
= || NO + Op,(N) || = || N4 et H

A
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— — — — — —

H(dA'dA) A0_<dA'NA0> dA H
=
I d, |I?

— — — — —
| dy Xx(NAg x d,)|| _ [[NAg x d

— —
| d, |7 | d, |l

Thus, we recovered the distance formula from one point to one straight line (see formula by
using different arguments.

N

Corollary 7.2. 1. The free vectors a, Z, C are linearly dependent (collinear) iff (;, Z, ?) =0
2. The free vectors a, ;, C are linearly independent (noncollinear) if and only if (2, ;, ?) #0
3. The free vectors a, Z, ¢ form a basis of the space V if and only if (;, Z, E}) # 0.

4. The correspondence F : V xV xV — R, F (;, z,?) = (Z, Z,?) is trilinear and skew-symmetric,
ie.
(wa+a'd ' b, ¢)=ala,p,¢)+a'(da’ b, <)
/
(4,0 +B b ', ¢)=p(a,b,¢)+p(d,b,0) (7.3)
- = — ;= - 7 = T,
(a,b,yc+y c')y=v(a,b,c)+v(a,b,c’)
VCK,,B/'YIIX/,[B/,’)// E R, V ;,Z,E},; /,; /,? / E V§Z
= = = — — — - = = .
(ay, a2, a3) =sgn(c)(a,a), Qo) Ao3)), ¥V a1,42,43€ V§iVo € S (7.4)
Remark 7.2. One can rewrite the relations as follows:
- = = R s
(ﬂ1,a2,a3) (ﬂz,ﬂ3,¢11)= ﬂslﬂl,ﬂz)
- = = - = = T
—(ﬂz, ai, ﬂ3) = —(ﬂ1, as, ﬂz) = —(ﬂ3, as, 611),
Y 41,42, a3V
Corollary 7.3. 1. (; X _I;) ‘=a (Z X ?)V a, Z,?G V.
- = = —
2. Forevery a, b, c,d€ V the Laplace formula holds:
(axb)-(cxd)=|-> 5 = =
b-c b-d

(;XZ) (?xg):(ﬁ,z,?xE}):(?xz,Z,Z)
— — — -1 =
:“?x@xﬂ wbﬂg @?_G‘aﬂ-b
- Ty ,—= T - =, 7 ;?;z
— (- D+ @ Dd-p)=| L L
b-c b-d

O
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Z, ;, ?] of the space V is said to be directe if (;, Z,?) > 0. If, on the

- =
a,b,c

Definition 7.1. The basis |

_>
contrary, (Z, b, ?) < 0, we say that the basis | | is inverse

Definition 7.2. The oriented volume of the parallelepiped constructed on the noncoplanar vectors
a,b,cise-V,whereV is the volume of this parallelepiped and ¢ = +1 or —1 insomuch as the basis
- =
[a,b,c
o . - 2 ,
Proposition 7.4. The triple scalar product ( ) of the noncoplanar vectors a, b, c is equal with the
oriented volume of the parallelepiped constructed on these vectors.

| is directe or inverse respectively.

- 7 =
a,b,c

(@,b,¢) = [|d@x b - | ] - cos(a@ x b,) (@, 0,&) =@ x V|| - |- cos(@ x ¥, &)
=oapcp- AM =V >0 —ll@x B - 1l - (cos(r — Am’,)
= lax Bl lall - (~ cos(MTATAY)
axv = —oapop - AM = —V <0

7.1 Applications of the triple scalar product
71.1 The distance between two straight lines

If d1, dy are two straight lines, then the distance between them, denoted by 4(d1, d), is being defined
as

—
min{H MM, H ‘ My €edi, My € dz}.
1. Ifdy Ndo # @, then 6(d1,dy) = 0.

H
2. If dq||dz, then 6(dq,d2) = || MN || where {M} =dnNd;, {N} =dnNd,andd is a straight line
—
perpendicular to the lines d; and d. Obviously || MN || is independent on the choice of the
line d.

3. We now assume that the straight lines d;, d> are noncoplanar (skew lines). In this case there
exits a unique straight line d such thatd L dqi,d, and dNdy = {M;}, dNdy = {My}. The
straight line d is called the common perpendicular of the lines d, d, and obviously 6(d;,dz) =

H
|| MM |[].

Assume that the straight lines dj, d, are given by their points Aj(x1,y1,21), A2(X2,Y2,22) and their
- -
vectors si au vectorii directori d1 (p1,q1,71) d2 (P2, 92, 12), that is, thei equations are

d SX—X1 _ Yy—wy1__ z—21
1 = =
p1 q1 "
d .x—xz _]/_]/2 _Z—22
2 = = .
p2 qz2 r2
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The common perpendicular of the lines d1, d; is the intersection line between the plane containing
— -
the line d; which is parallel to the vector 41 X d2, and the plane containing the line d> which is

— —
parallel to 41 x d». Since

> 7 2
z ; 1 ] k q1r1— " p1|7 p1q1)—
1 X d2= r| = i+
P11 1 q2 12 12 P2 P2 92
P2 q2 12

it follows that the equations of the common perpendicular are

dy % dy

/ [fl

Figure 4: Perpendiculara comuna a dreptelor d si dp

l (i 2 (12
ds
dy

X—X1 Y—Y1 z—21

P1 q " -0

q1m 1 p1 P11

212 2 p2 P2 92

(7.5)

X—X2 Y—Y2 Z—2

p2 qz ) -0

q1n 1 p1 P11 :

42 12 2 p2 P2 92

The distance between the straight lines d;, d» can be also regarded as the height of the parallelogram

- 5 = —
constructed on the vectors 41, d2, d1 X d». Thus

— = =

|(A1A2, d1, d2)|

= =
|| d1 % d2 ||

0(dy,dp) =

Therefore we obtain
X2 —X1 Y2—VY1 22— 27

| m m o]
p2 q2 ]
O(dy,dp) =
q17r112 r1p12  p1q12
G212 r2 P2 P2 92

(7.6)

(7.7)
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Ai(z1,y1,21)

dy

7.1.2 The coplanarity condition of two straight lines

Using the notations of the previous section, observe that the straight lines dy, d, are coplanar if and
— —
only if the vectors A1 A», 31, 22 are linearly dependent (coplanar), or equivalently (A;A», 31, 22) =

0. Consequently the stright lines dy, d> are coplanar if and only if
Xp—X1 Y2—Y1 22— 21
P1 q r =0 (7.8)
p2 q2 r2

7.2 Problems
1. (2p) Show that

- 7 =

— - —
@ [(a, 0, )l <llal-[lol-lecl

Solution.

® @p) (7 +b,b+ ¢+
Solution.

2. (3p) Prove the following identity:

- -

(ax?)x(c X;{)I( , ,3)?—(3,
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—
u

By using the identity (u x 5}) X W

obtain

Solution. By using the identity U x (v x
obtain

—
w=4d we
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Let us first observe that

- = = = = - = —
ENVEEVIEN SN (uxv,0oxwwxu) (uv,w)? 1
_ 7 7 _ 7 7 _
(u,v,w w,u,v )= - o S R
(u,v,w) (u,v,w) (u,v,w)
On the other hand we have:
—/ —/ — — — — - = = = - = = =
v X w :(Z 2 z_f))(?/ " 5,):(3 2 a)(wx u)x (uxv) (w,u,v)u—(w,u,u)ov
=7 7 r Yy 7Yy = = o [ ——
u,v,w) (u,v,w) (u,v,w)
One can similarly show that
—/ —/ —/ —/
w X u — u X v —
— - =0 and ———; =w.
u,v,w) u,v,w)

5. (2p) Find the value of the parameter a for which the pencil of planes through the straight

line AB has a common plane with the pencil of planes through the straight line CD, where
A(1,2a,a),B(3,2,1), C(—a,0,&) and D(—1,3,—3).

Solution.

6. (2p) Find the value of the parameter A for which the straight lines

x—1 y+2 z x+1 y—-3 z
) == =y @ =" =3
are coplanar. Find the coordinates of their intersection point in that case.
Solution.
Cornel Pintea
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7. (2p) Find the distance between the straight lines

x—1_y+1_ z x+1 _y_ z-1

as well as the equations of the common perpendicular.

Solution.

8. (2p) Find the distance between the straight lines M; M, and d, where M;(—1,0,1), M»(—2,1,0)

and
x +y + z =1
() { 2x — y — 5z = 0.

as well as the equations of the common perpendicular.

Solution.
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8 Week 8: Curves and surfaces

8.1 Regular curves

Definition 8.1. A subset C of R? or R® is said to be a reqular curve if for every p € C there exists a
neighbourhood V of p in R? or R? respectively and a parametrized differentiable curver : I — UNC,
where I C R is an open set, such that

1. ris smooth;

2. r: 1 = UNCisahomeomorphism;
_>
3. risregular,ie. 7/(t) £ 0, Vte L

The parametrized differentiable curve r : I — V N C is called local parametrization or local system
of coordinates at p and V N C is called coordinate neighbourhood at p. Recall that the the tangent line of
the local parametrizationr : I — U N C atr(fy), for some ¢y € I, is defined as the limit position of the
line M, (to)M,(t) as t — to. This tangent line is denoted by (Tr)(ty). A director vector of the line
M, (to) M, (t) is obviously

7 () = 7 (to)
t—tp

wligh shows that 7 (t) is a director vector of (Tr)(to) and the direction of (Tr)(ty) is therefore
(@7)1, (R).

7

Ifry : L = UiNCandrp : I, = Uy NC are two local parametrizations of of C at p € C,
then r1(t;) = r2(t2) = p for some t; € I and t, € I, and one can easily show that (d?l)tl(]R) =
(d 72)@ (R). This shows that 1 and r, have the same tangent line at r1(t1) = r2(f2) = p.

Proposition 8.1. The equation of the paremetrized differentiable curve r : I — R?, r(t) = (x(t),y(t)) at
r(to), for some regular point tg € 1,ie. 7' (tg) # 0 is

x —x(to) _ y—y(t)
Tr)(to) : = . 8.1
( )( 0) X/(to) y/(tO) ( )
The equation of the normal line to r at r(ty), i.e. the line through M, (to) which is perpendicular to (Tr)(to) is
(N7)(to) x'(to) (x — x(t0)) + ¥ () (y — y(to)) = 0. (8.2)
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Proposition 8.2. The equation of the paremetrized differentiable curver : I — R3, r(t) = (x(t),y(t),z(t))
ﬁ
at r(ty), for some regular point tg € I, i.e. T(to) £ 0 is

cx—x(to) _ y—y(to) _ z—z(to)
(Tr)(to) : x,(to)" = y,(to)o = Z,(t0>° (8.3)

The equation of the normal plane to r at r(ty), i.e. the plane through M, (to) which is perpendicular to (Tr)(to)
is

(N7)(to) x'(t0) (x — x(f0)) + ¥/ (to) (v — y(to)) + 2'(f0) (z — z(t0)) = 0. (84)

Remark 8.1. 1. The requirement (3) of definition , is equivalent with (dr); # 0, Vt € R;

2. VN C is the image of a regular one-to-one parametrized differentiable curve. On the other
hand, there are regular one-to-one parametrized differentiable curves whose images are not
parts of regular curves;

3. The role of requirement (2) in definition (8.1) is to prevent the self-intersections of the regular
curves, which is not the case with the images of regular parametrized differentiable curves.

4. The requirement (3) combined with (2) ensure the existence of a unique tangent line at every
point of a regular curve. The tangent line T,(C) of C at p € C is defined as the tangent line at
p of a local parametrization 7 : I — U N C of C at p. The tangent line T,(C) is well-defined as
the tangent at p of a local parametrizationr : I — U N C at p is independent of r.

Definition 8.2. If U C R? is an open set, f : U — R is a C'-smooth function, then the value a €
Im(f) of f is said to be regularif (Vf)(x,y) #0, V(x,y) € f~1(a),ie. (df)(xy) #0, Y(x,y) € f(a).

Theorem 8.3. (The preimage theorem) If U C R? is an open set, f : U — R is a Cl-smooth function and
a € Imf is a reqular value of f, then the inverse image of a through f,

fHa) = {(x,y) € Ulf(x,y) = a}
is a planar reqular curve called the regular curve of implicit cartezian equation f(x,y) = a.

Definition 8.3. Let U C IR? be an open set such that tx € U for every t € R* and avery x € U. The
function f : U — R is said to be homogeneouos of order p € R whenever f(tx) =t/ f(x), Vt €e R, x €
u.

For example a homogeneous polynomial function of degree n € IN is a a homogeneous function
of order p.

Example 8.1. If f : U — R is a C!-smooth homoheneous function of order p € R* and ¢ € Im f\{0},
then f~!(c) is a regular curve.

Indeed, it is enough to show that c is a regular value of f. By differentiating the relation f(fx) =
t? f(x) with respect to t we obtain:

(df)i(x) = ptP1f(x), ¥t € R, x € U,

and the Euler’s relation

(df)x(x) = pf(x), Vx € U. (8.5)

follow for t+ = 1. But for x € C(f) we have (df), = 0 and thus (df)x(x) = 0, namely f(x) = 0.
We therefore showed that B(f) = f(C(f)) C {0}, or, equivalently, R* C R\B(f), where C(f) C U
stands for the closed set of critical points of f, ie. C(f) := {(x,y) € U[(df)(,) = 0}. But since
¢ € Im f\{0} we deduce that c is a regular value of f and f~!(c) is a regular curve therefore.
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Proposition 8.4. The equation of the tangent line Ty .\ (C) of the planar regular curve C of implicit cartezian
equation f(x,y) = a at the point p = (xo,Yo) € C, is

Tnyo ( ) fx( )(X - XQ) +f;(P)(y—]/0) =0,
and the equation of the normal line Ny, ..\ (C) of C at p is

X — X _ y—yo
file)  filp)

Example 8.2. The tangent line of the general conic

N(xo,yo) (C) .

C :ago + 2a10x + 2axy + apx® + 2a12xy + azzyz =0
at some of its regular point (xo, y0) € Cis
a0 + a10(x + Xo) + a20(y + Yo) + a11xX0x + a12(xyo + xoy) + axyoy =0 (8.6)

and can be obtained by polarizing the conic’s equation, i.e. by replacing:

1. x% with xpx

2. y? with yoy
3. 2x with x + xp
4. 2y with y + o
5. 2xy with xgy + xypo.

Indeed, C = f~1(0), where f : RZ2 — R is a second degree polynomial function given by
f(x,y) = ag + 2a10x + 2az0y + a11x% + 2a12xy + axny?*. Since

fx = 2a10 + 211x + 2a12y and f,, = 2ax0 + 2a12x + 2axy,

it follws that
Tix0) (C) - (2a10 + 211 + 2a12y) (x — x0) + (2a20 + 2a12x + 2a22y) (y — yo) = 0
< ap0X + a11XoX + appyoXx + axy + apXoy + a22yoy = ajpxo + HUX% =+ a12yoXo + a20Y0 + A12XoYo + flzzy%
< ay(x+x0) +ax(y +yo) + a11x0x + ar2(xyo + Xoy) + anyoy = 2a10x + 0+ 2az0Yo + a11x3 + 2a12x0Y0 + a2y
< apo + a10(x + x0) + a20(y +yo) + a11x0x + a2 (xyo + xoy) + anyoy = 0.

8.2 Parametrized differentiable surfaces

Definition 8.4. Let U C R? be an open set. A smooth map r : U — RR3 is said to be a parametrized
differentiable surface. The set r(U) is called the trace, the support, or the image of r. If the differential
(dr)y : R> — R is injective for g € U, then the parametrized differentiable surface r is said to be
regular at g. If the differential (dr), : R*> — RR® is injective for all § € U, then the parametrized
differentiable surface r is said to be regular.

Remark 8.2. Let U C R? be an open set and  : U — R3, r(u,v) = (x(u,v),y(u,v),z(u,v)) be a
parametrized differentiable surface. Then r is regular at g € U if and only if

() x T(q) # 0.

Indeed,
risregularatg € U <= (dr), : R> — R? is one-to-one
<= (dr)y(e1), (dr)q(ez) are 11near1y 1ndependent (e1 =(1,0) (0,1))
= TZ(q) = (d?)q(eg, r(q) = a7 )q(e2) are linearly independent
= Tulg) x To(q) # 0,

where 7 : U — V, 7 (u,0) = x(u,v)?+y(u,v)j —I—z(u,v)?.

The image of a parametrized differentiable surface might have self-intersections.
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8.2.1 The tangent plane and the normal line to a parametrized surface

Definition 8.5. Let 7 : U — R3, r(u,v) = (x(u,v),y(u,v),z(u,v)) be a regular parametrized dif-
ferentiable surface and g = (u9,v9) € U. The plane (Tr)(q) through M, (up, vo), whose direction
is (d?)q(IRZ), is called the tangent plane to r at M, (q) corresponding to the pair (19, vo) of the pa-
rameters. The perpendicular line (N7)(q) on (Tr)(q) at M, (q) is called the normal line to r at M, (q)
corresponding to the pair (1, vg) of the parameters.

Remark 8.3. If r : U — R3, r(u,v) = (x(u,v),y(u,v),z(u,v)) is a regular parametrized differentiable
surface and g = (up, vp) € U, then the vectors 7;(6]) = (d?)q(l,O), E)(q) = (d?)q(O,l) form a basis
of the two dimensional vector subspace (d 7) (R?) of V i and 7(11) = 75(11) X Tg(q) is therefore a
director vector of the normal line to r at M, () corresponding to the pair (1, vg) of the parameters.

— 7> 2

)
)

X
X

(@) v.(q)
(@) v.(q

.(q
) (q

<

[

Az, >, 9zx), = dxy),
= 3wV T a0 W T aa e @k
where

a(x,y) _ %@ v.(q9)

5o T xg) v |

d(z,x) _ |z x(9)

5wo) ) T al) x|’

BWJNW _ | v.(a) z(q)

a(u,0) v,(q) z,(q)

Proposition 8.5. If r : U — R3 r(u,v) = (x(u,v),y(u,v),z(u,v)) reqular parametrized differentiable
surface and q = (u9,vo) € U, then the equation of the tangent plane to r at M, (q), corresponding to the pair
(1o, vo) of the parameters, is

xu(q) 1;1(‘1) Zu(q) = 0/
x(q)  v.()  z()
. Ay, 2) 3(z, %) 3(x,y) -
3(u,0) DE=XD) + 505 @ —y(@) + 50,75 (@) —=()) =0 (8.7)

r

Also, the equation of the normal line to r at M, (q), corresponding to the pair (1o, vo) of the parameters, is:

x—x(q) _ y—ylg) _ z—

z(q)
- (8.8)
§§y 2 (g 2&X gy 2w,
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8.3 Regular surfaces

Definition 8.6. A subset S C R3 is called reqular surface if, for every point p € S, there exists a
neighbourhood V of p, in R3, and a mapping r : U — VNS, r(u,0) = (x(u,0),y(u,v),z(u,v)),
where U C R? is an open set, with the following properties:

1. r is smooth, i.e. its coordinate functions x, y,z have arbitrary high continuous partial deriva-
tives;

2. ris a homeomorphism;
3. For every g € U, the differential (dr), : R* — IR? is injective.

The function 7 : U — V N S is called local parametrization at p or local chart at p or local coordinate
system at p. The neighbourhood V NS of p in S is called coordinate neighbourhood. The equations

x = x(u,v)
y=y(uo) (wo)ecl,
z =2z(u,v)

are called the parametric equations of of the coordinate neighbourhood V' N S. The equation

7 = 7 (u,0) where 7 (1,0) = x(u,v)7> + y(u,v)? + z(u,v)?>

is called the vector equation of the coordinate neighbourhood V' N S.

Remark 8.4. 1. Every open subset O of a regular surface S C IR? is a regular surface. Indeed every
local parametriationr : U — SNV of S at some point p € O produces a local parametrization

Unr1(0) — SNnCcnV, g r(q)

of O at p.

2. Every regular surface can be covered by the traces of some families of local charts. Such a
family of lacal charts is called an atlas of the surface. If the regular surface is compact, then it
obviously admits finite atlases. For example the 2-sphere

S?={(x,y,z) eR® : ¥ +y*+2° =1}

admits an atlas with two local charts A = {(¢s, ¢n }, where

2u 2v 1—u? —v?
:R? — S§%\ {S}, ,0) = , ,
Ps \{S}, ¢s(u,0) <1+u2+02 1+ u2 1 02 1+u2+02>
2u 20 uw>+v*—1
:R? — S2\ {N}, ,0) = , ,
PN VINE on (o) <1+u2+vz 1+ u? + 02 1+u2+z72>

and S = (0,0,—1), N = (0,0, 1) are the south and north poles of S>.
Note that the inverses of ¢s and @y are the stereogrphic projections

-1. g2 2 -1 _(_* Yy
75t S(S) = R 05w = (15 1Y)
X Yy

-1.¢g2 2 -1 _
o' SVINY — R o) = (1551 ).
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Another atlas of the sphere S? has 6 local charts, namely
A= {¢x, ¢y, 9= : B(0,1) — §*},
where B(0, 1) is the unit ball of R? centered at the origin 0 € R?> and

¢F(1,0) = (V1 — 12— 0%,u,0),
9 (1,0) = (u, £V/1—u2 =2, 0),
9= (1,0) = (1,0, £v/1 — u2 — 02).

(u,0)

=Y
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Proposition 8.6. If U C R? is an open set and f : U — R is a smooth function, then its graph G, =
{(x,y, f(x,¥)) | (x,y) € U} is a reqular surface.

For example

1. The elliptic paraboloid P, : J; + yq = 2z, p,q > 01is aregular surface, as P, is the graph of the
1 /2 yz
function f : R? — R, f(x,y) = = < + )
2\p p
2P
2. The hyperbolic paraboloid P, : P = 2z, p,q > Ois a regular surface, as P, is the graph of
2 2
the function g : R? — R, g(x,y) = % (3; _ yq)

Theorem 8.7. (The third preimage theorem). If U C R3 is an open set, f : U — R is a smooth functionand
a € Im f is a regualr value of f, then

fHa) ={(x,y,2) € U| f(x,y,2) = a}
is a regular surface in R called the regular surface of implicite Cartesian equation f(x,y,z) = a.

Proposition 8.8. Let U C R be an open set such that tx € U for every t € R and every x € U. A function
f U — Ris said to be homogeneous of order p € Rif f(tx) =t/ f(x), Vt e R, x e U. If f: U — R
is a differentiable and homogeneous function of order p € R* and ¢ € Im f\{0}, then f~'(c) is a reqular
surface.
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Proof. Indeed, it is enough to show that c is a regular value of f. Differentiating with respect to ¢, the
relation f(tx) = t7 f(x) we obtain

(df)ix(x) = ptP 1 f(x), Vt € RY, Vx € U,
which shows, by taking t = 1, the Euler relation
(df)x(x) = pf(x), Vx € U. (8.9)

But for x € C(f) we have (df), = 0 and thus (df).(x) = 0, which shows that f(x) = 0. We therefore
showed that B(f) = f(C(f)) C {0}, or, equivalently, R* C R\B(f). But since ¢ € Im f\{0} we
deduce that c is a taken regular value of f, which shows that f~!(c) is a regular surface. O

In particular,

1. the ellipsoid & : ;i + ]Z; + iz =1,
. 2 2
2. the hyperboloid of one sheet H; : o + w2 1,
3. the hyperboloid of .xj_yj_é_
. yperboloid of two seets H : R 1.

are all regular surfaces. Let us finally observe that the cone C : x? + y?> — z2 = 0 is not a regular
surface.

8.4 The tangent vector space

Let S C IR® be a regular surface and p € S. A tangent vector to S at p is the tangent vector o’ (0) ofa
parametrized diferentiable curve « : (—¢,¢) — S with a(0) = p

Proposition 8.9. Let U C IR? be an open set, let g € U and let r : U — S be a local parametrization of S.
The 2-dimensional subspace (d7") ,(R?) C V coincides with the set of all tangent vectors to S at r(q).

Definition 8.7. The plane through a point p of a regular surface S, whose direction is the tangent

space to S at p, ?p (S), is called the tangent plane to S at p and is denoted by T,(S). The perpendicular
line on the tangent plane of the surface S at p is called the normal line to the surface S at p.

Proposition 8.10. If V C R®is an open set, f : V — R is a smooth function, a € Im f is a reqular value
of fand p € f~'(a), then the equation of the tangent plane to the regular surface S = f~'(a), of implicit
equation f(x,y,z) = a, at some point p € S is:

fo(p)(x —x0) + £,(p)(y —yo) + f.(p)(z — z0) = 0. (8.10)

and the equation of the normal line to S at p is:

X — Xo y—yo_Z—Zo

A AC A ) (8.11)

For example the tanget plane of the quadric
(Q) ago + 2a10x + 2ax0y + 2a30z + 2a1pxy + 213Xz + 2ax3yz + apx® + a22y2 +a33z2 =0
at some of its point Ag(xo, yo,z0) € Q is

Ta,(Q) ago + a10(x + x0) + a20(y + yo) + azo0(z + z0) + a12(xoy + xyo) + a13(zox + zx0) + 2a23(Yoz + yzo)
+a1xox + axnyoy + aszzoz = 0.

and can be obtained by polarizing the quadric’s equation, i.e. by replacing
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1. x? with xpx
y? with yoy

z2 with zgz

Ll

2x with x + xg

5. 2y withy + o

o

2z with z + zg

7. 2xy with xoy + xyo

Qo

2yz with yoz + yzo

0

2zx with zgx + zxp.

8.5 Problems

1. (2p) Show that the angle between the tangent of the circular helix

X =acost
y =asint
z = bt

and the z-axis is constant.

Solution.

2. (3p) A cycloid is the curve traced by a chosen point on the circumference of a circle which rools
along a stright line without slipping. Show that the parametric equations of the are:

x =r(t—sint)
{ y =r(1—cost) EER.

Solution.
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3. (2p) Show that the normal line to the cycloid at a certain point passes through the tangency
point between the generating circle and the line alnog which the generating circle rools on.

Solution.

4. An epicycloid is a plane curve traced by a chosen point on the circumference of a circle which
rools without slipping around a fixed circle. Find the equations of the epicicloid.

The equations of the epicicloid are

R
X = (R+r)cost—rcos< jrt>

telR
R+ ’ ’
Y= (R+r)sint—rsin< t)

or

{ x=r(k+1)cost —rcos(k+ 1)t FER,

y=r(k+1)sint —rsin(k+1)t ’
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R
where k = ~ If k is an integer, then the epicycloid is a closed curve.

m(&?()zg—t

m(]@) :a—m(a-[?() :_g+ (E_,_ 1>t
r

— —_ = R
m(INR) = g — m(NIR) = 7 — :Tt
IR = rsinBﬂL Tt,RN: —7'(:05R+ "y

r

5. A hypocycloid is a plane curve traced by a chosen point on a small circle that rools without
slipping within a larger circle. Find the equations of the hypocycloid.

Answer: The equations of the hypocycloid are:

R—
x:(R—r)cost+rcos< i
RN HER
. . —r
y:(R—r)smt—rsm( t
or
x =r(k—1)cost+rcos(k —1)t LER
y=r(k—1)sint —rsin(k — 1)t ’ ’

R
where k = P If k is an integer, then the hypocycloid is a closed curve. In particular, for k = 4
the hypocicloid is called astroid
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6. The subtangent of a planar parametrized differentiable curve is the segment which unify the
tangency point between the tangent and the curve with the intersection point between the
tangent and the x-axis. Show that the length of the subtangent of the planar parametrized

differentiable curve

r:(0,7) = R?, r(t) = a(Intan(t/2) + cost,sint),

called the tractrix is constant and equal to a.

Solution.

yl}

M, (#)(2()<4(1))

<

—
~

~

y

< V=

N,(t) x

The subtangent of 7" at M,.(t)
is the segment []V[r(t)Nr(t)]

The parametric equations of the tractrix are

{ x =alogtan(t/2) +acost (0, 77)

y =asint
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and its vector equation is

7 (t) = (alntan(t/2) + acost) 7 + (a sint)?.

and its tangent vector

., 1 11N\ —
r(t) = <a5an(t/2) COSZg/Z) 5 asmt> i + (acost) j

—— —asint) i + (acost) j

sin
acos-t— — - -
=t ! + (acost) j =acost(cott i + j ).

Thus, the equation of the tangent line to the tractrix at the regular points M, (t),i.e. t € (0, 77) \

{0} is
(T,)(t) - X—x(t) _Y-y(t) _ X—alogtan(t/2) —acost _ Y —asin

x'(t) v (t) acostcott ~ acost

(8.12)

The coordinates of the intersection point N, (t) of the tangent T;(t) to the tractrix at M, (¢) with
the x-axis can be obtained by taking Y = 0 in (8.12), which implies X = alogtan(t/2), i.e.
N, (t)(alogtan(t/2),0). The distance between

M, (t) (alogtan(t/2) +acost,asint) and N, (t)(alogtan(t/2),0)

is

\/(alogtan(t/Z) +acost—acost)? + (asint —0)2 = Va2 = |a| =a.

Note that t = 77/2 is the only singular point of 7. Since 7" (7/2) = a?, it follows that
t = /2 is a singular point of order two for 7, ie 7 (71/2) is a director vector of the tangent
line of r at t = 71/2. In other words the y-axis is the tangent line to r at t = 71/2. Note that
M;(7/2)(0,a) and N,(7r/2) is the origin O(0,0). Thus the distance between M,(7t/2)(0,a)
and N,(7t/2) is a.

7. (2p) Show that the tangents of the astroid

X =rcos>t
y =rsin’t

determines on the coordinate axes segments of constant length.

Solution.
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8. Write the equations of the tangent line and the normal plane for the following curves, whenever

these associated objects are well-determined:

(@) 2p)
x = el cos 3t
y =e¢'sin3t at the point corresponding to the value t = 0 of the parameter
z=¢2
(b) (2p)
x = e cos 3t -
y =elsin3t at the point corresponding to the value t = 1 of the parameter
—2t
z=¢e

Solution.
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9. (2p) Write the equations of the tangent planes of the hyperboloid of one sheet x? + y* — 22 = 1
at the points of the form (x, o, 0) and show that these are parallel to the z-axis.

Solution.

10. (2p) Show that the trace of the parametrized differentiable curve a : R — R3, a(t) = (e cost, e sint, 2t)
is contained in the regular surface of equation z = In(x? + y?) and write the equation of the
tangent plane of the surface at the points a(t), t € R.

Solution.
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11. (3p) Show that the tangent planes of the surface of equation z = xf (%), where f is a differen-
tiable function, are passing through the origin.

Solution.

12. (3p) Show that the set S = {(x,y,z) € R®|xyz = a®}, a # 0 is a regular surface and the its
tangent plane at an arbitrary point p € S determines on the coordinate axes three points which
form, together with the origin a tetrahedron of constant volume (independent of p).

Solution.
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9 Week 9:Conics
9.1 The Ellipse

Definition 9.1. An ellipse is the locus of points in a plane, the sum of whose distances from two fixed
points, say F and F’, called foci is constant.

The distance between the two fixed points is called the focal distance
Let F and F’ be the two foci of an ellipse and let |FF’| = 2c be the focal distance. Suppose that the
constant in the definition of the ellipse is 2a4. If M is an arbitrary point of the ellipse, it must verify
the condition
|MF| + |MF'| = 2a.
One may chose a Cartesian system of coordinates centered at the midpoint of the segment [F'F], so
that F(c,0) and F'(—c,0).

M

F'(=¢,0) 0 Fle,0) x

Remark 9.1. In AMFF' the following inequality | MF| + |MF’| > |FF’| holds. Hence 2a > 2¢. Thus,
the constants a2 and ¢ must verify a > c.

Thus, for the generic point M(x, y) of the ellipse we have succesively:

IMF|+ |MF'|=2a & /(x—c)2+y2+/(x+c)2+y2=2a
Vix—eP 4y =20—/(x+) +1’
X2 —2cx+c+ P2 =4a% —4a\/(x + )2+ 2+ (x + )2+ 12
ay/(x+c¢)?2+y? = cx +a?
a?(x% 4 2xc + c2) + a?y? = 2x? + 2a%cx + a?
(a? — c?)x? + a*y? — a*(a®> — ?) = 0.

Denote a? — ¢? by b?, as (a > c). Thus b*x? + a®y? — a?b*> = 0, i.e.

2 2
>+ % ~1=0 9.1)
Remark 9.2. The ellipse
2P

is a regular curve and the equation of its tangent line Tp,(E) at some point Py(xo, yo) € E is

XoX
Tr, (E) 5 + % =1 9.2)

Cornel Pintea Page 107 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

Remark 9.3. The equation (9.1) is equivalent to

Y= iZ\/ a? —x%; X = ig\/ﬂ,

which means that the ellipse is symmetric with respect to both the x and the y axes. In fact, the line
FF’, determined by the foci of the ellipse, and the perpendicular line on the midpoint of the segment
[FF'] are axes of symmetry for the ellipse. Their intersection point, which is the midpoint of [FF’], is
the center of symmetry of the ellipse, or, simply, its center.

Remark 9.4. In order to sketch the graph of the ellipse, observe that it is enough to represent the

function
b
f:[-a,a — R, f(x) = -V a? — x?,

and to complete the ellipse by symmetry with respect to the x-axis.

One has

X —a 0 a
F@ T #4+F 0 ———
f(x) | 0 b N0
G
E
(0,b)
M(z,y)
(—a,0) F'(=c¢,0) Fle,0) (a,0) - €T

(0,-b)

9.2 The Hyperbola

Definition 9.2. The hyperbola is defined as the geometric locus of the points in the plane, whose
absolute value of the difference of their distances to two fixed points, say F and F’ is constant.

The two fixed points are called the foci of the hyperbola, and the distance |FF'| = 2¢ between the
foci is the focal distance.
Suppose that the constant in the definition is 2a. If M(x, y) is an arbitrary point of the hyperbola,
then
|| MF| — |MF'|| = 2a.

Choose a Cartesian system of coordinates, having the origin at the midpoint of the segment [FF’]
and such that F(c,0), F'(—c,0).
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Remark 9.5. In the triangle AMFF’, || MF| — |[MF'|| < |FF'|, so thata < c.

Let us determine the equation of a hyperbola. By using the definition we get | MF| — |MF’'| = +24,
namely

\/(x—c)2+y2—\/(x—i—c)z—i—yzzj:Za,

\V(x=¢)2+y?=22a+/(x+¢)? + 2

We therefore have successively

x2—2cx+ 2 +y? =4a® £4da\/(x + )2+ y2 + x> +2cx + 2+ 12
cx +a? = +a/(x +c)2+ 12

c2x? + 2a%cx + a* = a?x? + 2a%cx + a?c? + a?y?

(c* — a?)x* — a*y? — a*(® — a?) = 0.

or, equivalently

By using the notation c® — a*> = b? (c > a) we obtain the equation of the hyperbola

2 2

X

y

Remark 9.6. The hyperbola
2P
H) = =1

is a regular curve and the equation of its tangent line Tp,(H) at some point Py(xo, o) € H is

XX
T, (H) S = 2% = 1. 9.4)

The equation (9.3) is equivalent to

b a
y:j:?/xz—az; x:igwf—i—bz.

Therefore, the coordinate axes are axes of symmetry of the hyperbola and the origin is a center of
symmetry equally called the center of the hyperbola.

Remark 9.7. To sketch the graph of the hyperbola, is it enough to represent the function

fi(—00,—a]Ula, o) = R, f(x) = ém’

a

by taking into account that the hyperbola is symmetric with respect to the x-axis.

. . f(x) b . f(x) b b b
Since lim —— = —and lim —— = ——, it follows that y = —x and y = ——x are asymptotes of
x—oo X a X——0 X a a a

f.

One has, also

X —00 —a a o0
fx)| — —-—--— | J/// | +++ +
f(x) | oo N oo /,/,/ [0 T pos
ff«)| - --- 1 /| —=-- =
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F'(=c,0) /| (=a,0) (a,0) F(e,0) €x

(0,—b)

9.3 The Parabola

Definition 9.3. The parabola is a plane curve defined to be the geometric locus of the points in the
plane, whose distance to a fixed line d is equal to its distance to a fixed point F.

The line d is the director line and the point F is the focus. The distance between the focus and the
director line is denoted by p and represents the parameter of the parabola.

p

Consider a Cartesian system of coordinates xOy, in which F (Z, O) andd:x = — 5 If M(x,y) is

an arbitrary point of the parabola, then it verifies
|IMN| = |[MF|,

where N is the orthogonal projection of M on Oy.
Thus, the coordinates of a point of the parabola verify

and the equation of the parabola is
yz = 2px. (9.5)

Remark 9.8. The parabola
(P)y* = 2px
is a regular curve and the equation of its tangent line Tp, (P) at some point Qo(xo,yo) € P is

T, (P) yoy = p(x + x0). (9.6)

Remark 9.9. The equation lb is equivalent to y = £,/2px, so that the parabola is symmetric with
respect to the x-axis.
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Representing the graph of the function f : [0,c0) — [0, 00) and using the symmetry of the curve
with respect to he x-axis, one obtains the graph of the parabola.

One has
! . p . ") = — p
fi(x) = Ppre f7(x) VTS
X 0 1)
ffx) || +++ +
f) [0 o
T ———

p @)

|
[CIESI T
B

9.4 Problems

2 2
x
1. Find the equations of the tangent lines to the ellipse £ : ) + J

wo 1 = 0 having a given angular
coefficient m € R. (see [1, p. 110]).

Solution. We are looking for the lines d : y = mx + n, which are tangent to the ellipse, i.e.
each of them has one single common point with the ellipse. Their intersection is given by the
solutions of the system of equations

2P
2t 1=0,
y=mx+n

or, by replacing y in the equation of the ellipse,
(a*m® + b*)x? + 2a°mnx + a®(n* — b*) = 0.
The discriminant A of the last equation is given by
A = 4[a*m*n* — a®(a*m?* + b*) (n* — b?)]
and the line (d) and the ellipse (E) have one single common point if and only if a*m?n? —
a®(a®m? + b?)(n® — b?) = 0, i.e. n = +va?m? 4 b2. The equations of the tangent lines of

direction m are therefore
y = mx £+ \a2m? + b2. ©.7)
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2. (2p) Find the equations of the tangent lines to the ellipse £ : x? + 4y> — 20 = 0 which are
orthogonal to the lined : 2x —2y — 13 = 0.

Solution.
2P

3. (2p) Find the equations of the tangent lines to the ellipse & : 5 + 6~ 1 = 0, passing through

Py(10, -8).

Solution.

2P
4. If M(x,y) is a point of the tangent line Ty, (E) of the ellipse € : - + we 1 at one of its points
2y
Mo(Xo,yo) € &, show that LTZ—’— 7 > 1.
. . . XoX Yoy .
Solution. Every director vector of the tangent line Ty, (E) 2t = 1 is orthogonal

X0 Yo

L bz> of the tangent line Ty, (E). Such an orthogonal vector is

4)
to the normal vector n (

X
v (]/0 — 0) . Thus, the parametric equations of the tangent line are

b2 b2
x:xo—i—y—gt
TM0<E): fé ,tE]R,
0
Yy =Yoo~ 35t

i.e. the coordinates of M are of this form. In order to completely solve the question , we only

2 . 2
(xo + ggt) (yo — bgt>
. This is

need to show that ¢ > 1, where ¢ : R — R, ¢(t) = e +
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actually the case as

2
xoyo yo O]/O
X§+2—t+ > yg—2—5t+ —tz

olt) = 1t

a? b2

2 .2 12
_ X, %, 1 Yo\ . _
—az‘f’bz‘f’zbz< +b2>t 1+ 2b2>1VtEIR
2P
5. Find the equations of the tangent lines to the hyperbola H : pi e 1 = 0 having a given

angular coefficient m € R. (see [1, p. 115]).

Solution. The intersection of the hyperbola () with the line (d)y = mx + n is given by the
solution of the system

X2 42
oY1=
2 .
y=mx+n
By substituting y in the first equation, one obtains
(a*m? — b*)x? + 2a°mnx + a®(n* + b*) = 0. (9.8)

b
o Ifa?m? —b> =0, (orm = j:;), then the equation becomes
+2bnx + a(n® + b*) = 0.

— If n = 0, there are no solutions (this means, geometrically, that the two asymptotes
do not intersect the hyperbola);

- If n # 0, there exists a unique solution (geometrically, a line d, which is parallel to
one of the asymptotes, intersects the hyperbola at exactly one point);

e If a?>m? — b? # 0, then the discriminant of the equation is
A = A[a*m*n® — a®(a®>m® — b?) (n* + b?)].

z oy
a2 b

2

The line d : y = mx + n is tangent to the hyperbola H : —1 = 0if the discriminant
A of the equation is zero, i.e. a?m? — n? — b2 = 0.

b b
- Ifa?m? —1v*> > 0,ie. m € —o0, —— U = oo), then n = ++v/a2m? — b2. The equa-

tions of the tangent lines to #, having the angular coefficient m are

y = mx £/ a?m? — b2. (9.9)

— If a?m? — b? < 0, there are no tangent lines to H, of angular coefficient m.

2 2

6. (2p) Find the equations of the tangent lines to the hyperbola H : T 71 = 0whichare

20 5
orthogonal to the line d : 4x 43y —7 = 0.
Solution.
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7. Find the equations of the tangent lines to the parabola P : y? = 2px having a given angular
coefficient m € R. (see [1, p. 119]).

Solution. The intersection beteen the porabla (P) and the line (d)y = mx + n is given by the
solution of the system
{ y? = 2px

Yy =mx+n.
This leads to a second degree equation
m?x* 4+ 2(mn — p)x +n* =0,
having the discriminant
A =4p(2mn — p) (9.10)

The line d : y = mx + n (with m # 0) is tangent to the parabola P : y? = 2px if the discriminant
A which appears in (9.10) is zero, i.e. 2mn = p. Then, the equation of the tangent line to P,
having the angular coefficient m, is

Yy = mx + % (9.11)

8. (2p) Find the equation of the tangent line to the parabola P : y?> — 8x = 0, parallel to d :
2x +2y -3 =0.

Solution.

9. (2p) Find the equation of the tangent line to the parabola P : y* — 36x = 0, passing through
P(2,9).

Solution.

10. (3p) Find the locus of the orthogonal projections of the center O(0,0) of the ellipse

on its tangents.
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Solution.

11. (3p) Find the locus of the orthogonal projections of the center O(0,0) of the hyperbola

2 2

XYY
Hi 5—5=1

on its tangents.

Solution.

12. Show that a ray of light through a focus of an ellipse reflects to a ray that passes through the
other focus (optical property of the ellipse).
2 2

Solution. Let Fi(—c,0), F2(c,0) be the foci of the ellipse £ : % + Z—Z = 1. Recall that the

gradient grad(f)(xo,y0) = (fx(x0,¥0), fy(x0,Y0)) is a normal vector of the ellipse £ to its point
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MQ(X(), yo), where

f(xy) = 8(FL, M) +6(F, M) = \/(x = )2 + 32+ (x + )2 + 2
and M(x,y). Note that

Xg—C Xg+¢C Yy y
X 7 = and X 7 = + 4
and shows that
Xo—¢C Xo+c Yo Yo )
rad = X0,Y0), Jy(Xo, = ! +
grad(f) (fx(x0,Y0), fy(x0,Y0)) ((5(5&)/10) (5(132&)/[0) 6(F, Mo) ~ 6(F, Mo)
(xo—c¢,y) , (xo+cy)  FMo F,My
— + = :
6(F, Mo) ' 0(F, M) — 6(Fi,My) ' 6(Fa, My)
FM Bl
V f(wo,y0) = S(FLAD T 8(E D)
M EM,
The versors ———2  and —-229 point towards the exterior of the ellipse £ and their sum

0(F1, M) d(Fp, M)

make obviously equal angles with the directions of the vectors FK/IO and FZT/IO and (the sum)
is also orthogonal to the tangent Ty, (€) of the ellipse at My (xo, yo). This shows that the angle
between the ray FiM and the tangent Ty, (£) equals the angle between the ray F,M and the
tangent Ty, (£).

13. Show that a ray of light through a focus of a hyperbola reflects to a ray that passes through the
other focus (optical property of the hyperbola).
2 12
Solution. Let Fi(—c,0), F(c,0) be the foci of the hyperbola £ : o % = 1. Recall that the
gradient grad(f)(xo,v0) = (fx(x0,¥0), fy(x0,40)) is a normal vector of the hyperbola H to its
point My(xo,yo), where

f(x,y) = 6(Fo, M) = 8(Fi, M) = \/(x = )2+ 32 = [ (x + ) + 2 9.12)
on the left hand side branch of H and
Flxy) = 6(F, M)~ 3(Fa, M) = /(x + )2 +92 —[/(x — )2 + 2 9.1

on the right hand side branch of H and M(x,y). We shall only use the version (9.12) of f, as
judgement for the version (9.13) works in a similar way. Note that

fx(XO/yO) - §(F1,M0) 5(F2,M0> and f]/(x()/yo) - §(F],M()) 5(F2,M0),
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14.

and shows that

o o Xp—¢ Xo+c Y Y
grad(f) = (fx(xo,y0), fy(x0,%0)) = <(5(1:01A/10) B 5(1—“2&)40)’5(5,0]\/10) B (5(F2,0]\/10)>
_(—coy)  (+oy) Fi My F,My

O(F, My)  6(F,My)  6(F,My) (F, My)

PM BM
So(Fy, M) 3(F, M)

— —
Fi M M, . .
The versors —————— and ————— point towards the "exterior’ of the hyperbola H’| and
5(F1, Mp) 5(Fy, My) ¥ yp 3I

their sum make obviously equal angles with the directions of the vectors FK/IO and FZT/IO and
(the sum) is also orthogonal to the tangent Ty, (#) of the hyperbola at My(xo, o). This shows
that the angle between the ray F; M and the tangent Ty, (7{) equals the angle between the ray
F,M and the tangent Ty, ().

Show that a ray of light through a focus of a parabola reflects to a ray parallel to the axis of the
parabola (optical property of the parabola).

Solution. Let F(£,0) be the focus of the parabola P : y* = 2px and d : x = —£ be its director
line. Recall that the gradient grad(f)(xo,v0) = (fx(x0,%0), fy(X0,¥0)) is a normal vector of
parabola P to its point My(xo, o), where

f(xy) = 8(F, M) = 5(M,d) =/ (x - g)2+y2 ~(x+9)
and M(x,y). Note that

p
X0 — 73 _ _ Yo
fx(x0,y0) = 5(F, M) Land f, (xo, yo) 5(F, My)’

and shows that

X0 — g Yo
grad(f) = (fe(xo,y0). fy(xo.30)) = (5@, M) 5, Mo>>

H
_ X0 — % yO o (1 O) — ﬂ —i
6(F,My)’ 6(F, My) ’ 6(F,Mo)

3The exterior of a hyperbola is the nonconvex component of its complement
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4>
My

5(F, M)

H
make obviously equal angles with the directions of the vectors FM and i and (the sum) is also
orthogonal to the tangent line T, (P) of the parabola at My(xo, yo). This shows that the angle
between the ray FM and the tangent line Tj,(P) equals the angle between Ox and the tangent
T, (€).

The versors and —i point towards the ‘exterior” of the parabola and their sum

“The exterior of a parabola is the nonconvex component of its complement
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10 Week 10: Quadrics

10.1 The ellipsoid

The ellipsoid is the quadric surface given by the equation

2 2 P2
5:a7+ﬁ+c7_120' a,b,c € RL. (10.1)

e The coordinate planes are all planes of symmetry of £ since, for an arbitrary point M(x,y,z) €
£, its symmetric points with respect to these planes, M1 (—x,y,z), Ma(x, —y,z) and M3(x,y, —z)
belong to &; therefore, the coordinate axes are axes of symmetry for £ and the origin O is the

center of symmetry of the ellipsoid (10.1));

¢ The traces in the coordinates planes are ellipses of equations

LT oo [ RiT a0 [ELY 4
R e Al A O
x=0 y=0 z=0.

¢ The sections with planes parallel to xOy are given by setting z = A in (10.1). Then, a section is

X2 2 A2

¢ . =1

of equations a2 2 2
z=A

e If [A] < ¢, the section is an ellipse

x2 yz
7T =1
A2 / A2 .
a 1_C7 b 1_C7 4
z=A
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e If [A| = ¢, the intersection is reduced to one (tangency) point (0,0, A);
e If |A| > ¢, the plane z = A does not intersect the ellipsoid &.

The sections with planes parallel to xOz or yOz are obtained in a similar way.

10.2 The hyperboloid of one sheet

The surface of equation

x2 yZ ZZ

Hl: +ﬁ_cj_1:0/ a/b/CER*’ (102)

a2
is called hyperboloid of one sheet.

* The coordinate planes are planes of symmetry for H;; hence, the coordinate axes are axes of
symmetry and the origin O is the center of symmetry of H;;

* The intersections with the coordinates planes are, respectively, of equations

y—z—i—l—o x—z—é—l—O x—2+y—2—1—0
o2 7 ) e 2 T ) a2
x=0 ! y=20 ’ z=10 !
a hyperbola a hyperbola an ellipse
* The intersections with planes parallel to the coordinate planes are
T A2 2 2 A2 2P A2
b2 2 a2 . ) a* 2 2 . ) a®  b? .
x=A ’ y=A ! z=A !
hyperbolas hyperbolas ellipses
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Remark: The surface H; contains two families of lines, as

x2  z? y? x z\[x z y y
tz2_r:2:1_b2®<a+c> (a_c>:<1+b =%

The equations of the two families of lines are:

10.3 Th hyperboloid of two sheets

The hyperboloid of two sheets is the surface of equation

) x2 yZ ZZ *
H2~;+ﬁ—?z+1:0' a,b,c € RY. (10.3)
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The hyperboloids of one and two sheets and their common asymptotic cone

¢ The coordinate planes are planes of symmetry for 1, the coordinate axes are axes of symmetry
and the origin O is the center of symmetry of Hy;

* The intersections with the coordinates planes are, respectively,

yz 72 2 2 X2 yz
ﬁ—c—2+1:0 ;—;4—1:0 ;+ﬁ+1:0 .

x=0 ! y=20 ! z=10 !
a hyperbola; a hyperbola the empty set

* The intersections with planes parallel to the coordinate planes are

2 2 2 2 2 2
Y-z A X~z A s o 2
=1 = =1 = X A
b2 2 a2 a2 2 b? 7+%:_1+7
x=A ¢ y=A ¢ a> b Y ¢
hyperbolas hyperbolas S
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- If |A| > ¢, the section is an ellipse;
— If |A| = ¢, the intersection reduces to the point of coordinates (0,0, A);

- If |A| < ¢, one obtains the empty set.

10.4 Elliptic Cones

The surface of equation
X z
C:—=+%——==0, a,b,c € R, (10.4)
is called elliptic cone.

¢ The coordinate planes are planes of symmetry for C, the coordinate axes are axes of symmetry
and the origin O is the center of symmetry of C;

¢ The intersections with the coordinates planes are

P2 22 X2 52 2R
w0 a2 1t=0 2t =0
x=0 ’ y= 0 / z=20
two lines two lines the point O(0,0,0).
¢ The intersections with planes parallel to the coordinate planes are
T A2 2 22 A2 2 A2
PR 2. )2 @ ¥ )ap-a
x=A ’ y=A ’ z= A
hyperbolas hyperbolas. ellipses
10.5 Elliptic Paraboloids
The surface of equation
2 2
Pe: —+ — =2z p,q€RY, (10.5)
P 4q
is called elliptic paraboloid.
* The planes xOz and yOz are planes of symmetry;
® The traces in the coordinate planes are
2 2 2 2
A — =2z —+ Yo
q p , P4
x=0 7 y=0 z=0

a parabola a parabola the point O(0, 0, 0).

2
x
* The intersection with the planes parallel to the coordinate planes are ¢ p =24

A

_|_

=<,

z

— If A > 0, the section is an ellipse;
- If A = 0, the intersection reduces to the origin;

- If A <0, one has the empty set;
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and
yZ AZ x2 /\2
—=2z—-— — =2z —
1 . p .
x=A ’ y=A ’
parabolas parabolas

E
e

10.6 Hyperbolic Paraboloids

The hyperbolic paraboloid is the surface given by the equation

Pp:———=2z p,q > 0. (10.6)

¢ The planes xOz and yOz are planes of symmetry;

¢ The traces in the coordinate planes are, respectively,

2 2 2 2

X

¥ ¥

x
——=2z — =2z ——==0
q . p . p q .
x=0 7 y=0 "~ z=0 ’
a parabola a parabola two lines.

* The intersection with the planes parallel to the coordinate planes are

y2 22 x2 22
L= 274 — — =224+ —
q P p q
x=A y=A
parabolas parabolas.
2 2
S A 5\
P4
z=A
hyperbolas
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Remark: The hyperbolic paraboloid contains two families of lines. Since

X Y X ¥y
(Ww) (m‘w) -

then the two families are, respectively, of equations

10.7 Singular Quadrics
Elliptic Cylinder, Hyperbolic Cylinder, Parabolic Cylinder

* The elliptic cylinder is the surface of equation

2P 2 22 22

af2+ﬁ—120, a’b>00ra7+c7_1:0’ﬁ+c7_1:0'
¢ The hyperbolic cylinder is the surface of equation

22 2 2 ¥ 22

p—ﬁ—lzo, a,b>00ra—2—cf2—1:0,ﬁ—cf2—1:0

¢ The parabolic cylinder is the surface of equation

y>=2px, p >0, (oran alternative equation).

(10.7)

(10.8)

(10.9)
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Cilindrul eliptic e Cilindrul hipurhdile
E F-§-1

Cilindrul parabolic

¥t =2pr Ccnl|]§;+§;.—§:[1

10.8 Problems

1. Find the intersection points of the ellipsoid

2 2 ZZ
+

=

—_
(o)}
~l

I
+4

with the line
x—4 y+6 z+2
2 -3 =2
and write the equations of the tangent planes as well as the equations of the normal lines to the
ellipsoid at the intersection points.

Solution.
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2. Find the rectilinear generatrices of the quadric 4x> — 9y? = 36z which passes through the point
P(3v2,2,1).

Solution.

3. Find the rectilinear generatrices of the hyperboloid of one sheet
2 P 2
M)z te g =1
which are parallel to the plane (77) x +y+z = 0.
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Solution.

4. Find the locus of points on the hyperbolic paraboloid (P;) y*> — z* = 2x through which the
rectilinear generatrices are perpendicular.

Solution.
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5. Compute the distance from O(0,0,0) to the tangent plane Ty (&) of the ellipsoid

2 ZZ

2
X
+C7:1

) Yy
5.a—2+

b2
at some of its point M(x,y,z) € £.

Solution.
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6. Show that the intersection between a straight line d and the sphere S(O, r) is a singleton if and
only if dist(O,d) = r.

Solution.
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11 Week 11: Generated Surfaces

Consider the 3-dimensional Euclidean space &3, together with a Cartesian system of coordinates
Oxyz. Generally, the set
S={M(x,y,z): F(x,y,z) =0},

where F : D C R® — R is a real function and D is a domain, is called surface of implicit equation
F(x,y,z) = 0. For example the quadric surfaces, defined in the previous chapter for F a polynomial
of degree two, are such of surfaces. On the other hand, the set

St ={M(x,y,z) : x = x(u,v),y = y(u,v),z = z(u,v)},

where x,y,z: D1 C R? - R,isa parameterized surface, of parametric equations

x = x(u,v)
y=y(wv) , (uv)é€ D
z =2z(u,v)

The intersection between two surfaces is a curve in 3-space (remember, for instance, that the inter-
section between a quadric surface and a plane is a conic section, hence the conics are plane curves).
Then, the set

C={M(xy,z):F(x,y,z) =0,G(x,y,z) =0},

where F,G : D C R® — R, is the curve of implicit equations

{ F(x,y,z) =0
G(x,y,z)=0 "~

As before, one can parameterize the curve. The set

G = {M(x,y,z) s x = x(t),y = y(t),z = z(t)},

where x,y,z: I C R — R and [ is open, is called parameterized curve of parametric equations

x = x(t)
y=y(t) , telL
z = z(t)

Let be given a family of curves, depending on one single parameter A,

[ F(xy,zA)=0
Ca: { BE(x,y,zA) =0~

In general, the family C) does not cover the entire space. By eliminating the parameter A between the
two equations of the family, one obtains the equation of the surface generated by the family of curves.
Suppose now that the family of curves depends on two parameters A, y,

co Fi(x,y,zA,u) =0
Adge E(x,y,zzAu)=0 "'

and that the parameters are related through ¢(A, u) = 0If it can be obtained an equation which does
not depend on the parameters (by eliminating the parameters between the three equations), then the
set of all the points which verify it is called surface generated by the family (or the sub-family) of
curves.
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11.1 Cylindrical Surfaces

Definition 11.1. The surface generated by a variable line, called generatrix, which remains parallel
to a fixed line d and intersects a given curve C, is called cylindrical surface. The curve C is called the
director curve of the cylindrical surface.

Theorem 11.1. The cylindrical surface, with the generatrix parallel to the line
. T = 0
{7y

c F(x,y,z) =0
| B(xyz)=0"

which has the director curve

(d and C are not coplanar), is characterized by an equation of the form
¢(m, m2) = 0. (11.1)

Proof. The equations of an arbitrary line, which is parallel to

[ m(xyz)=0 f m(xyz)=A
d ' { nZ(xlyIZ) =0 ,are d)\’” . 7T2(xry/2> = ‘M '

Not every line from the family d, , intersects the curve C. This happens only when the system of
equations

Fi(x,y,z) =0
F(x,y,z) =0
m(x,y,z) =A

(%Y, 2) = p

is compatible. By eliminating A and y between four equations of the system, one obtains a necessary
condition ¢(A, u) = 0 for the parameters A and y in order to nonempty intersection between the line
dj,u- The equation of the surface can be determined now from the system

m(x,y,z) =A
mo(x,y,2) = p
(A, u) =0

and it is immediate that ¢(711, 772) = 0. O

4

Remark 11.1. Any equation of the form (11.1), where 711 and 7, are linear function of x, y and z,
= 0

represents a cylindrical surface, having the generatrices parallel to d : { T — 0
y =

Example 11.1. Let us find the equation of the cylindrical surface having the generatrices parallel to

| x+y=0
d.{ Y

and the director curve given by

x> =2y —z=0
c.{ =0
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The equations of the generatrices d are

Jxt+y=A
e TN

They must intersect the curve C, i.e. the system

x* =2y —z=0

x—1=0
x+y=A
Z=U
has to be compatible. A solution of the system can be obtained using the three last equations
x=1
y=A-1
Z=U

and, replacing in the first one, one obtains the compatibility condition
20 =1 +u—-1=0.

Thus, the equation of the required cylindrical surface is

20x+y—1P2+z-1=0.

11.2 Conical Surfaces

Definition 11.2. The surface generated by a variable line, called generatrix, which passes through a
fixed point V and intersects a given curve C, is called conical surface. The point V is called the vertex
of the surface and the curve C director curve.

Theorem 11.2. The conical surface, of vertex V (xo, Yo, zo) and director curve

c F(x,y,z) =0
| B(xyz)=0"

(V and C are not coplanar), is characterized by an equation of the form

¢ (x_xo y_yo) —0. (11.2)

z—20 z— 2
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Proof. The equations of an arbitrary line through V (xo, o, zo) are

P _{x—xozA(z—zo)
MLy -yo=pz-z)

A generatrix has to intersect the curve C, hence the system of equations

x—x9 = Az —z0)

Y —yo = pu(z — 20)
Fi(x,y,2) =0
F(x,y,z) =0

must be compatible. This happens for some values of the parameters A and y, which verify a compat-
ibility condition
(A, 1),

obtained by eliminating x, y and z in the the previous system of equations. In these conditions, the
equation of the conical surface rises from the system

x—xp = Az —2zp)
v—vyo=pulz—2z2) ,
(A u)=0

@(x—xO/y—yO) —0
Z—2Zyp Z— 2

Remark 11.2. If ¢ is a polynomial function, then the equation (11.2) can be written in the form

ie.

$(x —x0,y — Yo,z —20) =0,

where ¢ is homogeneous with respect to x — xo, ¥ — yo and z — zg. If ¢ is polynomial and V is the
origin of the system of coordinates, then the equation of the conical surface is ¢(x,y,z) = 0, with ¢ a
homogeneous polynomial. Conversely, an algebraic homogeneous equation in x, y and z represents
a conical surface with the vertex at the origin.

Example 11.2. Let us determine the equation of the conical surface, having the vertex V(1,1,1) and

C:{ (2 +y?)2—xy=0 .

the director curve

z=20

The family of lines passing through V' has the equations

S xo1=Az-1)
‘“"'{ Y 1—uz—1)
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The system of equations
(x*+y?)2—xy=0
z=0
x—1=A(z—-1)
y—1=u(z-1)
must be compatible. A solution is
x=1-A
y=1—u,
z=0

and, replaced in the first equation of the system, gives the compatibility condition
[(1=AP+ (A —p)’P—(1-A)(1—p)=0.
The equation of the conical surface is obtained by eliminating the parameters A and p in

x—1=A(z—1)

y—1=pu(z—-1) :
(I=AP+ 1 =p)?)P-(1-MN)(1-pu)=0
. x—1 y—1 . . . .
Expressing A = po— and y = P and replacing in the compatibility condition, one obtains

)] (=) (=)~

(=2 + -y P - (z-x)(z-y(E-1)*=0

or

11.3 Conoidal Surfaces

Definition 11.3. The surface generated by a variable line, which intersects a given line 4 and a given
curve C, and remains parallel to a given plane 7, is called conoidal surface. The curve C is the director
curve and the plane 7t is the director plane of the conoidal surface.

Theorem 11.3. The conoidal surface whose generatrix intersects the line
X m = 0
{720

[ R(x,yz)=0
| BE(xyz)=0

and the curve

and has the director plane 7t = 0, (7t is not parallel to d and that C is not contained into ), is characterized

(P 7T, — = 0. 11-3
4 ( )

Proof. An arbitrary generatrix of the conoidal surface is contained into a plane parallel to 77 and,
on the other hand, comes from the bundle of planes containing d. Then, the equations of a generatrix

are
T=A
d/\y-{ T = .
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Again, the generatrix must intersect the director curve, hence the system of equations

T=A
Tl = U
Fi(x,y,2) =0
F(x,y,2z) =0

has to be compatible. This leads to a compatibility condition

(A u) =0,

and the equation of the conoidal surface is obtained from

T=A
T = U7
¢(A,pu) =0
By expressing A and y, one obtains (11.3). U

Example 11.3. Let us find the equation of the conoidal surface, whose generatrices are parallel to xOy
and intersect Oz and the curve

y?—2z+2=0
x> —2z41=0 "

The equations of xOy and Oz are, respectively,

x=0
xOy:z=0, and Oz.{ =0

so that the equations of the generatrix are

X = Ay
d/\,p_:{ Z:]/l .

From the compatibility of the system of equations

x=Ay

z=
y?—2z4+2=0 "'
x?—2z4+1=0

one obtains the compatibility condition

A%y =207 —2u+1=0,
and, replacing A = ; and y = z, the equation of the conoidal surface is

2x%z — 2%z — 2x* + y* = 0. (11.4)
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11.4 Revolution Surfaces

Definition 11.4. The surface generated by rotating of a given curve C around a given line d is said to
be a revolution surface.

Theorem 11.4. The equation of the revolution surface generated by the curve

[ F(x,y,z)=0
| B(xy,z)=0"

in its rotation around the line
J- x—xo_y—yo_ zZ— 2
p q r’

is of the form
@((x —x0)% + (y — y0)* + (z — 20)%, px + qy + rz) = 0. (11.5)

Cornel Pintea Page 138 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

Proof. An arbitrary point on the curve C will describe, in its rotation around d, a circle situated into
a plane orthogonal on d and having the center on the line d. This circle can be seen as the intersection
between a sphere, having the center on d and of variable radius, and a plane, orthogonal on d, so that
its equations are

oo (r=x0)?+ (v —y)?+ (z—20)* = A.
MU px+qytrz=u

The circle has to intersect the curve C, therefore the system

Fi(x,y,2) =0

F(x,y,z) =0

(x = x0)* 4+ (y —y0)* + (2 —20)* = A
px+qy +rz=pu

must be compatible. One obtains the compatibility condition

@A, u) =0,

which, after replacing the parameters, gives the equation of the surface (11.5). O

11.5 Problems

1. Find the equation of the cylindrical surface whose director curve is the planar curve

24 2
Yy +zct=x
© { X =2z

and the generatrix is perpendicular to the plane of the director curve.

Solution.
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2. A disk of radius 1 is centered at the point A(1,0,2) and is parallel to the plane yOz. A source
of light is placed at the point P(0, 0, 3). Characterize analitically the shadow of the disk rushed
over the plane xOy.

Solution. Consider the conical surface of vertex P whose director curve is the circle of radius
1 which is centered at the point A(1,0,2) and is parallel to the plane yOz. The shadow of the
disk rushed over the plane xOy is the convex component of the complement, in the plane xOy,
of the intersection curve between the plane xOy and the described conical surface.

In order to find the equation of the conical surface we consider the lines

(Oz) { ;ig and (d) { ;C:g

as well as the family of lines
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depending on the parameters A and y of the reduced pencils of lines x — Ay = 0 through Oz
and z — 3 — yz = 0 through 4.

=y

The circle C which borders the disk is given by the equations

(©) { fcx:_11.)2+y2+ (z—2)2=1

The intersection point of the line A, with the plane of the circle is described by the system

x=1
y—Ax=0
z—=3—ux=20
which has the solution
x=1
Ay N(x=1)) ¢ y=A (11.6)
z=3+u.

By imposing the condition on the intersection point to belong the other surface which
defines C, namely the sphere (x — 1)? +y% + (z —2)? = 1, we obtain the relation A + (y +1)% =
1, between A and y, in order to have concurrence between A, and C. The equation of the
conical surface is

2
¥\? z—3 _ 2 a2 .2
(x) +< . +1) =1, ory "+ (x+z—3)" =x"

The latter equation is equivalent with
YV +22+2xz—6x —62+9 =0.

Its intersection curve with the plane xOy is the parabola

z=0
(P { y?> —6x+9=0.

The convex compoennt of the compelment xOy \ P coincides with the required shadow and is
characterized by the following system

¥ —6x+9 <0
z=0.
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3. Consider a circle and a line parallel with the plane of the circle. Find the equation of the
conoidal surface generated by a variable line which intersects the line (d) and the circle (C)
and remains orthogonal to (d). (The Willis conoid)

Solution.

4. Find the equation of the revolution surface generated by the rotation of a variable line through
a fixed line.

Solution.
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5. The torus is the revolution surface obtained by the rotation of a circle C about a fixed line (d)
within the plane of the circle such that d N C = @. Find the equation of the toruﬂ

>The torus is a regular surface.
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Solution.
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12 Week 12. Transformations

12.1 Transformations of the plane

Definition 12.1. An affine transformation of the plane is a perturbation by a translation of a linear
transformation, i.e.
L:R?> — R? L(x,y) = (ax + by +c,dx +ey + f), (12.1)

for some constant real numbers a,b,c,d,e, f.

By using the matrix language, the action of the map L can be written in the form

L =leal | 5 o |+l

The affine transformation L can be also identified with the map L¢ : R>*! —s R?*! given by

(3]) - (5] -[2 6L

=y ] i

y f
Lemma 12.1. If (aB — bA)? + (dB — eA)? > 0, then the affine transformation maps the line

, where [L] =

(d) Ax+By+C=0

to the line
€A —dB)x+ @B —bA)y+ bf —ce)A — (af — cd)B+ (ae — bd)C=0.

IfaB—bA = dB —eA = 0, then ae — bd = 0 and L\d is the constant map (%, fB;C>.
Definition 12.2. An affine transformation (14.1) is said to be singular if

a

d

IZ ’ =0ie. ae—bd =0.
and non-singular otherwise.

12.1.1 Translations

Note that the affine transformation L is nonsingular if and only if it is invertible. In such a case the
inverse L~! is a non-singular affine transformation and [L~!] = [L] 1.

Definition 12.3. The translation of vector (h,k) € R? is the affine transformation

T(hk) : R> — R?, [T(h, k)] (x,y) = (x +h,y +k).

e ([G]) =[] -6 2] 5+ 2]

bl =g 7]

Thus

ie.

Note that the translation T(, k) is non-singular (invertible) and (T (h,k)) ! = T(—h, —k).
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12.1.2 Scaling about the origin

Definition 12.4. The scaling about the origin by non-zero scaling factors (sy,s,) € R? is the affine
transformation
S(sx,sy) : R — R?, [S(sy,5)] (x,y) = (sx - X, 8y - ¥).

sen ([3])-[23]-5 2 1[5)

Sewsll=| 5 5 |-

Sy

Thus

ie.

Note that the scaling about the origin by non-zero scaling factors (sy, sy) € R?is non-singular
(invertible) and (S(sy,sy)) " = S(s;',5, ).

12.1.3 Reflections

Definition 12.5. The reflections about the x-axis and the y-axis respectively are the affine transformation

Ty Ty R?> — R?, re(x,y) = (x,—y), ry = (—x,y).

s =15]=1 210

VA:[O_$}$MMWVHZ[_32}

Thus

ie.

Note that 7, = S(—1,1) and r, = S(1, —1). Thus the two reflections are non-singular (invertible)

and ;! =71y, ry_l

=1y
Definition 12.6. The reflection r; : R? — R? about the line | maps a given point M to the point M’
defined by the property that [ is the perpendicular bisector of the segment MM’. One can show that
the action of the reflection about the line [ : ax + by 4+ ¢ = 0is

n(x,y)= b — azx_ 2ab  2ac  2ab x+a2 —? . 2bc
W Y=\ s 2re 2y 2rnd 2t e)
Thus
[ b2 — azx _2ab - 2ac
[¢] x — a? + b? ag + b;y a? + b?
y _ 2ab o b 2bc
PRy A Ry K )
[ b2 —a? 2ab 2ac
_ 2402 a2+ b2 X\ _ | a?24b?
- 2ab a* — b? [ y ] o |
A a® + b?
ie.

"] = 1 b* —a*> —2ab
U= 25| —2ab -1 |-

Note that the reflection r; is non-singular (invertible) and r;l =1
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12.1.4 Rotations

Definition 12.7. The rotation Ry : R? — R? about the origin through an angle § maps a point
M(x,y) into a point M'(x’, ') with the properties that the segments [OM] and [OM’] are congruent
and the m(]\m’ ) = 6. If 6 > 0 the rotation is supposed to be anticlockwise and for 6 < 0 the
rotation is clockwise. If (x,y) = (r cos ¢, sin @), then the coordinates of the rotated point are(r cos(6-+
@), rsin(0+¢)) = (x cos §—y sin 6, x sin 0+y cos 6), i.e

Ro(x,y) = (xcos@—ysinb, x sin0+y cosb).

Thus
RS x | xcos® —ysinf
0 Y ~ | xsinf + ycos6
| cosf —sin® x
~ | sinf  cos6 v |’
ie.

cosf —sinf
[Re] = [ sin 6 cos @ } ’

Note that the rotation Ry is non-singular (invertible) and R, V=R

12.1.5 Shears

Definition 12.8. Given a fixed direction in the plane specified by a unit vector v = (v, v2), consider
the lines d with direction v and the oriented distance ¢ from the origin. The shear about the origin of
factor r in the direction v is defined to be the transformation which maps a point M(x,y) on d to the
point M’ = M + rév. The equation of the line through M of direction v is v, X — v1Y + (v1y — v2x) =
0. The oriented distacnce ¢ from the origin to this line is 71y — vox. Thus the action of the shear
Sh(v,r) : R> — R? about the origin of factor r in the direction v is

Sh(v,r)(x,y) = ,y) + ré(vl, v7)
L, Y) + (r(vy — 02x)01, r(v1y — v2x)0v7)
LY) + (—rvlvzx + rvly, rv3x + 1ro102Y)
1 — rv102)x 4 ro2y, —rv3x + (1 + ro102)y)

(x
(x
= (x
= ((

Thus
. x B (1 — rvlvz)x + rv%y
| 1=rvvm 1’0% X
- —rv% 14 rv102 vy’
| 1—=roj0, 1’0%
ie. Sh(o)) = | 1
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12.2 Problems

1. Find the image of the triangle ABC through the reflection in the line (d) x —y = 2, where
A(—1,2), B(—2,—1) and C(3,3).

Solution.
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2. Find the image of the triangle ABC through the clockwise rotation of angle 30°, where A(6,4),
B(6,2) and C(10,6).

Solution.
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3. Consider a quadrilateral with vertices A(1,1), B(3,1), C(2,2), and D(1.5,3). Find the image
quadrilaterals through the translation T(1,2), the scaling S(2,2.5), the reflections about the x
and y-axes, the clockwise and anticlockwise rotations through the angle 77/2 and the shear

Sh((z/\@,l/\@),m).

Solution.
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4. Let M(x,y) be a mobile point on the ellipse (£) Z—i + Z—Z = 1. Show that the locus of centroids
of the triangles MFF’, where F and F' are the foci of the ellipse, is the image through a scalling
of equal factors (a homothety) of the given ellipse £. Find the equation of the locus..

Solution.
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5. Consider the line (d) ax + by + ¢ = 0 and the points A, B ¢ d. Find the coordinates of the point
M € d such that dist(A, M) + dist(M, B) is minimal.

Solution.
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13 Week 13

13.1 Homogeneous coordinates
The affine transformation

L:R* — R? L(x,y) = (ax + by +c,dx+ey+ f)
can be written by using the matrix language and by equations:

1. (a) indentifying the vectors (x,y) € R? with the line matrices [x y] € R*2 and implicitely
R? with R1*2:
a d
eyl =feol | 0| +lesl

(b) indentifying the vectors (x,y) € R? with the column matrices [ ;C ] € R>*! and im-

=L ]+ L5 )

a
d
x' =ax+by+c X'l [a bl[x c
> Lomarety ==l L]

Observe that the representation

plicitely R? cu R?*1;

is equivalent to

x' a b c [ x
y |=|d e f vy .
1 001 |1

In this lesson we identify the points (x,y) € R? with the points (x,y,1) € R® and even with the
punctured lines of R?, (rx,ry,r), ¥ € R*. Due to technical reasons we shall actually identify the
points (x,y) € R? with the punctured lines of R® represented in the form

rx
ry
;

and the latter ones we shall call homogeneous coordinates of the point (x,y) € R?. The set of ho-
mogeneous coordinates (x,y,w) will be denoted by RIP? and call it the real projective plane. The

homogeneous coordinates (x,y, w) € RP?, w # 0si (%, %, 1)represent the same element of RIP>.

, reRY,

Remark 13.1. The projective plane RIP? is actually the quotient set (R®\ {0})/ ~, where’ ~ is the
following equivalence relation on R3 \ {0}:

(x,y,w) ~ (a,B,7) & Ire R*al (x,y,w) =r(a,B,7).

Observe that the equivalence classes of the equivalence relation ~' are the punctured lines of R®
through the origin without the origin itself, i.e. the elements of the real projective plane RIP>. By the
column matrix

X
Yy
w

we also denote the equivalence class of (x,y,w) € R3\ {0}. The meaning of this notation will be
understood, each time, from the context.
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Definition 13.1. A projective transformation of the projective plane RIP? is a transformation

x a b c x ax + by +cw
L:RP>P —RP’, L|y |=|de f||ly |=]|dct+ey+fuw |, (13.1)
w g h k w gx + hy + kw

wherea,b,c,d,e, f,g,h,k € R. Note that the projective transformation L is defined by its homogeneous
transformation matrix

a b c
d e f
g h k

Observe that a projective transformation (14.2) is well defined since

rx arx + bry + crw r(ax 4+ by + cw)
Llry | =|drx+ery+ frw | = | r(dx+ey+ fw)
rw grx + hry + krw r(gx + hy + kw)

If ¢ = h = 0and k # 0, then the projective transformation (14.2) is said to be affine. The restriction
of the affine transformation (14.2), which corresponds to the situation ¢ = & = 0 and k = 1, to the
subspace w = 1, has the form

X a b c x ax + by + cw
Lily|=|de f y | =|dx+ey+fw |, (13.2)
1 0 01 1 1

ie.
{x’:ax+by+c (133)

y =dx+ey+f.

Remark 13.2. If Ly, L, : RIP? — RIP? are two projective applications, then their product (concatena-
tion) transformation L; o L, is also a projective transformation and its homogeneous transformation
matrix is the product of the homogeneous transformation matrices of L1 and L, .

Indeed, if
[x ] [a by o T x ]
Li|y |=|d e fi y
Lw ] & m k][ w]
and L ~ S
X an bz Co X
Lyly |=|d e f y
Ll w ] [& h k|| w ]
then
x a1 b o a, by o X
(LioLy) |y | = di e1 fi dy e f Yy
w g1 ik 2 h ke w

Remark 13.3. If Ly, L, : RIP? — RIP? are two affine applications, then their product L o L, is also
an affine transformation.

13.2 Transformations of the plane in homogeneous coordinates

In this section we shall identify an affine transformation of RIP? with its homogeneous transformation
matrix
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13.3 Translations and scalings

e The homogeneous transformation matrix of the translation T (1, k) is
1 0 h
T(h,k)y=10 1 k
0 01

e The homogeneous transformation matrix of the scaling S(s, s, ) is

sy 0 O
S(sx,sy) =10 s, 0
0O 0 1

13.4 Reflections

e The homogeneous transformation matrix of reflection r, about the x-axis is

Iy =

oo
|
oo
oo

e The homogeneous transformation matrix of reflection r, about the y-axis is

ry—

S O -
S = O

0
0
1

e The homogeneous transformation matrix of reflection r, about the line / : ax + by +c = 0'is

b2 — 42 _ 2ab B 2ac
a2+b2 112—|—b2 a2_|_b2
=1 _ 2ab a? — b? B 2bc
a2+b2 ﬂ2—|—b2 a2_|_b2
0 0 1

Since in homogeneous coordinates multiplication by a factor does not affect the result, the above
matrix can be multiplied by a factor a? + b? to give the homogeneous matrix of a general reflection

b2 —a®2 —2ab —2ac
—2ab  a*—b> —2bc
0 0 a? + b?

Example 13.1. Consider a line (d) ax + by + ¢ whose slope is tgf = —g. By using the observation

that the reflection 7, in the line 4 is the following concatenation (product)
T(0,—c/b)oRgoryoR _goT(0,c/b),

one can show that the homogeneous transformation matrix of 7, is

b? — g2 _ 2ab _ 2ac
[12—|—b2 a2+b2 a2+b2
_ 2ab a? — b? _ 2bc
Ll2—|—b2 a2+b2 a2+b2
0 0 1

Cornel Pintea Page 156 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

Solution. The homogeneous matrix of the concatenation
T(0,—c/b)oRyporyoR_goT(0,c/b)

is

1 0 0 cosf —sinf O 1 0 O cosf sinf O 1 0 O
0 1 —c/b sinf cosf O 0 -1 0 —sinf cosf 0 0 1 c¢/b
00 1 0 0 1 0O 0 1 0 0 1 0 0 1
cos20 —sin?0  2sinfcosf 2% sin 6 cos 0
= 2sinfcosf  sin?6 — cos? 6 % (sin2 0 — cos? 6 — 1) . (134)
0 0 1
. a . a2 sin’6 sin’ 6 1 —cos?6
Since tgf = ~y it follows that w2 = o020 = T e 0 = o0 namely
2 2
.2, 4 2, b
SN’ 9 = m and COS 9 = m
Thus b o
o a B sinf _a
s1n(9—j:azi+b2 and COS@—:F\/m,  — = tgb A
b
Therefore sinf cos 0 = — azaﬁ and the matrix (13.4) becomes
b? — a2 2ab c 2ab b? — a2 2ab 2ac
2+ 2+ Cba2+ 12 22 2+ 242
_ 2ab a? — b? c a? — bJE 1 = 2ab a% — b? 2bc
2+ a2 +b2 b \a2+b2 240 @2+ a4 b2
0 0 1 0 0 1

13.5 Rotations

The homogeneous transformation matrix of the rotation Ry about the origin through an angle 0 is

cosf —sinf 0
Ry=] sinf cosf O
0 0 1

Example 13.2. The homogeneous transformation matrix of the product (concatenation) T(h, k) o Ry
is the product

1 0 h cosf® —sinf 0 cosf —sinf h
01 k sinf cosf®@ O | = | sinf cosf k
0 01 0 0 1 0 0 1

In order to find the homogeneous transformation matrix of the inverse transformation
(T(h,k)oRg) " =Ry o T(h k)™ = R_goT(—h,—k)

of the product (concatenation) homogeneous transformation T (4, k) o Ry we can either multiply the
homogeneous transformation matrices of the inverse transformations R, = R, Vand T(hk)™' =
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T(—h, —k) or use the next proposition. The product of the homogeneous transformation matrices of
the inverse transformations R, ' = R, and T(h, k)~ = T(—h, —k) is

cos(—0) —sin(—0) O
0
1
1
0

1 0 —h
sin(—0) cos(—0) 01 —k|=
0 0 00 1

cosf sinf 0
= | —sinf cosf 0
0 0 1 00
cosf sinf —hcosf —ksinf
= | —sinf cosf hsinf —kcosb
0 0 1

Proposition 13.1. A homogeneous transformation L is invertible if and only if its homogeneous transforma-
tion matrix, say T, is invertible and T~ is the transformation matrix of L1,

Proof. Suppose that L has an inverse L~! with transformation matrix T;. The product trans-
formation L o L1 = id has the transformation matrix TT; = I. Similarly, L™! o L = I5 has the
transformation matrix Ty T = I5. Thus Ty = T~ 1. Conversely, assume that T has an inverse T-1, and
let L be the homogeneous transformation defined by T~1. Since TT™! = and T~ T = I, it follows
that LoL; = I and L1 o L = I. Hence L, is the inverse transformation of L.

Example 13.3. The homogeneous transformation matrix of inverse
(T(h,k)oRg) " =Ry o T(h k)™ = R_go T(—h,—k)

of the product (concatenation) homogeneous transformation T (%, k) o Ry is the matrix

cosf —sinf h - cosf sin@ —hcosf —ksinf
sinf cos@ k = | —sin® cosf® hsinf —kcos0
0 0 1 0 0 1

13.6 Shears

The homogeneous transformation matrix of the shear is

1—rvivs rv% 0
[Sh(v,1)] = —rv3  1+4rvop 0
0 0 1

13.7 Problems

1. Find the concatenation (product) of an anticlockwise rotation about the origin through an angle
of 2Z followed by a scaling by a factor of 3 units in the x-direction and 2 units in the y-direction.
(Hlnt S (3, 2)R37T/2)

Solution
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2. Find the homogeneous matrix of the product (concatenation) S(3,2) o Rz

Solution
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3. Find the equations of the rotation Ry(xo, yo) about the point My(xo, o) through an angle 6.

Solution The homogeneous transformation matrix of the rotation Ry(xo,1o) about the point
Moy (x0, o) through an angle 6 is

Ro(x0,y0) = T(x0,¥0)ReT(—x0, —Y0)

[1 0 xo cosf —sinf 0 1 0 —xp
=101 y sinf cosf 0 01 —yo
| 0 0 1 0 0 1 00 1

[ cosf —sin® —xpcosf+ yosinb + xg
= | sinf cos@ —xpsin® —ypcost+yo
0 0 1

Thus, the equations of the required rotation are:

{ x' =xcosb —ysinf — xpcosf + ypsinf + xg
/

Yy =xsinf +ycosd — xgsinf —ygcos O +yo.

4. Show that the concatenation (product) of two rotations, the first through an angle 6 about a

point P(xo, 1o) and the second about a point Q(x1,y1) (distinct from P) through an angle —6 is
a translation.

Solution
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14 Week 14

14.1 Transformations of the space

Definition 14.1. An affine transformation of the spacee is a perturbation bya atranslation of a linear
transformation, i.e.

L:R®>— RS, T(x,y,z) = (ax+by+cz+d,ex+ fy+ gz + h,kx + ly + mz + n), (14.1)
for some constant real numbers a,b,c,d, e, f, g, h, k, I, m, n.
By using the matrix language, the action of the map L can be written in the form
a e k

L(x,y,z)[xyz]{b fl

c g m

+ [d hn).

The affine transformation L can be also identified with the map L° : R3*1 — R3*1 given by

x ax +by+cz+d a b c X d
L¢ y =|ex+fy+gz+h | =|e f g y |+ | h
z kx +1ly +mz+n k I m z n
x d a b c
=I[L |y |+ | h |, where[Ll]=|¢e f g
z n k1 m
Definition 14.2. An affine transformation (14.1) is said to be singular if
a b c
e f g |=0.
k I m
and non-singular otherwise.
14.1.1 Translations
The translation of R® of vector (h,k,1) € R3 is the affine transformation
T(h,k,1): R® — R3, T(h,k,1)(x1,x2,%3) = (x1 +h,x2 +k,x3 +1).
Its associated transformation is
X1 X1 1 0 0] |x h
T(h k)¢ : R — R, T(h,k,l)c( X2 ) =lx|=[010||x|=+]|k,
X3 —X3 0 0 1] [x3 !

which shows that its standard matrix and equations are:

(e)

(@]

1 0 w=x1+h
[T(h,k1)] = |:0 1 0] and wy =xo + k.
0 1 w3 = x3 + 1

Cornel Pintea Page 161 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

14.1.2 Scaling about the origin

The scaling about the origin by non-zero scaling factors (sy, sy, s:) € R? is the affine transformation

S(sx,8y,8:) 1 R — R3, [S(sx,8y,5:2)] (x,1,2) = (55 x,5 Y, 5 - 2).

Thus
X Sy " X s, 0 O X
[S(sx,5y,52)°] y =|s,;y | =0 s, 0 v |,
z Sy Z 0 0 s, z
ie.
sy, 0 O
[S(Sx,Sy,Sz)] - 0 Sy 0
0 0 s,

Note that the scaling about the origin by non-zero scaling factors (s, sy, s:) € R? is non-singular

(invertible) and (S(sy,sy,52)) ! = S(s;l,sy*l,s;l).

14.1.3 Reflections about planes

1. The reflection of R® through the xy-plane is ry, : R® — R3, ry,(x1,x2,x3) = (x1,%2, —x3). Its
associated transformation is

X1 X1 10 0 X1
iy R SR ry (] )= [m | =01 0 |xf,
X3 —X3 0 0 -1 X3

which shows that its standard matrix and equations are:

1 0 O w1 = X1
[ryl =10 1 0 and Wy = X7
00 -1 w3 = 13

2. The reflection of R® through the xz-plane is 1y, : R® — R3, ry.(x1,x2,%3) = (x1, —%x2,x3). Its
associated transformation is

X1 X1 1 0 0 X1
re R SR (x| ) = [—2| = [0 -1 0 |x],
X3 X3 0 0 1 X3
which shows that its standard matrix and equations are:
1 0 0 w1 =x
[sz] =10 -1 0 and Wy = —Xp .
0 0 1 w3 = X3

3. The reflection of R3 through the yz-plane is Tyz R?® — RS, ryz(x1,X2,x3) = (—x1,x2,x3). Its
associated transformation is

X1 —Xl- -1 0 0 X1
AR SR (ol )= x| =0 10| |xf,
X3 X3 | 0 01 X3
which shows that its standard matrix and equations are:
-1 0 O w1 = —X1
[T’yz] = 0 1 0 and Wy = Xo
0 01 [ w5 = x5
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4. The reflection of R® through an arbitrary plane 7 : ax; + bxy + cx3 +d = 0is r7 : R — R3, given

by
(—a® + b? + c?)x — 2aby — 2acz — 2ad
771(95/%2) = 2+ 02+ 2 ’
—2abx + (a® — b* + ¢?)y — 2bcz — 2bd
a2 + b? 4 ¢2 !
—2acx — 2bcy + (a* + b — ¢?)z — 2cd
a2 + b2 4 ¢2 ’

Its associated transformation 7, : R¥*! — R3>*! is given by

(—a? + b + c?)x — 2aby — 2acz — 2ad

a? + b? 4 c?
. ( y ) _ | —2abx + (a*> - b* + cJE)y — 2bcz — 2bd
" Z B a% + b2 + 2
—2acx — 2bcy + (a* + b? — ¢?)z — 2cd
a% + b% 4 2
1 —a% 4+ b+ 2 —2ab —2ac X a
= —2ab a? — b2 + c? —2bc y| —2d |b
2142
@bt —2ac —2bc a2+ b2 —c2| |z c

which shows that its standard matrix and equations are:

1 —a? + b + 2 —2ab —2ac
[1’7-[] == > 12 2 —2[117 a2 - bz + C2 —ZbC
a*+bi+c —2ac —2bc a?+b* —c?
and
(—a® + b? + c?)x — 2aby — 2acz — 2ad
w =
ﬁ+ﬁt@
—2abx + (a* — b* + ¢*)y — 2bcz — 2bd
Wy =
a%z + b2 + 2
. = —2acx —2bcy + (a® +b* — c®)z — 2cd
S = a2 + b2 4 2

14.1.4 Rotations

The rotation operator of R® through a fixed angle 0 about an oriented axis, rotates about the axis of rota-
tion each point of R? in such a way that its associated vector sweeps out some portion of the cone
determine by the vector itself and by a vector which gives the direction and the orientation of the con-
sidered oriented axis. The angle of the rotation is measured at the base of the cone and it is measured
clockwise or counterclockwise in relation with a viewpoint along the axis looking toward the origin.
As in R?, the positives angles generates counterclockwise rotations and negative angles generates
clockwise roattions. The counterclockwise sense of rotaion can be determined by the right-hand rule:
If the thumb of the right hand points the direction of the direction of the oriented axis, then the
cupped fingers points in a counterclockwise direction. The rotation operators in R? are linear.
For example

1. The counterclockwise rotation about the positive x-axis through an angle 6 has the equations

w, = X
w, = ycost —zsinf ,
w, = ysint+zcosb

Cornel Pintea Page 163 of © ’Babes-Bolyai’ University 2016



MLEO0014-Analytic Geometry, Lecture Notes ”Babes-Bolyai” University, Department of Mathematics

its standard matrix is
1 0 0
0 cosf —sinf |.
0 sinf cosf

2. The counterclockwise rotation about the positive y-axis through an angle 6 has the equations

w, = xcosb+zsinf
w, =Y ’
w, = —xsinf+zcosb

its standard matrix is
cosf® 0 sin6
0 1 0 .
—sinf® 0 cosf

3. The counterclockwise rotation about the positive z-axis through an angle 6 has the equations

w, = xcosf—ysind
w, = xsin®-+ycosb ,
w, = z
its standard matrix is
cosf —sinf 0
[ sinf cosf O ] .
0 0 1

14.2 Homogeneous coordinates
The affine transformation

L:R?> — R® T(x,y,z) = (ax + by +cz +d,ex + fy + gz + I kx + ly + mz + n),
can be written by using the matrix language and by equations:

1. (a) indentifying the vectors (x,y,z) € R3 with the line matrices [x y z] € R"*3 and implicitely
R3 with R"3. With this identification, the action of L is given by

a e k
Lixyzl=[xyz] | b f I |+[dhn].
c g m
X
(b) indentifying the vectors (x,1,z) € R® with the column matrices | y | € R**! and im-
z

plicitely R3 with R3*1, We de note by L° : R3*1 — R3*! the associated map via this
identification, and its action is given by

x ax+by+cz+d a b c x d
LC<{y ) =|ex+fy+gz+h !e f g] y |+ h]
z kx+1ly+mz+n k1 m z n
x [a b ¢
=[L]|y |+ | h |, where[L]=|e f g
z n k1 m

¥ =ax+by+cz+d x! a b c x [ d
20y =ex+fyt+gz+h |y |=|e f g y|+|h
Z =kx+ly+mz+n z/ kI m z | n
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Observe that the representation

x! b ¢ X d
v |=|e f g y |+ | h
z/ k'l m z n
is equivalent to
x! a b c d X
v |_|e fgh y
z/ k'l m n z
1 00 0 1 1

In this section we identify the points (x,y,z) € R® with the points (x,y,z,1) € R* and even with the
punctured lines of R*, (rx,ry,rz,r), r € R*. Due to technical reasons we shall actually identify the
points (x,y,z) € R® with the punctured lines of R* represented in the form

rx
r
Y , r € RY,
rz
r

and the latter ones we shall call homogeneous coordinates of the point (x,y,z) € R3. The set of ho-

mogeneous coordinates (x,y,z,w) will be denoted by RIP® and call it the real projective space. The
Yy

homogeneous coordinates (x,y,z, w) € RIP?, w # 0 and (%, o %, 1) represent the same element of
RIP3.

Remark 14.1. The projective space RIP? is actually the quotient set (R*\ {0})/ ~, where ' ~/ is the
following equivalence relation on R*\ {0}:

(x,y,z,w) ~ (a,B,7,0) & Ir € R al (x,y,z,w) =r(a,pB,v,0).

Observe that the equivalence classes of the equivalence relation ~' are the punctured lines of R3
through the origin without the origin itself, i.e. the elements of the real projective plane RIP?. By the
column matrix

we also denote the equivalence class of (x,v,z,w) € R3\ {0}. The meaning of this notation will be

understood, each time, from the context.

Definition 14.3. A projective transformation of the projective space RIP? is a transformation

x a b c d x ax + by +cz +dw
. RIP3 3 y |_|e f g h y | _ | ext+fy+gz+huw
LiRP? — R, L z | |kl mn z | | kx+ly+mz4nw |’ (14.2)
w p q r s w px+qy +rz—+sw
wherea,b,c,d,e, f,g,h,k,1,m,n,p,q,r,s € R. Note that
a b c d
e f g h
kI m n
p q r s
is called the homogeneous transformation matrix of L.
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Observe that a projective transformation (14.2) is well defined since

tx atx + bty + ctz + dtw t(ax + by + cz + dw)
Ll etx + fty +gtz+htw | | tlex+ fy + gz + hw)
tz | | kix+lty+mtz+ntw | | t(kx + ly + mz + nw)
tw ptx + qty +rtz + tsw t(px +qy +rz + sw)

If p=q =r =0ands # 0, then the projective transformation (14.2) is said to be affine. The restriction
of the affine transformation (14.2), which corresponds to the situation p = g =r = 0ands =1, to
the subspace w = 1, has the form

x a b c d x ax +by+cz+d
yi|_|e f & ||y ex+ fy+gz+h

L1217 x 1 mon z kx+ly+mz+n |’ (14.3)
1 0 00 1 1 1

ie.
¥ =ax+by+cz+d
Yy =ex+fy+gz+h (14.4)
Z =kx+Ily+mz+n.

Remark 14.2. If L{, L, : RIP> — RIP? are two projective applications, then their product (concatena-
tion) transformation L; o L, is also a projective transformation and its homogeneous transformation
matrix is the product of the homogeneous transformation matrices of L1 and L, .

Indeed, if

[ X T [ aq bl C1 d1 1T X T
LY 2| fi &1 M y
! z kl 11 mp M zZ
e L1 1 st | [ w |
and - ) o
X an bz Co dz X
LYV |_|e fo&g ||y
2 V4 k2 12 nmy 1y 4
L w i L pz qZ 1) S2 1L w i
then
X a b1 C1 dl an b2 Co dz X
v | _ er fi &1 m e2 fo & h y
(Lo L2) z | ki L m m ko L my np z
w pPr 41 11 S1 p2 42 12 S2 w

Remark 14.3. If L, L, : RP> — RIP? are two affine applications, then their product L; o L, is also
an affine transformation.

14.3 Transformations of the space in homogeneous coordinates
14.3.1 Translations
The homogeneous transformation matrix of the translation

T(hk1):R® = R3, T(hk1)(x1,x2,x3) = (x1+h,x0+k x3+1)

is

1 0 0 h
010 k
0 01 I
0 001
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14.3.2 Scaling about the origin

The homogeneous transformation matrix of the scaling
S(sx,8y,8:) 1 R> — R3, [S(sx,8y,52)] (x,1,2) = (55 %,5/y,5; - 2)

is

s 0.0 0
0 s, 0 0
0 0 s 0
00 0 1

14.3.3 Reflections about planes

1. The homogeneous transformation matrix of the reflection
. R3 3 —
Try : R” = R, 1y (x1, X2, x3) = (x1, X2, —X3)

of R3 through the xy-plane is

10 0 O
01 0 O
00 -10
00 0 1

2. The homogeneous transformation matrix of the reflection
. R3 3 —
ryz R = R°, 7y2(x1, X2, x3) = (—x1,%2,X3)

of R? through the yz-plane is

-1 0 0 O
0 100
0 010
0 0 01

3. The homogeneous transformation matrix of the reflection
. R3 3 —
xz R = R”, 72 (x1, X2, x3) = (X1, —X2,X3)

of R? through the xz-plane is

1 0 00
0 -1 00
0 0 10
0 0 01

4. The homogeneous transformation matrix of the reflection 7, : R> — R3

(—a? + b + c?)x — 2aby — 2acz — 2ad

re(x,y,2z) = <

a2 + b* + c? ’
—2abx + (a?> — b* + ¢?)y — 2bcz — 2bd

a? 4 b2 4 c? ’
—2acx — 2bcy + (a* + b — c?)z — 2cd

a? 4+ b% + ¢? '
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through an arbitrary plane 7 : ax; + bxy +cx3 +d = 0is

[—a? + D> +¢? —2ab —2ac —2ad
ﬂ2+b2+C2 a2+b2_|_c2 El2+b2+C2 ﬂ2+b2+c2
—2ab a2 — >+ 2 —2bc —2bd
ﬂ2+b2+c2 a2+b2+c2 El2+b2+C2 a2+b2+C2
—2ac —2be a% 4+ b? — ¢? —2cd
A2+b?+c2 24+ +c2 a2+ +c2 a4+ c?
L 0 0 0 1 i

Since in homogeneous coordinates multiplication by a factor does not affect the result, the
above matrix can be multiplied by a factor a* + b? + ¢? to give the homogeneous matrix of a
general reflection

—a? 4+ b* + ¢? —2ab —2ac —2ad
—2ab a? —b*+¢? —2bc —2bd
—2ac —2bc a? +b?— 2 —2cd

0 0 0 a2 + b+ c?

14.3.4 Rotations

1. The homogeneous transformation matrix of the counterclockwise rotation about the positive
x-axis through an angle 6 is

1 0 0 0
0 cosf —sinf 0
0 sinf cosf O
0 0 0 1

2. The homogeneous transformation matrix of the counterclockwise rotation about the positive
y-axis through an angle 6 is

cosff 0 sinf O
0 1 0 O
—sinf 0 cosf O
0 0o 0 1

3. The homogeneous transformation matrix of the counterclockwise rotation about the positive
z-axis through an angle 0 is

cosff —sinf 0 O
sinf cosf® 0 O
0 0 10
0 0 0 1

14.4 Problems
1. Find the homogeneous transformation matrix of the product (concatenation)
T(1,1,—2) o Rot,(7/6),
where Rot,(71/6) stands for the rotation about the positive y-axis through an angle 6.

2. Find the homogeneous transformation matrix of the rotation through an angle 6, of the space,
about an arbitrary line.

3. Find the homogeneous transformation matrix of the rotation through an angle 6 about the line
PQ, where P(2,1,5) and Q(4,7,2).
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