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Introduction

The first steps in the field of multialgebras were made in the 1930s in a paper presented by the
French mathematician F. Marty at the 8th Congress of the Scandinavian Mathematicians (1934).
In this paper, the author presented a generalization for groups, called hypergroup, as well as some
of its properties. From the very next articles of Marty, one could foresee that these objects can be
used as tools in other mathematical theories. Some of the connections between hyperstructures and
other areas of mathematics (connections that I noticed while preparing this thesis) concern rational
fractions (Marty: [49]), ordered sets (Benado: [1], [2], Calugareanu and Leoreanu: [8]), character
tables of finite groups (Roth: [72], [74], McMullen and Price: [51]), binary relations (Rosenberg: [71],
Corsini: [11], Corsini and Leoreanu: [14]), fuzzy sets (Corsini and Leoreanu: [12], [15], Leoreanu:
[44]), abstract data types (Walicki and Meldal: [89]). I mention that the weak Cayley table, used
by Johnson, Mattarei and Sehgal in [37] for determining 1 and 2-characters of a finite group, is an
example of multiloop (although the authors do not specify it). Our perspective on the connections
between multialgebras and other fields of research is completed by P. Corsini and V. Leoreanu in
[16].

The first multialgebras that were studied are hypergroupoids, and semihypergroups and hyper-
groups. Later, there also appeared results concerning other hyperstructures such as hyperrings,
hypermodules, hyperlattices. The Romanian mathematician Mihail Benado had a major contri-
bution to the study of hyperlattices. Gratzer’s and Pickett’s papers ([27]) and ([67] respectively)
are extremely important for the theory of multialgebras. In these works, multialgebras are seen as
particularizations of the relational systems which generalize the notion of universal algebra and the
results obtained here place multialgebras right next to the universal algebras. This is also proved
by some of the properties established here, which extend some of the results that are already known
for universal algebras. Within the framework defined by Gritzer and Pickett also lie works such
as [36] (Hoft and Howard), [33], [34] (Hansoul), [75] (Schweigert), [90] (Walicki and Biatasik) and
the more recent [4] (Breaz and Pelea), [59], [60], [61] (Pelea). We should notice that in the above
mentioned papers of Hansoul, Walicki and Biatasik the notion of multioperation does not include the
fact that its images are nonempty sets. Multialgebras which have such multioperations are closer
to the relational systems than to the universal algebras and in their case Gréitzer’s representation
theorem ([27]) does not apply anymore.

Like in other theories, in the theory of multialgebras it is very important to obtain new objects

starting from given objects and this is what the constructions of multialgebras do. The simplest



constructions are the formation of submultialgebras and of factor multialgebras. The latter have
been studied from the outset of this theory and this is not surprising because the first hypergroups
emerged as a result of the factorization of a group modulo an equivalence relation determined by a
subgroup and, later, G. Gritzer proved that any multialgebra can be obtained by an appropriate
factorization of a universal algebra modulo an equivalence relation. Our research concerns a field
where there already existed results on direct and subdirect products (of multialgebras), as well as
some properties on direct limits of direct systems and inverse limits of inverse systems of particular
hyperstructures. Among the constructions studied in this thesis, we mention submultialgebras and
especially the submultialgebra generated by a subset, the factor multialgebras, the direct products,
the direct limits of direct systems and the inverse limits of inverse systems of multialgebras.

The first chapter begins with an introductory paragraph where we present the notion of mul-
tialgebra and a few particular multialgebras which will be used along the thesis. Starting from a
20 multialgebra, Pickett introduces in [67] a structure of universal algebra * () on the set P*(A)
of the nonempty subsets of A. In the second paragraph of Chapter 1, we remind the way that are
defined polynomial functions and the term functions of a universal algebra, as well as the way that
the latter can be obtained from terms. This discussion occurs in the case of P*(2(), which allows
the introduction of particular algebraic functions that prove to be useful in paragraphs 1.6 and 1.8.

The third paragraph concerns the submultialgebras of a multialgebra. In this paragraph, the
original contribution is the characterization of the submultialgebra generated by a subset in a mul-
tialgebra (Theorem 1.3.13). Pickett noticed that, given a subset B of the support set A of a multial-
gebra 21, B is a submultialgebra of the multialgebra 2 if and only if P*(B) is a submultialgebra for
the algebra P*(2A). Starting from this, we can write the submultialgebra generated by a subset X
of a multialgebra 2 as a union of all the images of one element subsets of X through term functions
of P*(2A) (Theorem 1.3.13).

There exist several generalizations of the notion of homomorphism for multialgebras. We only
use two of them: one that is called homomorphism (which results from considering the multialgebras
as relational systems) and another one called ideal homomorphism (whose definition is analogous
to the definition of universal algebra homomorphism). We used the fact that the ideal homomor-
phisms of multialgebras determine and are determined by a special class of equivalence relations
defined on multialgebras, namely ideal equivalences (Pickett ([67])). In the same paper, Pickett
mentions a connection between ideal homomorphisms of multialgebras and certain homomorphisms
of the corresponding nonempty algebras of subsets. Whether by using this connection or directly,
in paragraph 1.4 we established connections of the homomorphism between two multialgebras 2, B
with the term functions of the universal algebras P*(2(), B*(2B). Thus, in Proposition 1.4.9 and
Corollary 1.4.14 we proved that for these term functions and for the homomorphisms used here
certain properties similar to the those established for universal algebras hold. We also showed that
the ideal equivalences of a multialgebra 2 are in close connection with certain congruences of the
algebra P*(2A) (Theorem 1.4.5), which allows a characterization of the ideal equivalences of a mul-
tialgebra (Proposition 1.4.7). The original results in paragraph 1.3 and 1.4 were obtained together
with Simion Breaz and published in [4].



One of the most important results concerning multialgebras is G. Grétzer’s characterization
theorem ([27]), which proves that the study of multialgebras is a natural extension of the theory of
universal algebras. The last paragraphs of Chapter 1 come within this context. One of the problems
suggested by Grétzer in [27] is the following: What are the factor multialgebras of a group, abelian
group, lattice, ring and so on? Characterize these with a suitable axiom system.. The fact that
these particular universal algebras are defined by identities made us wonder what happens with
the identities of an algebra after the factorization modulo an equivalence relation. If we study the
definitions of the hyperstructures presented in P. Corsini’s ([10]) and T. Vougiouklis’s ([85], [86],
[87], [88]) works — some of them also presented in the first paragraph of our thesis — we can see
that it is necessary to adapt the notion of identity from universal algebras to multistructures. Thus,
we introduce two types of identities for multialgebras: (strong) identities and weak identities. One
answer to the first part of Gritzer’s problem results immediately by establishing that the identities
of a universal algebra usually become weak identities on the factor algebra. The identity of the
algebra, as well as the equivalence relation we are dealing with can make the factor multialgebra
satisfy this identity in a strong manner. In paragraph 1.5, we present a series of remarks which
confirm these statements.

It is known that by the factorization of a universal algebra modulo a congruence that includes a
relation we obtain a universal algebra in which any two elements in the given relation determine the
same class. Then, our study tries to prove that the factorization of a universal algebra modulo an
equivalence relation — which gave rise to multialgebras — can be seen as an “intermediate step” of
such a factorization. This leads to the study of certain (ideal) equivalences which have the property
that the factor multialgebras they determine are universal algebras. Such equivalences appear in the
literature from the very first papers on hypergroups (Dresher, Ore ([19]) and Ore, Eaton ([22])). A
series of important works about these equivalences of the hypergroupoids, semihypergroups, hyper-
groups, hyperrings and other particular multistructures have been published after 1990 and converge
toward the study of the smallest equivalences of this kind. In Proposition 1.6.1. we gave a charac-
terization of the equivalences of a 2 multialgebra for which the factor multialgebra is a universal
algebra and in Theorem 1.6.13 we determined the smallest equivalence o on A that has this prop-
erty. If we apply Theorem 1.6.13 to semihypergroups, hypergroups and hyperrings, we obtain the
fundamental relation of these hyperstructures (studied for example by (Corsini ([10]), Freni ([25]),
Gutan ([31]), Vougiouklis ([83])). This is why we called the relation o a fundamental relation for
the 2 multialgebra, too. We called the factor universal algebra it determines a fundamental algebra.
Using Theorem 1.6.8, where we proved that any homomorphism between two multialgebras induces
a homomorphism between the corresponding fundamental algebras, we defined a covariant functor
from the category of multialgebras of a given type into the category of the universal algebras of the
same type (Observation 1.6.21).

Naturally, we get to the following question: what happens with the (strong or weak) identities of
a multialgebra after their factorization modulo the fundamental relation? In Proposition 1.7.1, we
conclude that they become identities of the universal algebra obtained by factorization. It is easy

to notice that an identity of the fundamental algebra does not have to originate in an identity, be



it weak, of the given multialgebra. However, we established a class of multialgebras — complete
multialgebras — which have the property that any identity of the fundamental algebra is verified,
at least in a weak manner, on the original multialgebra — see the proof of Proposition 1.7.6 and
Proposition 1.7.11.

In the last paragraph of Chapter 1, we determined the smallest equivalence for which the factor
multialgebra is a universal algebra for which a given identity is verified (Theorem 1.8.3). By applying
this theorem to the case of (semi)hypergroups and to the identity which expresses the commuta-
tivity of the hyperproduct, one finds the relation introduced by Freni in [26] in order to obtain a
characterization of the derived hypergroup of a hypergroup. In this thesis, we proved that the mul-
tialgebra which results from a universal algebra % by factorization modulo an equivalence relation p
becomes, after the factorization by the relation introduced by us isomorphic to the same algebra as
the one obtained as a factor algebra of the universal algebra B modulo the smallest congruence that
contains the equivalence p, as well as the pairs of elements of 28 which become equal thanks to the
identity we are using (Theorem 1.8.9). Using Theorem 1.8.9, we established a connection between
the derived subgroup of a group and the derived subhypergroup of its factor hypergroup modulo an
equivalence relation determined by a subgroup (Example 1.8.10).

The results presented in the paragraphs 1.5, 1.6, 1.7, 1.8 are original and have been published,
accepted for publication or submitted for publication. Thus, the main result in paragraph 1.6
(Theorem 1.6.13) was published in [59] and the final part of paragraph 1.6 and paragraphs 1.7 and
1.8 constitute a paper written with Professor Ioan Purdea and which is still a preprint ([66]).

In Chapter 2, we study certain properties concerning direct products, direct limits of direct sys-
tems and inverse limits of multialgebras. All these constructions are generalizations of the properties
established for universal algebras and they are natural since one obtains objects of the category of
multialgebras corresponding to the similar constructions in the category theory. We mention that
in [90] Walicki and Bialasik obtained results concerning categorical constructions of multialgebras.
In this paper, the authors proved that multialgebras together with homomorphisms form a category
with finite products, equalizers, finite coproducts , coequalizers, and, consequently, with finite limits
and colimits. But the construction of the equalizers and of the coproducts uses very much the fact
that the image of a multioperation can be empty, so the possibility of transferring these properties to
categories whose objects are the multialgebras characterized by Grétzer’s theorem becomes uncer-
tain. As an example supporting this statement, we underline the fact that the multialgebras of type
T = (14)y<o(r) form a subcategory in the category of the relational systems of type (n, + 1),<o(r)
which is not closed under inverse limits.

Chapter 2 is a collection of results belonging to the author of the thesis. In the first paragraph, we
present a series of properties of the direct product of multialgebras, most of them published in [61].
In [90], Walicki and Biatasik proved that for two multialgebras, the direct product is the product
in the category of multialgebras. Without significantly modifying the proof, this property can be
proved for arbitrary families of multialgebras (Proposition 2.1.1). We showed that the direct product
satisfies the identities verified by the given multialgebras (Propositions 2.1.3 and 2.1.4) and that the

direct product of complete multialgebras is a complete multialgebra (Proposition 2.1.7). Another



problem we studied for each construction is whether and when the functor obtained by factorization
modulo the fundamental relation preserves them. Paragraph 2.2 presents the results obtained in
[63], a paper accepted for publication in Italian Journal of Pure and Applied Mathematics. In
Example 2.2.1, we show that the functor introduced in paragraph 1.6 usually does not commute
with the multialgebra products. However, for a more restricted case, we found a necessary and
sufficient condition for the fundamental algebra of the direct product of a family of multialgebras
to be isomorphic with the direct product of the corresponding fundamental algebras (Proposition
2.2.2). The condition in Proposition 2.2.2 is quite complicated but it leads to a sufficient condition
(Corollary 2.2.3) which helps us establish when the above property holds for hypergroups and for
complete multialgebras (Theorems 2.2.9 and 2.2.12).

In paragraph 2.3, we constructed the direct limit of a direct system of multialgebras A. We
considered the direct system A to have a (directed) ordered carrier (I, <) and we showed that
certain properties of the ordered set (I, <) facilitate this construction (Proposition 2.3.8 and Theorem
2.3.10). We proved that a class of multialgebras closed under the formation of the isomorphic images
is closed under the formation of direct limits of arbitrary direct systems if and only if it is closed
under the formation of direct limits of well ordered direct systems (Theorem 2.3.10). If we consider
that in a direct system of multialgebras all the homomorphisms are ideal, it results immediately
that if our multialgebras are algebras, then we obtain the construction with the same name from
universal algebras. In this case, from the above mentioned results we obtain Lemma 7, Theorem 2
and Theorem 4 from [29, §21]. Some of the properties established by Romeo in [70] and Leoreanu in
[40] and [46] can be obtained by using Proposition 2.3.8 and Propositions 2.3.14, 2.3.16, which state
that the direct limit of a direct system of multialgebras which satisfy a given identity, weak or strong,
verifies this identity. From Theorem 2.4.1, in which we showed that the functor F', determined by
the factorization modulo the fundamental relation, is a left adjoint for the inclusion functor, we
deduce that F' commutes with the direct limits of direct systems of multialgebras (Corollary 2.4.2).

The last construction we present in this thesis is the construction of inverse limits of inverse
systems of multialgebras. At the beginning of the paragraph 2.5, we prove that the inverse limit
of an inverse system of multialgebras of type 7 = (n4)y<o(r) in the category of the relational
systems of type (14 + 1),<o(r) is not always a multialgebra (Example 2.5.6). We also prove a series
of properties analogous to those which hold for direct limits (Propositions 2.5.14 and Theorems
2.5.14 and 2.5.17). An important part of these results consists in establishing some conditions in
which the inverse limit of an inverse system of multialgebras is a multialgebra. Let K be a class
of multialgebras of type 7 closed under isomorphic images. In Theorem 2.5.17, we established a
necessary and sufficient condition for the inverse limit of an inverse system of multialgebras from
K to be a multialgebra in K. In the paragraph 2.6, we study the commutativity of the functor F'
determined by the fundamental relation with the inverse limits of inverse systems. In general, this
functor does not commute with the inverse limits (Example 2.6.2). Starting from Proposition 2.5.14
and Theorem 2.5.14, in the last paragraph we proved Propositions 2.6.3 and 2.6.4 which present the
necessary and sufficient conditions (in certain cases) for the fundamental algebra of the inverse limit

of an inverse system of multialgebras to be the inverse limit of the inverse system formed with the



corresponding fundamental algebras. We considered the functor F' to be defined on subcategories of
multialgebras such as those in Theorem 2.5.17 and, using Propositions 2.6.3 and 2.6.4, we established
a necessary and sufficient condition for this functor to commute with the inverse limits of inverse
families (Theorem 2.6.5).

I am very grateful to my family, who proved extremely patient and understanding all along these
six years. I want to thank Professor Ioan Purdea for the discussions and the remarks which made
this thesis possible, Professor Nicolae Both and Professor George Georgescu for their suggestions
and my friend Simion Breaz for the mathematical dialogues which had an influence on the present
work. T also thank my teachers Professor Grigore Calugareanu, Professor Rodica Covaci, Professor
Andrei Marcus and my colleagues Septimiu Crivei, Christian Sacarea, Ciprian Modoi, Csaba Szanto,
Tluska Bonta, Camelia Dicu, for the friendly environment in the Chair of Algebra and for the advice
they offered me so generously.

Cosmin Pelea

Cluj—Napoca, September 2003.



Chapter 1

Multialgebras. Submultialgebras.

Factor multialgebras

1.1 Multialgebras. Definitions. Particular cases

Let A be a set and let P*(A) be the set of the nonempty subsets of A.
Definition 1.1.1. Let n € N be a nonnegative integer. A mapping A" — P*(A) is called n-ary

multioperation on A.
Remark 1.1.1. There exist nullary multioperations on A if and only if A is not empty.

Let us consider a sequence of nonnegative integers 7 = (1,)y<o(r) = (10,71, . -.,7,...) indexed
with a set of ordinal numbers {v | v < o(7)} and for any v < o(7) let us consider a symbol £, of an
n~-ary multioperation.

Definition 1.1.2. A multialgebra of type 7, A = (A, (f,)y<o(r)), consists of a set A and a family
of multioperations (fy)y<o(ry = (fo, fi,--+, fy,...) such that each f, is an n,-ary multioperation
having the symbol f,. The set A is called the support (set) of the multialgebra 2.

Ezample 1.1.3. [47] Let (G, -) be a group, H a subgroup of G and let G/H = {zH | = € G}. The
equality zH - yH = {zH | z =z'y', ' € zH, y' € yH} defines an operation on G/H if and only if
the subgroup H is normal. In general, the above equality defines a binary multioperation on G/H.

Let us remind a few particular multialgebras which will appear in our thesis:

Hypergroupoid. A multialgebra (H,o) with one binary multioperation is called hypergroupoid.
If a,b € H, the image a o b of the pair (a,b) will be called hyperproduct. Sometimes we will
use the term hyperproduct for the binary multioperation of a hypergroupoid. If A,B C H then
AoB=J{acb|a€ A, be B}.

Semihypergroup. A hypergroupoid (H, o) having the multioperation o associative, i.e. ao(boc) =
(aob)ocfor any a, b, ¢ € H, is called semihypergroup. If ay, ..., a, € H the nonempty subset a;o- - -oa,
of H will be called hyperproduct with n factors. By replacing the associativity of o with the condition

10
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ao(boc)N(aob)oc# for any a,b,c € H, called weak associativity, one obtains the definition for
H,-semigroup.

Hypergroup. Let H be a nonempty set. A semihypergroup (H,o) for which
(1.1.1) aoH=Hoa=Hforalla€ H,

is called hypergroup. An H,-semigroup satisfying (1.1.1) is called H,-group. The multialgebra from
Example 1.1.3 is a hypergroup. From (1.1.1) it follows that the equalities

(1.1.2) a/b={zre€eH|aczob}, \a={zx€cH|acboz}

define two binary multioperations on H. So, the hypergroups and the H,-groups can be seen as
multialgebras (H,o,/,\) of type 7 = (2,2,2). Let us also notice that if H # () and (H,o,/,\) is
a multialgebra of type 7 = (2,2,2) such that the multioperation o is associative (weak associative)
and the multioperations / and \ can be obtained from o using (1.1.2) then (H,o) is a hypergroup
(H,-group).
Canonical hypergroup. A nonempty set H together with a binary multioperation + is a canonical
hypergroup if: (i) + is associative; (ii) + is commutative (a +b = b+ a, for all a,b € H); (iii) there
exists a 0 € H such that 0+ a = a, for any a € H; (iv) for any a € H, there exists —a € H which
verifies the following property: if b,c € H such that ¢ € a + b then b € (—a) + c.

This multialgebra is a hypergroup, 0 is unique with the given property, 0 € a + (—a), and —a is
unique with this property, so the canonical hypergroups can be seen as multialgebras (H, +, /,\,0,—)

with +, /,\ binary multioperations, 0 nullary operation and — unary operation.

Hyperring (in the general sense). A hyperring (in the general sense) is a multialgebra (R, +, )
for which (R,+) is a hypergroup, (R,-) is a semihypergroup and for all a,b,c¢ € R the inclusions
a-(b+c)Ca-b+a-c, (b+c)-aCb-a+c-ahold. If / and \ are the multioperations defined in
the hypergroup (R,+) by (1.1.2) then the hyperring R can be seen as a multialgebra (R, +,/,\,")
of type (2,2,2,2), with +, - associative multioperations which verify the above inclusions.

Krasner hyperring. A Krasner hyperring (A, +,-,0) consists of a set A, and two binary multi-
operations (on A) +,- having the following properties: i) (4, +,0) is a canonical hypergroup with;
ii) (A,-) is a semigroup; iii) 0-a = a -0 = 0, for any a € A; iv) the operation - is distributive with
respect to the multioperation +, i.e. a-(b+c¢) =a-b+a-cand (b+¢)-a=b-a+ c-a for all
a,b,c € R. A Krasner hyperring can be seen as a multialgebra (4,+,/,\,0, —, ) with +,/,\ binary
multioperations and 0, —, - operations with the arities 0, 1, 2, respectively.

The universal algebras are particular cases of multialgebras. So, the semigroups are particular
cases of semihypergroups, the groups are particular cases of hypergroups, the Abelian groups are
particular cases of canonical hypergroups, and the rings are particular cases of rings.

A multioperation f, of a multialgebra of type 7 can be seen as a n, + 1-ary relation r, as follows:
(1.1.3) (a0 -y Qn,—1,0n,) €Ty & apn, € fy(ag,...,an,_1).

So, the multialgebras are particular relational systems, more general than universal algebras.
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1.2 The algebra of the nonempty subsets of a multialgebra

A multialgebra 2 = (A, (fy)y<o(r)) of type T determines a structure of universal algebra of type 7
on P*(A) with the operations defined as follows:

(1.2.1) Fr(Ao, . An 1) = [{f (a0, an, 1) [ ai € A, i €40,y — 1}},
for any v < o(7) and Ao, ..., A, 1 € P*(A). We will denote this algebra by *() and we will call

it the (universal) algebra of the nonempty subsets of the multialgebra 2.
Remark 1.2.1. If A;,B; (i € {0,...,n, — 1}) are nonempty subsets of A such that A; C B; then
fy(Ao, ..., An 1) C fy(Bo,. .., Bn, 1)

Let us consider a nonnegative integer n and the universal algebra *(A) = (P*(4), (fy)y<o(r))-
We will denote by P(f)( A) (P*(A)) the set of the n-ary polynomial functions of the algebra P*(2A)
and by P, (B(Q)) the algebra (P ) (B (), (f+)y<o(r)-

Remark 1.2.2. If n e N, p € Pz(ﬁ)(A) (B*(A)) and the nonempty subsets Ag,...,An—1, Bo,..., Bn_1
of A are such that Ay C By,...,An—1 C Bp—1 then p(4o,...,A4n-1) Cp(Bo,...,Bn_1).

In the algebra ‘Bg?( A) (P*(21)) we consider the subalgebra P (3*(21)) generated by the functions
e?, i €{0,...,n —1}. The algebra P (P*(A)) = (P (P*(A)), (fy)y<o(r)) is the algebra of the
n-ary term functions of *(2A). We mention that the algebra () (3*(21)) exists if and only if the
multialgebra 2 has no nullary multioperations.

For each a € A, we denote the polynomial function cf,, by ¢i and by Pfln) (P*(A)) the subalgebra
of 5132?(14) (P*(A)) generated by the subset {c?' |a € A} U{el |i€ {0,...,n—1}}.

Let n € N. Starting from the symbols (f,),<,(r) and X, ...,X, 1 one can construct the algebra
of the n-ary terms. We denote by P(™)(7) the set of the n-ary terms. For any v < o(7) the equality
fy(Pos- -+, Pny—1) = £,(Po, - -, Pn,—1) defines an n.-ary operation on P(™ (7). So, one obtains the
algebra (") (1) of the n-ary terms. The algebra P (7) exists if and only if there exists v < o(7)
such that f, is the symbol of a nullary multioperation.

Remark 1.2.6. [29, Corollary 8.1] Any n-ary term function p of the algebra P*(2) is induced by an
n-ary term p.

Notation. The term function induced by p on the algebra 3* () will be denoted by p or by (p)sq- (a)-

1.3 The lattice of the submultialgebras. The generated sub-

multialgebra

Definition 1.3.1. Let 2 = (4, (f,)y<o(r)) be a multialgebra and B C A. We will say that B is a
submultialgebra of 2 if for any v < o(7) and for all b, ...,b,,—1 € B, fy(bo,...,bn,—1) C B.

Remark 1.3.1. If B is a submultialgebra of 2 then the set B and the restrictions f|g», : B™ —
P*(B) of the multioperations f, form a multialgebra B of type 7.

Notations. For a multialgebra 2 we will denote by S(2) the set of its submultialgebras, and for a
submultialgebra B, the multioperation f,|g=+ of the multialgebra B will be denoted by f,.
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Ezample 1.3.2. Let (H, o) be hypergroupoid. S C H is a subhypergroupoid of H if S is a submulti-
algebra for (H,o). A subhypergroupoid of a semihypergroup is called subsemihypergroup.
Remark 1.3.3. Let H be a hypergroup and S C H a nonempty set. If we see the hypergroup H as a
multialgebra (H,o,/,\) then the submultialgebras which have nonempty support sets are the closed
subhypergroups (see [10]) and S(H,o,/,\) is the union of the set of the closed subhypergroups of
H with {0}.
Theorem 1.3.4. [67, Theorem 3] Let % = (A, (fy)y<o(r)) be a multialgebra of type 7 and B C A.
P*(B) is a subalgebra of P*(A) if and only if B is a submultialgebra of 2.
Corollary 1.3.6. Let 2 = (A, (fy)v<o(r)) be a multialgebra of type 7, B a submultialgebra of A,
n €N and p € P (P*(A)). If bg,...,b, 1 € B then p(bg,...,b, 1) C B.

In [33, Lemma 1] is presented the following result (even in a more general case which concerns a
multialgebra whose multioperations are not necessarily finitary):
Lemma 1.3.7. The set S(2) is an algebraic closure system on A.
Corollary 1.3.9. If X C A then (X) = ({B € S(2) | X C B} is a submultialgebra of 2.
Definition 1.3.10. (X) will be called the submultialgebra of A generated by the subset X.

Theorem 1.3.13. Let A = (A, (f,)y<o(r)) be a multialgebra of type T, X C A. Then a € (X) if and
only if there exist n € N, p € P™ (P*(A)) and zo, ..., 2,_1 € X such that a € p(xg,...,Tn_1).

1.4 Multialgebra homomorphisms

Maybe the most natural way to define an homomorphism between two multialgebras is the one

provided by considering the multialgebras as relational systems.

Definition 1.4.1. Let & = (A, (fy)y<o(r)) and B = (B, (f,)y<o(r)) be two multialgebras of the
same type 7. A map h: A — B is a homomorphism between the multialgebras 20 and B if for any

v <o(r) and ag,...,a,, 1 € A we have

(1.4.1) h(fy(a0s -y an, 1)) C fo(h(ao), ..., h(an, 1))

Often, the homomorphisms we are dealing with have the property that the inclusion (1.4.1) is an
equality. As in [67], we will call such a homomorphism, ideal homomorphism. Let us mention that
the ideal homomorphisms are called relational homomorphisms in [75] — but we will not use this
term in order to avoid the confusion with the notion of homomorphism between relational systems
— and tight homomorphisms in [90].

Remark 1.4.3. If H and H' are hypergroups and we see them as multialgebras with three binary
multioperations as in the paragraph 1.1 then a homomorphism between the hypergroupoids (H, o)
and (H’,o) is a homomorphism between the multialgebras (H,o,/,\) and (H',o,/,\).

Definition 1.4.2. Let 2 and B be two multialgebras of the same type. A bijective map h: A — B
for which h and h~! are multialgebra homomorphisms between 2 and B is called isomorphism.
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Remark 1.4.4. A bijective multialgebra homomorphism is an isomorphism if and only if it is an ideal
homomorphism.

Definition 1.4.3. Let % = (A, (f),<o(r)) be a multialgebra and let p be an equivalence relation on
A. The relation p is called ideal equivalence on 2 if for any v < o(7) and for any z;,y; € A having
the property that a;py; for all i € {0,...,n, — 1} we have

a € fy(xo,-..,Tn,—1) = 3b € fy(Y0,---,Yn,—1) such that apb.

Let A be a set and let P*(A) be the set of its nonempty subsets. Let p be an equivalence relation
on A and let p be the relation defined on P*(A) as follows:

ApB < Va € A, 3b € B such that apb si Vb € B, Ja € A such that apb.

One immediately notices that p is an equivalence relation on P*(A).

Theorem 1.4.5. Let A = (A, (fy)y<o(r)) be a multialgebra and let p be an equivalence relation on
A. The relation p is an ideal equivalence on 2 if and only if the relation p is a congruence relation
on P*(A).

Proposition 1.4.7. Let 2A = (A, (fy)y<o(r)) be a multialgebra and let p be an equivalence relation
on A. The following statements are equivalent:

(a) p is an ideal equivalence on A;

(b) for any v < o(7) and any elements x;,y; € A such that x;py; for alli € {0,...,n, — 1} we have
f’y(mm - amnyfl)pf'y(ym - ayn-,fl);

(c) for any v < o(T), any a,b,z; € A (i € {0,...,n, —1}) such that apb and any i € {0,...,n, —1}
we have f. (%o, ., Ti—1,0, %1, s Tno—1)Pfy (X0 Tim1, 0, i1, T —1);

(d) for anyn € N, any p € P (P*(A)) and any elements x;,y; € A with z;py; (i € {0,...,n —1})
we have p(xg, .-, Tn_1)pPYo,- -, Yn—1)-

Proposition 1.4.9. Let & = (A, (f,)y<o(r)) and B = (B, (fy)y<o(r)) be multialgebras of the same
type T, let h : A — B be a homomorphism, n € N and p € P(™ (1). For any ag,-..,an,_1 € A we
have h(p(ag, - ..,an—1)) C p(h(ag),...,h(an_1)).

Given a multialgebra 2 and an equivalence relation p on A the equalities:

f’y(p<a‘0>7 T 7p<an~,*1>) = {p<b> | be f’Y(bO: .- '7bn771)) a;pbi, i € {0; <y Ny — 1}}

define multioperations on A/p, so A/p = (A/p, (f1)y<o(r)) is a multialgebra. We will call it the factor
multialgebra determined by (or, modulo) p. The canonical projection w, : A = A/p, w,(a) = p(a) is
a multialgebra homomorphism.

Applying Proposition 1.4.9 to 7, : A — A/p we have:

(14.2) {p(a) | @ € (P2 (@0, -, an1)} C (P)p- (/) (PLa0)s - -, plan1))

for any n € N, p € P (7) and ay,...,a,_; € A.
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Remark 1.4.10. The inclusion (1.4.2) holds if we replace the term functions (p)gq-«(ay and (p)sp-(2/p)
by the polynomial p € P (*(2)) and, respectively, p' € Pf{;)p (B*(2A/p)), where the polynomial
function p' corresponding to p is obtained as follows:

M M — AN /o T .

(1) 1.fp = then p' = oty

(ii) if p = e} = (x;)p=(20) then p' = e} = (X;)q=(2/p)3

(iii) if p = fy(po,.-.,Pn,—1) and the functions that correspond to po,...,pn, —1 € PXL) (P*(A)) are
Phs- 2P, —1 € P (B*(2/p)), respectively, then p' = f(ph, ..., P, _1).

Since the polynomial function p' is obtained in the same manner as p, with major changes only

in step (i), we will write p instead of p’ and, consequently, we have:
(143) {p<a‘> | a € p(a’oa T anfl)} g p(p<a0>7 v 7p<an*1>)‘

Theorem 1.4.11. [67, Theorem 1] Let A be a multialgebra of type 7. If p is an ideal equivalence
on A then w7, : A — A/p, m,(a) = p(a), is an ideal homomorphism. Conversely, if h : A — B
is an ideal homomorphism between the multialgebras A and B of the same type then the relation
prn = {(z,y) € Ax A| h(z) = h(y)} is an ideal equivalence on 2A. Moreover, the correspondence
h(a) = m,,(a) is an isomorphism between the multialgebras h(A) and A/ py.

Let h be an ideal homomorphism of multialgebras between 2 and 9. The homomorphism h
induces a map h, : P*(A4) — P*(B) defined by h.(X) = h(X) = {h(z) |z € X} for any ) # X C A.
Theorem 1.4.12. [67, Theorem 2] The map h, is a homomorphism of universal algebras between
PB*(A) and P*(B) if and only if h is an ideal homomorphism between A and B.

Corollary 1.4.14. Let A = (A,(f))y<o()) and B = (B, (fy)y<o(r)) be multialgebras of type T,
h: A — B an ideal homomorphism, n € N and p € P"™ (7). For any ag,...,a, 1 € A we have
h(p(ag,---,an—1)) = p(h(ag), ..., h(an—_1)).

Remark 1.4.15. It is easy to observe that the multialgebras of type 7, with the multialgebra homo-
morphisms and the usual map composition form a category. We will denote it by Malg(7). The

category of universal algebras of type 7, denoted here by Alg(7), is, obviously, a subcategory in
Malg(7).

1.5 Factor multialgebras of universal algebras. A character-

ization theorem for multialgebras

G. Gritzer shows in [27] that any multialgebra can be obtained as in Example 1.1.3. Let B =
(B, (fy)y<o(r)) be a universal algebra and let p be an equivalence relation on B. On the set B/p of
the equivalence classes p{b) of the elements b € B, Grétzer defines, for any v < o(7),

Ty (plbo), -, pbn, 1)) = {plc) | ¢ = fy(co,---,Cn, 1), ci € p{bs), i=0,...,n, —1}.

It results a multialgebra B /p. Such a multialgebra is called concrete multialgebra.

Theorem 1.5.1. [27, Theorem] Any multialgebra is concrete.
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Let 2 be a multialgebra of type 7 and q,r € P(™ (7). As in case of universal algebras, we will
say that the n-ary identity (or the strong n-ary identity) q = r is satisfied on the multialgebra 2 if
q(ag,...,an—1) =r(ag,...,a,—1) for any ag,...,a,—1 € A. We will say that the weak identity (the
notation is intended to be as suggestive as possible) g Nr # (@ is satisfied on the multialgebra 2 if
q(ag,-..,an_1)Nr(ag,...,a, 1) # 0 for any ag,...,a, 1 € A.

Many important particular multialgebras can be defined by using (strong and/or weak) identities.

Ezample 1.5.2. The semihypergroups are multialgebras of type (2) which satisfy the identity
(1.5.1) (X0 0X1) 0Xa2 = Xg 0 (X1 0Xa).
The H,-semigroups can be defined in a similar way, replacing (1.5.1) by

(1.5.1") (xp 0x1) 0 X2 NXg 0 (x7 0%5) # (.

Remark 1.5.3. Associating to a hypergroup (H, o) a multialgebra (H, o, /,\) with the multioperations
/,\ given by (1.1.2) we obtain an injective map (which is not bijective) from the class of hypergroups
into the class of those multialgebras of type 7 = (2,2, 2) which satisfy the identities (1.5.1), (1.5.2)
and (1.5.3). A similar remark can be obtained for H,-groups if we replace (1.5.1) by (1.5.1').

Ezample 1.5.5. Using the previous remarks, we can see a canonical hypergroup as a multialgebra
(H,+,/,\,0,-) of type (2,2,2,0, 1) having the property that (H,+,/,\) is a hypergroup and which
verifies the identities xg + x1 = X1 + Xg, X0 + 0 = Xg, Xo/x1 = —(x1/Xp)-

Ezample 1.5.6. A Krasner hyperring can be seen as a multialgebra (H,+,/,\,0,—,) of type 7 =
(2,2,2,0,1,2) with (H,+,/,\,0) canonical hypergroup, - binary operation which, in addition to the
identities of the semigroup (H,-), verifies the identities x5 -0 = 0, 0-x9 = 0, X¢ - (X1 + X2) =
Xo - X1 + Xg - X2, (X1 + X2) - Xo = X1 - Xo + X2 - Xp.

Remark 1.5.7. Let B be a universal algebra, p an equivalence relation on B and B/p be the
corresponding factor multialgebra. If we take p as in Remark 1.4.10 and by, ...,b,_1 € B we have

(1.5.4) p(p{bo), ..., p{bn-1)) D {p{c) | c =p(co,.-.,Cn-1), bipc;, i € {0,...,n —1}}.

Remark 1.5.8. It follows immediately that if n € N, q,r € P (1) and the identity q = r is satisfied
on B then the weak identity q N'r # () is satisfied on 9B/p.

In general, the inclusion (1.5.4) is not an equality. Also, the weak identity established on 2B /p is
not, in general, a strong one.
Ezample 1.5.9. Let (Zs,+) be the additive cyclic group of order 5 and let Z5 be the equivalence
relation p = ({0,1} x {0,1}) U ({2} x {2}) U ({3,4} x {3,4}). In the factor hypergroup we have
(p(2) + p(2)) + p(3) = {p(0), p(2), p(3)} # {P(2), P(3)} = {p(c) | ¢ = (bo + b1) + b2, b = b1 = 2,by €
{3,4}}. We also have p(2) + (p(2) + p(3)) = {p(2), p(3)}, so the associativity holds only in weak
manner for (Zs/p,+).

Yet, some identities, like those which characterize the commutativity of an operation in an algebra
B, hold in a strong manner in the multialgebra % /p.



17

Let us see what is the factor multialgebra in the case of semigroups, (Abelian) groups and rings.

The case of semigroups. Let (S,-) be a semigroup and let p be an equivalence relation on S.
According to Remark 1.5.8 the hypergroupoid (S/p, ) verifies the associativity in a weak manner,

so it is an H\-semigroup.

The case of groups. Let (G,-) be a group and let p be a equivalence relation on G. The existence
and the uniqueness of the solution for each of the equations a = zb and a = by allows us to
define the operations a/b = {x € G | a = zb}, b\a = {y € G | a = by} on G and to identify
the group G with a universal algebra (G, -, /,\) (with G # () which verifies the following identities:
(x0'X1)X2 = Xo+(X1-X2), X1 = Xg-(X0\X1), X1 = (X1/X0)-X0, X1 = X0\ (X0'X1), X1 = (X1-X¢)/%x0. We
will obtain a multialgebra (G/p,-, /,\) on G/p which satisfies the above identities in a weak manner.
So, (G/p,) is an H,-group. Moreover, the class p(1) € G/p of the unit 1 of G verifies the condition
pla) € pla) - p(1)Np(a) - p(l), for any a € G, so p(1) is a unit in G/p. Also, any class p(a) € G/p has
an inverse since, if we consider the inverse a=! of a in G, we have: p(1) € p(a=!)-p{a)Np(a)-p(a=1).
If the group G is Abelian then the H,-group G/p is commutative.

The case of rings. A hyperstructure (R, +, ) is called H,-ring if (R, +) is an H,-group, (R, ") is
an H,-semigroup and for any a,b,c € R we have a(b+ ¢) N (ab+ ac) # 0, (b+ c)a N (ba + ca) # 0.
It is easy to observe that the factor multialgebra of a ring is an H,-ring whose first multioperation

is commutative.

Remark 1.5.11. In general, the factor multialgebra of a lattice is not a hyperlattice because the
absorption (which appears in the definition of a hyperlattice — see [1, 2.1, Lemma 4] or [32]) is

satisfied only in a weak manner in the factor multialgebra.

Ezample 1.5.12. Let us consider the lattice (N, A, V), where N is the set of the nonnegative integers,
aAb = gcd(a,b) and aVb = lem(a,b). We denote by P the set of the prime numbers and we consider
the relation p = P x PU {(a,a) | a € N\ P}. Clearly, p is an equivalence relation on N and we

have p(2) € p(2) V (p(2) A p(6)) = p(2) V {p(1),p(2)} = {p(2)} ULp(pa) | P.q € P, p # g}, so, the
absorption holds only in a weak manner on N/p.

The fact that an identity of an algebra 9B is verified in weak or strong manner on the factor
multialgebra B /p also depends on the equivalence relation p. If p is a congruence relation on ‘B
then the factor algebra 9B/p verifies the identities of the algebra B in a strong manner. This is not
the only example in this respect.

Ezample 1.5.13. Let us see a finite group G as an universal algebra (G, -, 1), and let us consider an
equivalence relation p on G and an identity 1-x¢ = x¢. If the relation p = ~ is the conjugation on G
then the multioperation p(z) - p(y) = {p(z) | z = 'y, = ~ &', y ~ y'} organize G/p as a canonical
hypergroup (see [72]). So, the above identity is satisfied on (G/p,-, p(1)) in a strong manner.

Things are different in a factor multialgebra obtained from G as in Example 1.1.3. Let us consider
the symmetric group Sz (seen as a universal algebra (Ss, 0, (1))) and the equivalence relation (to the
left) determined by the subgroup H generated by the transposition (1,2). In the hypergroup S3/H,
Ho((1,3) 0o H) = {(1,3) o H, (2,3) o H}, thus the identity 1-xo = xg is not satisfied in a strong
manner on (S3/H,o, H).
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1.6 A class of ideal equivalences. The fundamental relation

of a multialgebra

Let A be a set and let P*(A) be the set of its nonempty subsets. Let p be an equivalence relation
on A and let p be the relation defined on P*(A) by ApB < apb, for any a € A, b € B. The relation
p is symmetric, transitive, but is not always reflexive (for example, if § 4 is the equality relation on
A and |A| > 2, then 54 is not reflexive).

Proposition 1.6.1. Let 2 = (A, (fy)y<o(r)) be a multialgebra and let p be an equivalence relation
on A. The following statements are equivalent:
(a) A/p is a universal algebra;
(b) for any v < o(1), any a,b,z; € A (i € {0,...,n, —1}) such that apb and any i € {0,...,n, —1}
we have fy(2o,. .., i 1,0, Tiy1, ..., Tn,1)pfy(Tos s Ti1,0,Tiq1,0 00, Tny 1);
(c) for any v < o(t) and for any x;,y; € A such that x;py; for any i € {0,...,n, — 1} we have
fy@o, - @n, —1)Pfy (Yo, - - - Yny —1);
(d) for anyn € N, any p € Pén) (PB*(A)) and any z;,y; € A such that x;py; for alli € {0,...,n—1},
we have p(To, ..., Tn_1)pPYo, - > Yn_1)-

We easily observe that any equivalence p on A for which 2(/p is a universal algebra is ideal.

Remark 1.6.3. If an equivalence p satisfies one of the equivalent conditions from Proposition 1.6.1
then the operations of the algebra 2A/p are defined by f,(p(ao),.--,p{an, 1)) = p(b), for any
ag,...,an,—1 € Aand b € f,(ao,-..,an, 1)

Remark 1.6.5. Let (H, o) be a hypergroupoid. An equivalence relation p on H such that (H/p,o) is a
groupoid is called strongly regular (see [10, Definition 8]). If p is a strongly regular equivalence on H
and (H, o) is a semihypergroup then (H/p, o) is a semigroup. If (H, o) is a hypergroup then (H/p, o)
is a group ([10, Theorem 31]). Moreover, if (H,o) is a hypergroup and we see it as a multialgebra
(H,o0,/,\) as in the paragraph 1.1 then the multioperations / and \ become on H/p the binary
operations which associate to each pair (p{(a), p(b)) € H/p x H/p the (unique) solution from H/p of
the equation p{a) = z o p(b) and of the equation p{a) = p(b) o x, respectively.

Notation. We denote by E,,(2) the set of those equivalence relations p of 2 for which 2/p is a
universal algebra.

Proposition 1.6.7. The set E,,(2!) forms an algebraic closure system on A x A.

Corollary 1.6.9. If R C A x A then a(R) = ({p € Eu.(A) | R C p} is the smallest equivalence
from E,, () which contains R.

If the multialgebra 2 is not an universal algebra then d4 ¢ E,,(2).
Definition 1.6.1. Let 2 be a multialgebra. The smallest equivalence from E,,(21) is called the
fundamental relation of 2.

Let agy be the relation defined on A as follows: if z,y € A then zayy if and only if =,y €
plag,...,an—1) for somen € N, p € Plgn)(‘,B*(Ql)) and ag,...,a,_1 € A.
Remark 1.6.11. If z,y € A then zayy if and only if x,y € p(ag,...,an—1) for some n € N, some
term function p € P (P*(A)) and some elements ag, . . ., a,_1 € A.
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The relation agy is symmetric, reflexive, but is not always transitive (see [10, Remark 82]). Let

ag be the transitive closure of ay,.
Theorem 1.6.13. The relation o}y is the fundamental relation of 2.

Definition 1.6.2. Let 2 be a multialgebra and let o be its fundamental relation. The universal

algebra A /ag is called the fundamental algebra of 2.
Remark 1.6.14. The canonical projection ¢4 : A = A/ag is an ideal homomorphism.

Ezample 1.6.15. The fundamental relation of a semihypergroup (H, o) is the transitive closure 8* of
the relation 8 =, cx- Bn where 28,y & Ja1,...,a, € H: 2,y €a0---0ay,.

Ezample 1.6.16 If (H,o) is a hypergroup then f is transitive and it is the fundamental relation of
the multialgebra (H, o, /,\) obtained as in the paragraph 1.1.

Ezample 1.6.17. Let (R,+,+) be a hyperring. The fundamental relation of the hyperring R is the
transitive closure v* of the relation -y from [83, Definition 1J:

-1 [k;j—1
oy < A k; €N, Ja; €R, j{0,...,1-1}, i €{0,...,kj—1}: zyed | ] ai
7=0 i=0

Theorem 1.6.18 Let A, B be multialgebras of type T and A = A /oy, B = B /ay, their correspond-
ing fundamental algebras. If h : A — B is a multialgebra homomorphism then there exists a unique
algebra homomorphism h : A — B such that

(1.6.1) wpoh="hoyy.

Corollary 1.6.19. If 2 is a multialgebra then 14 = 1.
Corollary 1.6.20. If A, B, ¢ are multialgebras of type 7 and h : A — B, g : B — C are

multialgebra homomorphisms then go h = go h.

Remark 1.6.21. The factorization modulo fundamental relation determines a covariant functor F
from Malg(7) into Alg(7) defined by: F(2l) = 2 for any multialgebra 2 and F(h) = h (from
(1.6.1)) for any homomorphism h between the multialgebras 2 and 8.

1.7 Identities on multialgebras. Complete multialgebras

Proposition 1.7.1. Let 2 be a multialgebra, n € N, and q,r € P (7). If qNr # 0 is satisfied on
A then q = r is satisfied on 2.

Corollary 1.7.2. Let 2 be a multialgebra, n € N, and q,r € P (7). If q = r is satisfied on A
then q =r is satisfied on 2.

Remark 1.7.3. A result similar to Proposition 1.7.1 holds for any relation from E,,(2l).

Remark 1.7.5. The fundamental algebra of a hypergroup is a group. Consequently, we can define,
as in Remark 1.6.21, a covariant functor F' from the category HG of hypergroups into the category
Grp of groups.
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Among the multialgebras which have the same fundamental algebra (supposing that this algebra

has more than one element) we can find multialgebras which verify the identities of their fundamental
algebra, some of them in a weak manner, others, in a strong manner.
Proposition 1.7.6. Let A = (A, (fy)y<o(r)) be a multialgebra and let A = (A, (fy)y<o(r)) be its
fundamental algebra. If |A| #1,n €N, q,r € P (1) and q = r is satisfied on A then there exists
a structure of multialgebra 2’ on A with the multioperation f., v < o(7), such that A = A and
qnNr %0 is satisfied on 2A'.

If |[A| > 1 then the multioperations [}, can be defined by:

(172) Fia0, - rn, 1) = {a € A|a = fy(@, ... 751}

The properties of the multialgebra 21’ lead us to a particular class of multialgebras.

Proposition 1.7.11. For a multialgebra 2 = (A, (f),<o(r)) the following statements are equivalent:
(i) for any v < o(7) and ag,...,an, 1 € A, a € f,(ag,...,an, 1) > a= f,(ao,...,0n, 1);
(ii) for any n € N, q,r € PM(7)\ {x; | i € {0,...,n —1}} and ao, ..., an_1, bo, .., by_1 € A,
from q(ag, - .., an—1) N1(bo,...,bn—1) # O it results that q(ag,--.,an—1) = 7(bo,---,bn—1)-
Ezample 1.7.13. For a semihypergroup (H, o), the condition (ii) from the previous proposition is the
following: for any m,n € N, m,n > 2 and any ay,...,ay,,b1,...,b, € H,fromayo---0a,Nbyo---0
by, # 0 it results that aj o---oa,, = by o---0b,,. This condition defines the complete semihypergroups
(see [10, Definition 137]).

These facts suggest the following definition:

Definition 1.7.1. A multialgebra 2 which verifies the equivalent conditions from Proposition 1.7.11

is called complete multialgebra.

Remark 1.7.17. The multialgebra 2" from the proof of Proposition 1.7.6 is complete.

Remark 1.7.18. For any complete multialgebra 2 the relation ay is transitive.

Remark 1.7.19. The complete multialgebras of type 7 form a full subcategory CMalg(7) of Malg(7).

Proposition 1.7.20. Let 2 = (A, (f,)v<o(r)) be a multialgebra of type 7. The multialgebra 2 is
complete if and only if there exist a universal algebra B = (B, (f)<o(r)) and a partition {Ap | b €
B} of A such that Ay, N Ay, = 0 for any by # by from B and for any v < o(7) and ag, ... ,an, 1 € A
with a; € Ay, (i € {0,...,n, —1}), we have f,(ao,...,an, 1) = Afw(bow.,bnrn-

1.8 Identities and algebras obtained as factor multialgebras

We proved that if 2 is a multialgebra and p € E,, () then any identity (weak or strong) satisfied
on 2, is also satisfied on the algebra 20/p.

Remark 1.8.1. Let q,r be two n-ary terms and let Ry, = {(z,y) € Ax A |z € g(ag,...,an_1),y €
r(ag,..-,an-1),d0,--.,an—1 € A}. The smallest relation from E,,(2) for which the factor multial-

gebra is a universal algebra which verifies the identity q = r is a(Rqr) = [1{p € Eua(A) | Rqr C p}-
Notation. We will denote the relation a(Rqr) by ag,.
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Theorem 1.8.3. The relation o, is the transitive closure of the relation aq, C A x A defined
by zagey if and only if © € p(q(ao,...,an-1)), y € p(r(ao,-..,an-1)) ory € p(q(ao,...,an-1)),
z € p(r(ag,-..,an—1)) for some p € PS)(‘B*(QL)) and ag,...,a,—1 € A.

Ezample 1.8.4. In [26] is presented a characterization for the smallest strongly regular equivalence
on a semihypergroup (H,o) for which the factor multialgebra is a commutative semigroup. This
relation, denoted by ~*, is the transitive closure of the relation v = |J,cn+ 7n Where y1 = g
and, for any n > 1, the relation =, is defined by zv,y < 3z1,...,2, € H, d0 € S, : =z €
21002y, Y € Zy(1) 0" O Zo(n) (Sn denotes the set of the permutations of {1,...,n}). Since the
set {(1,2),(2,3),...,(n—1,n)} generates the group S, it follows that v* is the transitive closure of
the relation 7' = (J,, ey Yy, Where 77 = 0y and for n > 1, 2,y if and only if

Jz9,..,zp € H, Jie{l,...;n—1}:x €2z10---02;10(2;02i11)0Zj12 002z,
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Clearly, v = aqr where q = x¢ 0 x; and r = x; 0 Xg. In [26] it is also proved that if (H,o) is a
hypergroup then + is transitive and v* = + is the smallest equivalence on H such that H/~v* is a
commutative group.

Corollary 1.8.6. The fundamental relation o* of 2 is the transitive closure of the relation o' C
A x A defined by xa'y if and only if x,y € p(a) for some p € Pjgl)(‘li* () and a € A.

Let q,r € P (1), let B be a universal algebra of type 7 and let p be an equivalence relation
on B. We denote by pgr the smallest equivalence relation on B which contains p and the pairs
(q(bo, .- ybp—1),7(boy ... ,bp—1)) with bg,...,b,—1 € B. Obviously, the smallest congruence relation
on B which contains pqr, denoted here by 6(pqr), is the smallest congruence on 8 which contains
pU{(q(bo,...,bn—1),7(boy---ybn-1)) | boy...,bn_1 € B}.

Theorem 1.8.9. (B/p)/ag, = B/0(pqr).

Ezample 1.8.10. Let (G, -) be a group, H a subgroup of G and let (G/H,-) be the hypergroup obtained
as in Example 1.1.3. Let -y be the smallest strongly regular equivalence on G/H such that the group
obtained as a factor of this hypergroup is commutative. If G’ is the derived subgroup of G then
Theorem 1.8.9, leads us to the group isomorphism h: (G/H)/y — G/(G'H), h(y{zH)) = 2(G'H).
The derived (sub)hypergroup D(K) of a hypergroup (K, -) is <p1_{1(1K/7), where g : K — K/v is
the canonical projection and 1g/,- is the unit of the group (K/v,-) (see [26, Theorem 3.1]). Let
g G — G/H and pg g : G/H — (G/H)/v be also the canonical projections. It follows that
D(G/H) = (hopg/u) " (G'H) ={aH |z € G’'H} = (G'H)/H = ny (G").

Corollary 1.8.11. B/p = B/6(p).

Example 1.8.12. If (G,-) is a group, H is a subgroup of G, H is the smallest normal subgroup

containing H then the fundamental group G/H is isomorphic to the factor group G/H.
Corollary 1.8.13. B/pqr = B/0(pqgr).
Corollary 1.8.14. (B/p)/ag, = B/pgr-




Chapter 2

Constructions of multialgebras

2.1 The direct product of multialgebras

Let (2; | i € I) be a family of multialgebras of type 7. The Cartesian product [];.; 4; is a multial-
gebra of type 7 with the multioperations £, ((a0)ier, - -, (@} ier) = [Tics fo(a?, ..., a;” "), This

multialgebra is called the direct product of the multialgebras (; | ¢ € I). The canonical projections
of the product, e]I. [ ier Ai = A, e]I»((ai)ieI) =a; (j € I), are multialgebra homomorphisms.
Proposition 2.1.1. The multialgebra [[;c; 2, with the canonical projections el, i € 1, is the
product of the multialgebras (; | i € I) in the category Malg(r).

Lemma 2.1.2. For anyn € N, p € P™(7) and (a9)ier,-..,(a? " )ier € [I;cr Ai we have
p((aQ)iers - (a7 ier) = [Ligrp(ad, .. aif ™).

Proposition 2.1.3. Let (A; | i € I) be a family of multialgebras and let q,r be n-ary terms. If the
weak identity q Nt # | is satisfied on each multialgebra ™A; then qNr # O is satisfied on [];o; ;.

Proposition 2.1.4. Let (/; | i € I) be a family of multialgebras and let q,r be n-ary terms. If the
identity q = r is satisfied on each multialgebra ; then the q = r is satisfied on [];c; ;.

Proposition 2.1.5. A direct product of hypergroups is a hypergroup.

Corollary 2.1.6. The category HG of hypergroups is isomorphic to a subcategory closed under
products of the category Malg((2,2,2)).

Proposition 2.1.7. A direct product of complete multialgebras is a complete multialgebra.

Corollary 2.1.8. CMalg(7) is a subcategory closed under products of the category Malg(T).

2.2 The fundamental algebra of a direct product of multial-

gebras

Let (2A; | i € I) be a family of multialgebras and let (2; | i € I) be the family of the corresponding
fundamental algebras. Let us consider the universal algebra [];. ;2A; and the canonical projections

22
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7 : [1;e; Ai = Aj (j € I). There exists a unique homomorphism ¢ of universal algebra such that
e]I» = mjop for any j € I. The homomorphism ¢ is given by ¢((a;)icr) = (ai)icr and it is surjective.

So, the universal algebra

ier Ui, with (el | i € I), is the product of the algebras (2; | i € I) (in
Alg(7)) if and only if ¢ is also injective. This does not always happen, as it follows from:

Ezample 2.2.1. Let (Hy = {a,b,c},0), (Hy = {z,y, 2},0) be the hypergroupoids given bellow:

olal|b|ec o T Y z
alalala x Y, 2 |y, 2
bla|ala yily zl|ly 2|y, 2
clalala z|ly, 2z |y, z |y, 2

H, x H, has 8 elements, while H; x H has only 6 elements.

Proposition 2.2.2. Let (U; | i € I) be a family of multialgebras of type T. Suppose that I is finite
or ay . is transitive for each i € I. The homomorphism ¢ is injective if and only if for any n; € N,
qi € PMI(7),ad,...,a " € A; (i € I) and any (z:)icr, Yi)ier € [l @i(a?, ..., al" ") there exist
m € N*, k; € N, ¢/ € P*)(r) and (b?’j)iel,...,(bfj_l’j)ig € [Licr Ai, 5 € {0,...,m — 1} such
that

(@i)ier € (0 Viers -, (B 7icr), Wa)ier € (B9 ™ Viers .-, (OF" 7 Y ep)
and for each j € {1,...,m — 1},
(2.2.1) O ier, - 0P T e 0 (0 ier, -, (07 )ier) # 0.

Corollary 2.2.3. Let (; | i € I) be a family of multialgebras of type T. Suppose that I is finite or
Qg 18 transitive for each i € I. If for any n; € N, q; € P (1), al,. .. ,a;”*l € A; (i € I) there
evistn €N, q € PV (1) and b9, ..., b~ € A; (i € I) such that

(22.2) [T (@, a ™) € al@iers -, (57 Vier)
el

then the homomorphism ¢ is injective.

Let C be a subcategory of Malg(r), let U : C — Malg(7) be the inclusion functor and let F'
be the functor from Remark 1.6.21. In the following propositions we will refer to F o U as F.

Proposition 2.2.5. Let C be a subcategory of Malg(r) closed under finite products. Assume that
for any finite set I, for any family (A; | i € I) of multialgebras from C and for any n; € N, q; €
PMI(r), af,..., aM € A; (i € 1) there exist n € N, q € PO(7) and bY,..., 0}~ € A; (i € I)
such that (2.2.2) holds. Then the functor F : C — Alg(r) preserves the finite products.
Proposition 2.2.6. Let C be a subcategory of Malg(7) closed under products and let us consider
that oy is transitive for each A € C. Assume that for any set I, for any family (A; | i € I) of
multialgebras from C and for any n; € N, q; € P (r), al, ..., a;”*l € A; (i € 1) there emist
n €N, q € PW(r) and 19,....00" € A; (i € I) such that (2.2.2) holds. Then the functor
F :C — Alg(r) preserves the products.
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The case of hypergroups
Proposition 2.2.7. F: HG — Grp (from Remark 1.7.5) preserves the finite products.
Yet, F' does not preserve the arbitrary products of hypergroups.

Ezample 2.2.8. Let us counsider the hypergroupoid (Z,o) on the set of integers Z, given by x o
y ={z+y,z+y+ 1} for any z,y € Z. (Z,0) is a hypergroup with the fundamental relation
B = Z x Z. The fundamental group of the hypergroup (ZY,o) has at least two elements since
f,9:N—=Z, f(n)=0, g(n) =n (n € N) are not in the same equivalence class of the fundamental
relation of the hypergroup (ZY, o).

For the arbitrary products of hypergroups we have:

Theorem 2.2.9. Let us consider the hypergroups H;, i € I, with the fundamental relations .
The group [[;c; Hi, with the homomorphisms (el | i € I), is the product of the groups (H; | i € I) if
and only if there exists n € N* such that 3% C BH:, for all i from I except for a finite number.

Corollary 2.2.10 Let n € N. If C,, is the class of those hypergroups which satisfy the condition
B = B, then C, is closed under the formation of the direct products and the functor F : C,, — Grp

determined by the factorization with the fundamental relation preserves the products.

Corollary 2.2.11. The functor F' preserves the products of complete hypergroups.

The case of complete multialgebras

Theorem 2.2.12. Let (; | i € I) be a family of complete multialgebras of type 7. The following
statements are equivalent:

i) m (with the homomorphisms (g | i € I) is the product of the universal algebras (A; | i € I);
i) for any n; €N, q; € PP (1) and a?,...,a)" "t € Ay, (i € I) there existn € N, q € PU(1) and
bY,..., bt € A; (i € 1) such that (2.2.2) holds;

iii) for anyn; €N, q; € P (1) and al, ..., a ™" € A; (i € I) we have ITLicr qi(a?,...,a?"_lﬂ =1

or there exist v < o(t), b?,..., b?’_l € A; (i € I) such that

(2.2.3) [Tatal,af ™) C A (BD)iers - (077 ien):

icl
Remark 2.2.16. From Corollary 2.2.11 we deduce that the complete hypergroups are complete
multialgebras such that for any family of such multialgebras, the fundamental algebra of the direct

product is the direct product of the corresponding fundamental algebras.

2.3 The direct limit of a direct system of multialgebras

Let ((Ai i€ ), (pij: Ai = Aj|i,j €1, i<j)) beaa direct system of sets and let Ao, = A/= =
{Z | € A} be the direct limit of the given direct system of sets (see [29, Definition 22.2]).

If each A; is the support of a multialgebra 2; of type 7 and ¢;; are multialgebra homomorphisms
then A = ((A; | i € I),(pij | 1,4 € I, i < j))is a direct system of multialgebras. If (I, <) is well
ordered then we will call the direct system A4, well ordered.
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We will obtain a multialgebra 21, of type 7 on A, if we consider for any v < o(71),
Fy@o,. T, 1) ={2' | Im e I, Vi €{0,...,n, — 1}, I} € 5N Ay, 1 2’ € fy(afy,..., 2, 1)}

Ezample 2.3.3. For a direct system of semihypergroups ((H;,o;) | ¢ € I) the multioperation o is
defined on the direct limit direct of the sets H; by z € Z oy if and only if there exist m € I,
T ETNAp, ym € YN A, and z, € 2N Ay, such that z,, € x,, o, Ym. In this way one obtains in
[70] the direct limit (Hso,0) of the direct system of semihypergroups ((H;,0;) | i € I).

Lemma 2.3.4. Let v < o(r) and iﬁ,...,aﬁ;,\l € Aw. Ifig,...,in,—1 € I are such that zo €
Ay s, 1 € Ainrl then fv(@,...,m) = {:;’ €A |Tmel, ig <m,... 0, 1 <m: z'€
f4(@igm (o), - - -a%nw_lm(xnv—l))}-

Remark 2.3.5. If for v < o(r), f, is an operation in all the multialgebras 2; then f, is an operation
in Aos. As a matter of fact, in order that f, be an operation for an ordinal v < o(7) it is enough

that for any two elements from I to exist an upper bound m € I such that in 2,,,, f, is an operation.
Remark 2.3.6. The maps p;e0 : A; = Ao, Yico(x) = T are multialgebra homomorphisms.

Theorem 2.3.7. Let us see the direct system of multialgebras ((A; | i € I), (ps; : Ai = Aj | 4,5 €
1, i < j)) as a covariant functor G : T — Malg(7). The multialgebra 2, with the homomorphisms
(pico | © € I) is the direct limit of G.

Definition 2.3.1. We will call the multialgebra 2., the direct limit of the direct system of multial-
gebras A and we will denote it by 113,4 or by l'ﬂiej%.

The next results are generalizations for some results known for universal algebras (see [29, §21]).
Now, we will consider that (I, <) is a directed partially ordered set. Let A = ((A; | i € I), (vi; |
i,7 € I, i < j)) be a direct system of multialgebras and let us consider J C I such that (J, <)
is also a directed partially ordered set. We will denote by Aj the direct system consisting of the
multialgebras (2; | ¢ € J) whose carrier is (J, <) and the homomorphisms are (¢;; | i, € J, i < j).
Proposition 2.3.8. If the subset J is cofinal with (I, <) then the multialgebras limA and lingA;
are isomorphic.

Let A= ((; |7 €I),(pij | 4,5 €I, i <)) beadirect system of multialgebras with I = {J,¢p Iy,
where (I, <) is a directed partially ordered subset of (I, <) for each p € P and (P, <) is also a
directed partially ordered set such that I, C I, whenever p,q € P, p < g. Denote li_n)lA =A =
(Aso; (fy)v<o(r)) and lim Ay, = AL, = (AL, (f1)y<o(r)) if p € P. For any p,q € P, p < q we can
define the map v, : AL — AL, ¢p(71,) = Z1,, (Where x € A;, for some i € I,). This way we
obtain a direct system of multialgebras A/P consisting of (P, <), the multialgebras 2AZ_, and the

[elel)

homomorphisms t,.
Theorem 2.3.10. The multialgebras ligpA and lzl@A/P are isomorphic.

As in the case of universal algebras, we will call algebraic class of multialgebras a class of multi-
algebras closed under the formation of the formation of isomorphic images.
Theorem 2.3.12. An algebraic class of multialgebras is closed under the formation of the direct

limits of arbitrary direct families if and only if it is closed under the formation of the direct limits
of well ordered direct families.
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Applications to particular multialgebras

Lemma 2.3.13. Let A= ((A; | i € I),(pi; | 1,4 € I, i < j)) be a direct system of multialgebras,
p € P™W(7) and ag,...,an_1 € A. Ifio,...,in_1 € I are such thata; € Ay, forany j € {0,...,n—1}
then

p(ao, ... an—1) ={a|3Im eI, Vj€{0,...,n—1}, Jaj € q;NAp : a€plag,...,an_1)}

={a|Imel ig,...,in1 <M, a € P(Pigm(ao),---¢i,_m(an-1))}

Proposition 2.3.14. Let A= ((U; |i € I),(pi; | 4,5 € I, i <j)) be a direct system of multialgebras
and let q,r € PU (7). If the weak identity qNr # () is satisfied on each multialgebra A; (i € I) then
the weak identity q Nt #£ 0 is satisfied on Ay,.

Proposition 2.3.16. let A= ((A; |3 € I),(wi; | 4,5 € I, i <j)) be a direct system of multialgebras
and let q,r € P (7). If the identity q = r is satisfied on each multialgebra A; (i € I) then the
identity q = r is satisfied on A .

Proposition 2.3.18. The direct limit of a direct system of complete multialgebras is a complete

multialgebra.

The case of hypergroups. Let (((H;,0;) | i € I),(pi; | 4,7 € I, i < j)) be a direct system of
semihypergroups and let us denote by (H', o) its direct limit. From Proposition 2.3.16 we deduce:

Theorem 2.3.20. [70, Theorem 8] (H',0) is a semihypergroup.
Using Proposition 2.3.8 and Proposition 2.3.14 we can obtain the following theorem from [70]:

Theorem 2.3.21. [70, Theorem 4] If for any i,j € I there exists k € I, i < k, j < k such that
(Hy,ok) is a hypergroup then (H', o) is a hypergroup.

The heart wy of a hypergroup (H,-) is the set of those x € H for which the class Z of the
fundamental group (H,-) is the unit from H. Using Proposition 2.3.8 we deduce the following
result:

Theorem 2.3.23. [40, Theorem 10] Let ((H;,0;) | i € I) be a direct system of semihypergroups
such that the following conditions hold:

1) for any i,j € I there exist k € I, i <k, j < k such that Hy, is a hypergroup;

2) K ={k € I| Hy, is a hypergroup} is such that |K| < Ro.

If s = max{k | k € K} then there exist a; € H' (j € {1,...,n}) such that wy' = a o---oa, if and

only if for all j € {1,...,n} there exists as; € a; such that wy, = as1 00 s .

The case of SH R-semigroups. A semigroup (S,-) is called SH R-semigroup if we can enrich the
set S with an element 0 such that -0 =0-z = 0 for all x € S (if we do not already have such
an element in S) and we can define a multioperation + on S° = S U {0} such that (S°, +,-,0) is
a Krasner hyperring. From Proposition 2.3.8, 2.3.16, Remark 1.5.3, 2.3.5 and Example 1.5.5, 1.5.6

follows the next theorem which is one of the main results in [46]:

Theorem 2.3.24. [46, Theorem 3] Let (((H;,0;) | i € I),(fi; | 4,5 € I, i < j)) be a direct system
of semigroups, such that for all i € I, there exists k € I, i < k for which (Hy, o) is an SHR
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semigroup. Let K = {k € I | (Hy, o) is an SHR semigroup}. So, for each k € K, there exists
a multioperation & on HY such that (HY, Py, or,0r) is a hyperring. If for any k,l € K, k <[,
fr1 is a homomorphism of hyperrings, then the direct limit of the direct family of semihypergroups
((Hi,0;) |3 € 1) is an SHR semigroup.

On a subcategory of multialgebras
The properties presented in the first part of this paragraph hold for the subcategory of Malg(7)
obtained by considering as morphisms the ideal homomorphisms. In other words, the results es-

tablished here hold if we replace ‘homomorphism’ by ‘ideal homomorphism’. In this case, we can

define the multioperations on Ay as follows: for each v < o(r) and for any Zo,...,Zn, 1 € A
with zo € Ajy, ..., Tn, -1 € Ain,y—l we consider m € I, ig, .. .,in,—1 < m and we set
(2.3.1) f (@0, T, —1) = AT | 2 € £1(0igm(T0)s - -5 @i, ym(Tny—1))}-

Remark 2.3.32. Since the algebra homomorphisms are ideal homomorphisms, the definition of the
operations from the the direct limit of a direct system of universal algebras is (2.3.1). We deduce
that the direct limit of a direct system of multialgebras generalize the direct limit of a direct system

of universal algebras.

2.4 The fundamental algebra of the direct limit of a direct

system of multialgebras

Theorem 2.4.1. The functor F : Malg(r) — Alg(7) (from Remark 1.6.21) is a left adjoint for
the inclusion functor U : Alg(t) — Malg(7).

Corollary 2.4.2. Let (I,<) be a directed preordered set and let A= ((A; | i € I),(pij |i,j €1, i<
7)) be a direct system of multialgebras of type T with the direct limit Aoo. The universal algebras
(A; | i € I) and the homomorphisms (p; | i,j € I, i < j) form a direct system A of universal
algebras of type T and the direct limit algebra of the direct system A is isomorphic to the universal
algebra Ao .

Remark 2.4.3. From Theorem 2.3.7 we obtain the isomorphism p between ligﬁ and h_n}iA defined

o~

by p(ag. (@) = ag_ (@), (where a € A;, i € T).

Remark 2.4.4. Let (H; | i € I) be a direct system of semihypergroups, let us consider that the
semihypergroup H; has the fundamental relation 83, and let us denote by H' the direct limit of this
direct system and by Sp its fundamental relation. In [70, Theorem 5] it is proved that if x,y € H;,
x5y then By, and that if ,y € H', B}y then there existi € I, x; € TN H;, y; € yN H; such
that z; 87, y;. These statements also result from the fact that p from Remark 2.4.3 is well defined

and injective.
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2.5 On the inverse limit of an inverse system of multialgebras

Let ((A; | i € 1), (apf tA; = Ay | j,k €I, j <k)) be an inverse system of sets. Let us consider
that each A; is a support set for a multialgebra A; of type 7 and that each <p;? (j,kel, j<k)is
a homomorphism. This way we obtain an inverse system of multialgebras 4 = ((; | i € I), ((,0;“ :
A = Ag | j,k eI, j<k)). If (I,<) is a well ordered set then we say that A is a well ordered
inverse system of multialgebras. We should remind that the inverse limit of the inverse system of
sets ((Ag | i€ 1), (oh: Aj = Ay | g,k € 1, j <k))is the set A% = {(a;)ier € [T;e; Ai | Vi, k €
I, j <k, go? (ar) = a;}, together with the maps p3° : A% — A4;, »3°((ai)ier) = a;. We also remind
that the inverse limit of an inverse system of nonempty sets can be empty (see [29, p.132]).

In [29] it is mentioned that the inverse limits for first order structures are defined the same way
as for algebras, as suitable substructures of the direct product. If we see each n.-ary multioperation
in each ?; as an (n, + 1)-ary relation r, as in (1.1.3), we obtain the definitions for the relations on
ny—1

A% : given v < o(7) and (a)ser, ..., (a;

i ier, (@i)ier € A% we have

—1 —1 .
((@)ier, -y (a;" ™ Vier, (ai)icr) €7y & a; € f1(a?,...,a]" "), Vie L
Since we are dealing with multialgebras our question is whether the relational system obtained in
this way is a multialgebra. If the answer were affirmative then, using again (1.1.3), it would follow
that its multioperations would be defined by:

(25.1) Fl@ier o (@ Dier) = [ fo(af, el n A%,
iel
for any v < o(r) and (a9)er, - - -, (a?”il),'ej € A>.
Remark 2.5.3. The inverse limit A® of the inverse system of sets ((4; | i € I), (gpé“ A =~ Al j ke

I, j < k)) is not, in general, a submultialgebra of []
omitted in (2.5.1).

ser i, thus the intersection with A% cannot be
Ezample 2.5.4. Let us consider I = {1,2} ordered by the relation <, induced by the usual ordering
from N. Let us also consider the inverse system consisting of the hypergroupoids (H;,0), (Ha,o)
defined on H; = Hy = {z,y} by zox = zoy = yox = yoy = {z,y} and by the (ideal) homomorphisms
ot =1y, 3 =1y, and @3 : Hy = Hy, ¢i(z) =y, ¢i(y) = z. Then H*® = {(z,y), (y,x)} is not a
subhypergroupoid of H; x Ho.

Remark 2.5.5. The correspondences f, given by (2.5.1) are not always multioperations on A*.
Even if A # (), the intersection in the second member of the equality can be the empty set. As
a matter of fact, for any v < o(7), (aQ)ics,--.,(a" "ics € A® and any j,k € I, j < k, the
sets (fy(a?,... ,a?’fl) | i € I) with the corresponding restrictions of the maps 7, form an inverse
system of sets and the second member in (2.5.1) is the inverse limit of this system of sets. So,
f((@)ier, ..., (a;“_l)ie[) can be empty even if A is not.

Ezample 2.5.6. In [35], G. Higman and A. H. Stone present an example of inverse system of (count-
able) sets (S, | @ < wy), with surjective maps and empty inverse limit. It follows that the family

(So | 1 € a < w), with the corresponding maps, form an inverse system with empty limit. Let
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us consider for each 1 < a < wy, Ay = S, U{0g,}, where O, : E, — R, Og_(y) = 0. Let us
define the binary multioperation o on A, by fog = Su, if f =0r, = gor f # 0g, # g and
fog=1{0g,}, otherwise. The maps 2 : Az — A,, ¢2(f) = f|r. (a < B) are (ideal) homomor-
phisms. This way we obtain an inverse system of hypergroupoids. We have A>* = {(0g,)1<a<w: }
and (0g,)1<a<w; © (08, )1<a<w, = 0.

Remark 2.5.7. In order to obtain a multialgebra A on A # (§ defined by (2.5.1) it would be

ny—1

required that for every v < o(7) and (a)ics, .-, (a]" ies € A%, limierfy(a?, ... a7 ") # 0.

Such a case is given by the condition that for every i € I, v < o(r) and af,... ,a?’fl € A;, the set
F(a®,...,a?" ") to be nonempty and finite (see [29, §21]).
Remark 2.5.8. Since | fy(a?,...,a?’flﬂ = 1 for any universal universal algebra with nonempty

support set, we deduce that the universal algebras satisfy the above conditions. It is also clear that

if for v < o(7), f, is an operation in each multialgebra 2; then f., is an operation in A*°. If this

is the case, (2.5.1) can be rewritten as fy((a®)icr, - .., (@l Vier) = (f1(a,...,a" " ))ics, for any
-1
(G?)iela vy (G?A( )iGI-

Remark 2.5.9. If 2> is a multialgebra then the maps ¢2° (j € I) are multialgebra homomorphisms.

Theorem 2.5.12. The inverse system of multialgebras ((A; | i € I),((pf | 7,k € I, j < k))
determines a contravariant functor G : T — Malg(7). If A = (A%, (fy)y<o(r)) s @ multialgebra
then, together with the homomorphisms (p3° | j € I), is the inverse limit of G.

The last three results of this section are generalizations for some results presented for universal
algebras in [29, §21]. From now on we will consider that (I, <) is a directed partially ordered set.
Let A= ((U; | i €I),(h|jkel, j<k)) bean inverse system of multialgebras and let us
consider J C I such that (J, <) is also a directed partially ordered set. We will denote by A; the
inverse system of multialgebras (2; | 4 € J) whose carrier is (J, <) and whose homomorphisms are
@k, with i,5 € J, i < j.

Proposition 2.5.14. If J is cofinal with (I, <), then the relational system éiLnA is a multialgebra

if and only if MAJ is a multialgebra. If this is the case, the two multialgebras are isomorphic.

Remark 2.5.15. The inverse limits from [16], [44] and [46] are inverse limits of inverse systems
of (particular) multialgebras with the carrier (I, <) directed ordered set with a maximum. From
Proposition 2.5.14, it follows that such an inverse limit exists and it is isomorphic to the member of
the system having this maximum as an index. It is clear that such an inverse limit exists and it has

all the properties of this member.

Let us consider that the support set I of the carrier (I, <) of the inverse system A4 = (; | ¢ € I)
of multialgebras can be written as I = ,cp I, where (P, <) and (I,,<) (p € P) are directed
partially ordered sets such that I, C I, whenever p,q € P, p < q. We will denote

1&1./4 =A* = (Aooa (f’Y)"y<o(‘r))= @AI}) = ngo = (Agoa (f’y)v<o(-r)) (p € P)

For any p,q € P, p < q we can define the map ¢ : A2 — A%, Y4((a;)icr,) = (ai)ic,- In this way
we obtain an inverse system of sets A/ P consisting of (P, <), the sets A7°, and the maps 1.
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Theorem 2.5.16. Assume that for each p € P, 25° is a multialgebra. Then A/P is an inverse
system of multialgebras and @A s a multialgebra if and only if @A/P is a multialgebra. If this
is the case, the two multialgebras are isomorphic.

Theorem 2.5.17. An algebraic class of multialgebras is closed under the formation of inverse limits
of arbitrary inverse systems if and only if it is closed under the formation of inverse limits of well
ordered inverse systems.

2.6 On the fundamental algebra of the inverse limit of an

inverse system of multialgebras

In general, the functor F' from Remark 1.6.21 does not preserve the inverse limits of inverse families

of multialgebras, even if they are multialgebras. This will result from Example 2.6.2.

Ezample 2.6.1. An useful example of inverse limit of multialgebras can be given as in [29, p.133].
So, let us consider a set I and a family (; | ¢ € I) of multialgebras of type 7. We can get an
inverse system of multialgebras taking (.J, C) to be the set of all the finite nonempty subsets of the
set I, ordered with the set inclusion, B; = [],. i

<pg‘1) from [];c;, 2 onto [, 2, for any jo D ji from J. The inverse limit of this inverse system of

A;, for any j € J, and the canonical projections

multialgebras exists and it is isomorphic to [[;c; 2.

Ezample 2.6.2. In the previous example we take I = N and 2; = (Z, o) from Example 2.2.8 for each
i € I. Tt will result an inverse system consisting of the hypergroups (H;,o) = (Z7,0) with j C N
finite. The fundamental group of each hypergroup H; is a one element group. It follows that the
inverse limit of the inverse system of the corresponding fundamental groups is the one element group.
But the fundamental group of the inverse limit of the inverse system ((H;,o) | j C N, j is finite) is

isomorphic to the fundamental group of the direct power ZY, and this has at least two elements.

Let A= (% | i€, (@? | j,k € I, j < k)) be an inverse system of multialgebras. We will
denote by A the inverse system of the fundamental algebras (2; | ¢ € I) of the multialgebras from A4,
with the homomorphisms (907; |i,7 € I, i > j). So, if we see the inverse system .4 as a contravariant
functor G then A is the functor F o G. In this section, we will refer to the inverse limit l'LnA of the
inverse system A as the inverse limit (A%, (¢$° | i € I)) of G. Clearly, ImA = @(FG) If we
denote (A, (p5° |i € I)) by limA, we have:

Proposition 2.6.3. Let A be an inverse system of multialgebras with the carrier (I,<) and let us
consider J C I with (J, <) a directed partially ordered set cofinal with (I,<). Consider that MAJ is
a multialgebra. Under these conditions, éi_mA is the inverse limit of the inverse system of universal

algebras A if and only if @AJ is the inverse limit of the inverse system of universal algebras A;.

Proposition 2.6.4. Using the notations from the previous section, let us consider that A°, p € P,
and A are multialgebras. Let us also consider that for each p € P, @AIP s the inverse limit
of the inverse system Ay, of universal algebras. Then @A is the inverse limit of A if and only if
{imA/ P is the inverse limit of A/P.
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If K is a class of multialgebras of type 7 then we can obtain a subcategory K of Malg(r) if
we consider as morphisms only those homomorphisms which are defined between two multialgebras
from K. Knowing the definition of U, in the next theorem we may use F' instead of the composition
F oU of the functor F' with the inclusion functor U : K — Malg(7).

Theorem 2.6.5. Let K be an algebraic class of multialgebras closed under the formation of inverse
limits of well ordered inverse systems. Then F preserves the inverse limits of arbitrary inverse

systems of multialgebras from K if and only if F preserves the inverse limits of well ordered inverse
systems of multialgebras from K.



Concluding remarks

Along the previous contributions in the theory of multialgebras, such as those of H. E. Pickett and G.
Grétzer, our thesis confirms once again especially through the results obtained in the first chapter
the fact that the theory of multialgebras is a natural extension of the theory of universal algebras.
One can obtain important results concerning multialgebras as they are particular cases of relational
systems and, at the same time, generalizations of the universal algebras. We also notice that the
study of multialgebras and of the identities on multialgebras provide interesting information about
some particular classes of multialgebras. Given the above affirmations and the genesis of this thesis,
we will formulate a few problems which may be a continuation of this research.

We noticed that an important role in the study of multialgebras is played by the algebra the
nonempty subsets of a multialgebra. This algebra was introduced starting form a multialgebra of
type 7, & = (A, (fy)y<o(r)), defining the operations on the set P*(A) of the nonempty subsets of
the set A through the equalities:

Fr(Aos. o An 1) = (a0, s an, 1) | a; € Ay, i €0, ny — 13}

A first problem could be the characterization of the universal algebras that have the set P*(A) as
support and which can be obtained as above from a multialgebra of support A.

Looking at the characterization of the complete multialgebras given in Proposition 1.7.20, we
observe that a complete multialgebra 2 = (A, (fy)y<o(r)) With the support set A results from a
universal algebra A" = (4, (f1),<o(r)) on A (of the same type) and an equivalence relation p on A
by considering for any v < o() and ao,...,an, -1 € A

1000+ Gy —1) = pUf2 G0, - G, 1))

Another problem could be the characterization of the equivalence relations of the support set of a
universal algebra which lead us to complete multialgebras by using the above procedure.

Given the characterization theorem for multialgebras formulated by Gratzer, as well as the
construction of the free algebra over a class of universal algebras, the following question arises: can
we generalize the construction of the free algebra in categories of multialgebras?

We saw that the factor of a universal algebra %8 modulo an equivalence p is a multialgebra which
verifies in a weak manner the identities that are satisfied on 8. Some identities on B, such as those
that characterize the commutativity of an operation, are satisfied even in a strong manner on any

factor multialgebra %B/p. Also, owed to the equivalence used for the factorization the identities of
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the algebra B can be satisfied in a strong manner on the factor multialgebra. Can one characterize
the identities of a universal algebra which are satisfied in a strong manner in any multialgebra
obtained as a factor of the given universal algebra modulo an equivalence relation? What about the
equivalences of a universal algebra for which an identity of the algebra holds in a strong manner on
the factor multialgebra?

The inverse limit of an inverse system of multialgebras that we studied is the limit in the category
of the relational systems (of the same type). Supposing that this limit is a multialgebra, what can be
said about the identities verified on each multialgebra in the given inverse system? Let us consider
that the contravariant functor determined by an inverse system of multialgebras of the type 7. The
following question arises: when does the limit of this functor in the category Malg(7) exist?

Of course, there also are other constructions of universal algebras that can be generalized to
multialgebras, as well as constructions of relational systems that can be particularized to multi-
algebras. Among the constructions that are important both to the theory of universal algebras
and the model theory, we mention ultraproducts. For a set I, a family of universal algebras
(& = (As, (fy)y<o(ry) | i € I) and an ultrafilter U over I one considers the relation

v C [JAi x [[ 4 abub & {i € IT|al)=0b(i)} €U
il iel

and it can be noticed that 6y is a congruence on [];.,; ;. The factor algebra (Hiel Ql,) /0u is
called an ultraproduct of the family of algebras (2; | i € I) (see [6, §6, Cap. IV]). Starting this
construction by using a family of multialgebras (2(; | 4 € I) and given the fact that 6y is an
equivalence relation on [[;c; A, [[;c;Ai/0v is a multialgebra. From here results the following
question: when is the fundamental algebra of an ultraproduct of multialgebras isomorphic with an
wltraproduct of the corresponding fundamental algebras?

It would also be interesting to see when 0y € Eyq ([T;c; ) ? Given the numerous applications
of ultraproducts in the model theory and in the theory of universal algebras, the above construction

opens up new possibilities of research in the field of multialgebras.
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