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Introduction

The �rst steps in the �eld of multialgebras were made in the 1930s in a paper presented by theFrench mathematician F. Marty at the 8th Congress of the Scandinavian Mathematicians (1934).In this paper, the author presented a generalization for groups, called hypergroup, as well as someof its properties. From the very next articles of Marty, one could foresee that these objects can beused as tools in other mathematical theories. Some of the connections between hyperstructures andother areas of mathematics (connections that I noticed while preparing this thesis) concern rationalfractions (Marty: [49]), ordered sets (Benado: [1], [2], C�alugareanu and Leoreanu: [8]), charactertables of �nite groups (Roth: [72], [74], McMullen and Price: [51]), binary relations (Rosenberg: [71],Corsini: [11], Corsini and Leoreanu: [14]), fuzzy sets (Corsini and Leoreanu: [12], [15], Leoreanu:[44]), abstract data types (Walicki and Meldal: [89]). I mention that the weak Cayley table, usedby Johnson, Mattarei and Sehgal in [37] for determining 1 and 2-characters of a �nite group, is anexample of multiloop (although the authors do not specify it). Our perspective on the connectionsbetween multialgebras and other �elds of research is completed by P. Corsini and V. Leoreanu in[16].The �rst multialgebras that were studied are hypergroupoids, and semihypergroups and hyper-groups. Later, there also appeared results concerning other hyperstructures such as hyperrings,hypermodules, hyperlattices. The Romanian mathematician Mihail Benado had a major contri-bution to the study of hyperlattices. Gratzer's and Pickett's papers ([27]) and ([67] respectively)are extremely important for the theory of multialgebras. In these works, multialgebras are seen asparticularizations of the relational systems which generalize the notion of universal algebra and theresults obtained here place multialgebras right next to the universal algebras. This is also provedby some of the properties established here, which extend some of the results that are already knownfor universal algebras. Within the framework de�ned by Gr�atzer and Pickett also lie works suchas [36] (H�oft and Howard), [33], [34] (Hansoul), [75] (Schweigert), [90] (Walicki and Bia lasik) andthe more recent [4] (Breaz and Pelea), [59], [60], [61] (Pelea). We should notice that in the abovementioned papers of Hansoul, Walicki and Bia lasik the notion of multioperation does not include thefact that its images are nonempty sets. Multialgebras which have such multioperations are closerto the relational systems than to the universal algebras and in their case Gr�atzer's representationtheorem ([27]) does not apply anymore.Like in other theories, in the theory of multialgebras it is very important to obtain new objectsstarting from given objects and this is what the constructions of multialgebras do. The simplest
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constructions are the formation of submultialgebras and of factor multialgebras. The latter havebeen studied from the outset of this theory and this is not surprising because the �rst hypergroupsemerged as a result of the factorization of a group modulo an equivalence relation determined by asubgroup and, later, G. Gr�atzer proved that any multialgebra can be obtained by an appropriatefactorization of a universal algebra modulo an equivalence relation. Our research concerns a �eldwhere there already existed results on direct and subdirect products (of multialgebras), as well assome properties on direct limits of direct systems and inverse limits of inverse systems of particularhyperstructures. Among the constructions studied in this thesis, we mention submultialgebras andespecially the submultialgebra generated by a subset, the factor multialgebras, the direct products,the direct limits of direct systems and the inverse limits of inverse systems of multialgebras.The �rst chapter begins with an introductory paragraph where we present the notion of mul-tialgebra and a few particular multialgebras which will be used along the thesis. Starting from aA multialgebra, Pickett introduces in [67] a structure of universal algebra P�(A) on the set P �(A)of the nonempty subsets of A. In the second paragraph of Chapter 1, we remind the way that arede�ned polynomial functions and the term functions of a universal algebra, as well as the way thatthe latter can be obtained from terms. This discussion occurs in the case of P�(A), which allowsthe introduction of particular algebraic functions that prove to be useful in paragraphs 1.6 and 1.8.The third paragraph concerns the submultialgebras of a multialgebra. In this paragraph, theoriginal contribution is the characterization of the submultialgebra generated by a subset in a mul-tialgebra (Theorem 1.3.13). Pickett noticed that, given a subset B of the support set A of a multial-gebra A, B is a submultialgebra of the multialgebra A if and only if P �(B) is a submultialgebra forthe algebra P�(A). Starting from this, we can write the submultialgebra generated by a subset Xof a multialgebra A as a union of all the images of one element subsets of X through term functionsof P�(A) (Theorem 1.3.13).There exist several generalizations of the notion of homomorphism for multialgebras. We onlyuse two of them: one that is called homomorphism (which results from considering the multialgebrasas relational systems) and another one called ideal homomorphism (whose de�nition is analogousto the de�nition of universal algebra homomorphism). We used the fact that the ideal homomor-phisms of multialgebras determine and are determined by a special class of equivalence relationsde�ned on multialgebras, namely ideal equivalences (Pickett ([67])). In the same paper, Pickettmentions a connection between ideal homomorphisms of multialgebras and certain homomorphismsof the corresponding nonempty algebras of subsets. Whether by using this connection or directly,in paragraph 1.4 we established connections of the homomorphism between two multialgebras A, Bwith the term functions of the universal algebras P�(A), P�(B). Thus, in Proposition 1.4.9 andCorollary 1.4.14 we proved that for these term functions and for the homomorphisms used herecertain properties similar to the those established for universal algebras hold. We also showed thatthe ideal equivalences of a multialgebra A are in close connection with certain congruences of thealgebra P�(A) (Theorem 1.4.5), which allows a characterization of the ideal equivalences of a mul-tialgebra (Proposition 1.4.7). The original results in paragraph 1.3 and 1.4 were obtained togetherwith Simion Breaz and published in [4].
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One of the most important results concerning multialgebras is G. Gr�atzer's characterizationtheorem ([27]), which proves that the study of multialgebras is a natural extension of the theory ofuniversal algebras. The last paragraphs of Chapter 1 come within this context. One of the problemssuggested by Gr�atzer in [27] is the following: What are the factor multialgebras of a group, abeliangroup, lattice, ring and so on? Characterize these with a suitable axiom system.. The fact thatthese particular universal algebras are de�ned by identities made us wonder what happens withthe identities of an algebra after the factorization modulo an equivalence relation. If we study thede�nitions of the hyperstructures presented in P. Corsini's ([10]) and T. Vougiouklis's ([85], [86],[87], [88]) works | some of them also presented in the �rst paragraph of our thesis | we can seethat it is necessary to adapt the notion of identity from universal algebras to multistructures. Thus,we introduce two types of identities for multialgebras: (strong) identities and weak identities. Oneanswer to the �rst part of Gr�atzer's problem results immediately by establishing that the identitiesof a universal algebra usually become weak identities on the factor algebra. The identity of thealgebra, as well as the equivalence relation we are dealing with can make the factor multialgebrasatisfy this identity in a strong manner. In paragraph 1.5, we present a series of remarks whichcon�rm these statements.It is known that by the factorization of a universal algebra modulo a congruence that includes arelation we obtain a universal algebra in which any two elements in the given relation determine thesame class. Then, our study tries to prove that the factorization of a universal algebra modulo anequivalence relation | which gave rise to multialgebras | can be seen as an \intermediate step" ofsuch a factorization. This leads to the study of certain (ideal) equivalences which have the propertythat the factor multialgebras they determine are universal algebras. Such equivalences appear in theliterature from the very �rst papers on hypergroups (Dresher, Ore ([19]) and Ore, Eaton ([22])). Aseries of important works about these equivalences of the hypergroupoids, semihypergroups, hyper-groups, hyperrings and other particular multistructures have been published after 1990 and convergetoward the study of the smallest equivalences of this kind. In Proposition 1.6.1. we gave a charac-terization of the equivalences of a A multialgebra for which the factor multialgebra is a universalalgebra and in Theorem 1.6.13 we determined the smallest equivalence ��A on A that has this prop-erty. If we apply Theorem 1.6.13 to semihypergroups, hypergroups and hyperrings, we obtain thefundamental relation of these hyperstructures (studied for example by (Corsini ([10]), Freni ([25]),Gut�an ([31]), Vougiouklis ([83])). This is why we called the relation ��A a fundamental relation forthe A multialgebra, too. We called the factor universal algebra it determines a fundamental algebra.Using Theorem 1.6.8, where we proved that any homomorphism between two multialgebras inducesa homomorphism between the corresponding fundamental algebras, we de�ned a covariant functorfrom the category of multialgebras of a given type into the category of the universal algebras of thesame type (Observation 1.6.21).Naturally, we get to the following question: what happens with the (strong or weak) identities ofa multialgebra after their factorization modulo the fundamental relation? In Proposition 1.7.1, weconclude that they become identities of the universal algebra obtained by factorization. It is easyto notice that an identity of the fundamental algebra does not have to originate in an identity, be
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it weak, of the given multialgebra. However, we established a class of multialgebras | completemultialgebras | which have the property that any identity of the fundamental algebra is veri�ed,at least in a weak manner, on the original multialgebra | see the proof of Proposition 1.7.6 andProposition 1.7.11.In the last paragraph of Chapter 1, we determined the smallest equivalence for which the factormultialgebra is a universal algebra for which a given identity is veri�ed (Theorem 1.8.3). By applyingthis theorem to the case of (semi)hypergroups and to the identity which expresses the commuta-tivity of the hyperproduct, one �nds the relation introduced by Freni in [26] in order to obtain acharacterization of the derived hypergroup of a hypergroup. In this thesis, we proved that the mul-tialgebra which results from a universal algebra B by factorization modulo an equivalence relation �becomes, after the factorization by the relation introduced by us isomorphic to the same algebra asthe one obtained as a factor algebra of the universal algebra B modulo the smallest congruence thatcontains the equivalence �, as well as the pairs of elements of B which become equal thanks to theidentity we are using (Theorem 1.8.9). Using Theorem 1.8.9, we established a connection betweenthe derived subgroup of a group and the derived subhypergroup of its factor hypergroup modulo anequivalence relation determined by a subgroup (Example 1.8.10).The results presented in the paragraphs 1.5, 1.6, 1.7, 1.8 are original and have been published,accepted for publication or submitted for publication. Thus, the main result in paragraph 1.6(Theorem 1.6.13) was published in [59] and the �nal part of paragraph 1.6 and paragraphs 1.7 and1.8 constitute a paper written with Professor Ioan Purdea and which is still a preprint ([66]).In Chapter 2, we study certain properties concerning direct products, direct limits of direct sys-tems and inverse limits of multialgebras. All these constructions are generalizations of the propertiesestablished for universal algebras and they are natural since one obtains objects of the category ofmultialgebras corresponding to the similar constructions in the category theory. We mention thatin [90] Walicki and Bia lasik obtained results concerning categorical constructions of multialgebras.In this paper, the authors proved that multialgebras together with homomorphisms form a categorywith �nite products, equalizers, �nite coproducts , coequalizers, and, consequently, with �nite limitsand colimits. But the construction of the equalizers and of the coproducts uses very much the factthat the image of a multioperation can be empty, so the possibility of transferring these properties tocategories whose objects are the multialgebras characterized by Gr�atzer's theorem becomes uncer-tain. As an example supporting this statement, we underline the fact that the multialgebras of type� = (n
)
<o(�) form a subcategory in the category of the relational systems of type (n
 + 1)
<o(�)which is not closed under inverse limits.Chapter 2 is a collection of results belonging to the author of the thesis. In the �rst paragraph, wepresent a series of properties of the direct product of multialgebras, most of them published in [61].In [90], Walicki and Bia lasik proved that for two multialgebras, the direct product is the productin the category of multialgebras. Without signi�cantly modifying the proof, this property can beproved for arbitrary families of multialgebras (Proposition 2.1.1). We showed that the direct productsatis�es the identities veri�ed by the given multialgebras (Propositions 2.1.3 and 2.1.4) and that thedirect product of complete multialgebras is a complete multialgebra (Proposition 2.1.7). Another
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problem we studied for each construction is whether and when the functor obtained by factorizationmodulo the fundamental relation preserves them. Paragraph 2.2 presents the results obtained in[63], a paper accepted for publication in Italian Journal of Pure and Applied Mathematics. InExample 2.2.1, we show that the functor introduced in paragraph 1.6 usually does not commutewith the multialgebra products. However, for a more restricted case, we found a necessary andsu�cient condition for the fundamental algebra of the direct product of a family of multialgebrasto be isomorphic with the direct product of the corresponding fundamental algebras (Proposition2.2.2). The condition in Proposition 2.2.2 is quite complicated but it leads to a su�cient condition(Corollary 2.2.3) which helps us establish when the above property holds for hypergroups and forcomplete multialgebras (Theorems 2.2.9 and 2.2.12).In paragraph 2.3, we constructed the direct limit of a direct system of multialgebras A. Weconsidered the direct system A to have a (directed) ordered carrier (I;�) and we showed thatcertain properties of the ordered set (I;�) facilitate this construction (Proposition 2.3.8 and Theorem2.3.10). We proved that a class of multialgebras closed under the formation of the isomorphic imagesis closed under the formation of direct limits of arbitrary direct systems if and only if it is closedunder the formation of direct limits of well ordered direct systems (Theorem 2.3.10). If we considerthat in a direct system of multialgebras all the homomorphisms are ideal, it results immediatelythat if our multialgebras are algebras, then we obtain the construction with the same name fromuniversal algebras. In this case, from the above mentioned results we obtain Lemma 7, Theorem 2and Theorem 4 from [29, x21]. Some of the properties established by Romeo in [70] and Leoreanu in[40] and [46] can be obtained by using Proposition 2.3.8 and Propositions 2.3.14, 2.3.16, which statethat the direct limit of a direct system of multialgebras which satisfy a given identity, weak or strong,veri�es this identity. From Theorem 2.4.1, in which we showed that the functor F , determined bythe factorization modulo the fundamental relation, is a left adjoint for the inclusion functor, wededuce that F commutes with the direct limits of direct systems of multialgebras (Corollary 2.4.2).The last construction we present in this thesis is the construction of inverse limits of inversesystems of multialgebras. At the beginning of the paragraph 2.5, we prove that the inverse limitof an inverse system of multialgebras of type � = (n
)
<o(�) in the category of the relationalsystems of type (n
 + 1)
<o(�) is not always a multialgebra (Example 2.5.6). We also prove a seriesof properties analogous to those which hold for direct limits (Propositions 2.5.14 and Theorems2.5.14 and 2.5.17). An important part of these results consists in establishing some conditions inwhich the inverse limit of an inverse system of multialgebras is a multialgebra. Let K be a classof multialgebras of type � closed under isomorphic images. In Theorem 2.5.17, we established anecessary and su�cient condition for the inverse limit of an inverse system of multialgebras fromK to be a multialgebra in K. In the paragraph 2.6, we study the commutativity of the functor Fdetermined by the fundamental relation with the inverse limits of inverse systems. In general, thisfunctor does not commute with the inverse limits (Example 2.6.2). Starting from Proposition 2.5.14and Theorem 2.5.14, in the last paragraph we proved Propositions 2.6.3 and 2.6.4 which present thenecessary and su�cient conditions (in certain cases) for the fundamental algebra of the inverse limitof an inverse system of multialgebras to be the inverse limit of the inverse system formed with the
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corresponding fundamental algebras. We considered the functor F to be de�ned on subcategories ofmultialgebras such as those in Theorem 2.5.17 and, using Propositions 2.6.3 and 2.6.4, we establisheda necessary and su�cient condition for this functor to commute with the inverse limits of inversefamilies (Theorem 2.6.5).I am very grateful to my family, who proved extremely patient and understanding all along thesesix years. I want to thank Professor Ioan Purdea for the discussions and the remarks which madethis thesis possible, Professor Nicolae Both and Professor George Georgescu for their suggestionsand my friend Simion Breaz for the mathematical dialogues which had an in
uence on the presentwork. I also thank my teachers Professor Grigore C�alug�areanu, Professor Rodica Covaci, ProfessorAndrei M�arcus and my colleagues Septimiu Crivei, Christian S�ac�area, Ciprian Modoi, Csaba Szanto,Iluska Bonta, Camelia Dicu, for the friendly environment in the Chair of Algebra and for the advicethey o�ered me so generously.Cosmin PeleaCluj{Napoca, September 2003.



Chapter 1

Multialgebras. Submultialgebras.
Factor multialgebras

1.1 Multialgebras. De�nitions. Particular cases
Let A be a set and let P �(A) be the set of the nonempty subsets of A.
De�nition 1.1.1. Let n 2 N be a nonnegative integer. A mapping An ! P �(A) is called n-arymultioperation on A.
Remark 1.1.1. There exist nullary multioperations on A if and only if A is not empty.

Let us consider a sequence of nonnegative integers � = (n
)
<o(�) = (n0; n1; : : : ; n
 ; : : :) indexedwith a set of ordinal numbers f
 j 
 < o(�)g and for any 
 < o(�) let us consider a symbol f
 of ann
-ary multioperation.
De�nition 1.1.2. A multialgebra of type � , A = (A; (f
)
<o(�)); consists of a set A and a familyof multioperations (f
)
<o(�) = (f0; f1; : : : ; f
 ; : : :) such that each f
 is an n
-ary multioperationhaving the symbol f
 . The set A is called the support (set) of the multialgebra A:
Example 1.1.3. [47] Let (G; �) be a group, H a subgroup of G and let G=H = fxH j x 2 Gg. Theequality xH � yH = fzH j z = x0y0; x0 2 xH; y0 2 yHg de�nes an operation on G=H if and only ifthe subgroup H is normal. In general, the above equality de�nes a binary multioperation on G=H.

Let us remind a few particular multialgebras which will appear in our thesis:
Hypergroupoid. A multialgebra (H; �) with one binary multioperation is called hypergroupoid.If a; b 2 H, the image a � b of the pair (a; b) will be called hyperproduct. Sometimes we willuse the term hyperproduct for the binary multioperation of a hypergroupoid. If A;B � H thenA �B = Sfa � b j a 2 A; b 2 Bg:
Semihypergroup. A hypergroupoid (H; �) having the multioperation � associative, i.e. a�(b�c) =(a�b)�c for any a; b; c 2 H; is called semihypergroup. If a1; : : : ; an 2 H the nonempty subset a1�� � ��anof H will be called hyperproduct with n factors. By replacing the associativity of � with the condition

10
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a � (b � c) \ (a � b) � c 6= ; for any a; b; c 2 H; called weak associativity, one obtains the de�nition forHv-semigroup.
Hypergroup. Let H be a nonempty set. A semihypergroup (H; �) for which
(1:1:1) a �H = H � a = H for all a 2 H;
is called hypergroup. An Hv-semigroup satisfying (1:1:1) is called Hv-group. The multialgebra fromExample 1.1.3 is a hypergroup. From (1:1:1) it follows that the equalities
(1:1:2) a=b = fx 2 H j a 2 x � bg; bna = fx 2 H j a 2 b � xg
de�ne two binary multioperations on H. So, the hypergroups and the Hv-groups can be seen asmultialgebras (H; �; =; n) of type � = (2; 2; 2). Let us also notice that if H 6= ; and (H; �; =; n) isa multialgebra of type � = (2; 2; 2) such that the multioperation � is associative (weak associative)and the multioperations = and n can be obtained from � using (1:1:2) then (H; �) is a hypergroup(Hv-group).
Canonical hypergroup. A nonempty set H together with a binary multioperation + is a canonicalhypergroup if: (i) + is associative; (ii) + is commutative (a+ b = b+ a; for all a; b 2 H); (iii) thereexists a 0 2 H such that 0 + a = a; for any a 2 H; (iv) for any a 2 H; there exists �a 2 H whichveri�es the following property: if b; c 2 H such that c 2 a+ b then b 2 (�a) + c:This multialgebra is a hypergroup, 0 is unique with the given property, 0 2 a+ (�a), and �a isunique with this property, so the canonical hypergroups can be seen as multialgebras (H;+; =; n; 0;�)with +; =; n binary multioperations, 0 nullary operation and � unary operation.
Hyperring (in the general sense). A hyperring (in the general sense) is a multialgebra (R;+; �)for which (R;+) is a hypergroup, (R; �) is a semihypergroup and for all a; b; c 2 R the inclusionsa � (b+ c) � a � b+ a � c; (b+ c) � a � b � a+ c � a hold. If = and n are the multioperations de�ned inthe hypergroup (R;+) by (1:1:2) then the hyperring R can be seen as a multialgebra (R;+; =; n; �)of type (2; 2; 2; 2), with +, � associative multioperations which verify the above inclusions.
Krasner hyperring. A Krasner hyperring (A;+; �; 0) consists of a set A, and two binary multi-operations (on A) +; � having the following properties: i) (A;+; 0) is a canonical hypergroup with;ii) (A; �) is a semigroup; iii) 0 � a = a � 0 = 0, for any a 2 A; iv) the operation � is distributive withrespect to the multioperation +, i.e. a � (b + c) = a � b + a � c and (b + c) � a = b � a + c � a for alla; b; c 2 R. A Krasner hyperring can be seen as a multialgebra (A;+; =; n; 0;�; �) with +; =; n binarymultioperations and 0;�; � operations with the arities 0; 1; 2, respectively.The universal algebras are particular cases of multialgebras. So, the semigroups are particularcases of semihypergroups, the groups are particular cases of hypergroups, the Abelian groups areparticular cases of canonical hypergroups, and the rings are particular cases of rings.A multioperation f
 of a multialgebra of type � can be seen as a n
 +1-ary relation r
 as follows:
(1:1:3) (a0; : : : ; an
�1; an
 ) 2 r
 , an
 2 f
(a0; : : : ; an
�1):
So, the multialgebras are particular relational systems, more general than universal algebras.
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1.2 The algebra of the nonempty subsets of a multialgebra
A multialgebra A = (A; (f
)
<o(�)) of type � determines a structure of universal algebra of type �on P �(A) with the operations de�ned as follows:
(1:2:1) f
(A0; : : : ; An
�1) =[ff
(a0; : : : ; an
�1) j ai 2 Ai; i 2 f0; : : : ; n
 � 1gg;
for any 
 < o(�) and A0; : : : ; An
�1 2 P �(A). We will denote this algebra by P�(A) and we will callit the (universal) algebra of the nonempty subsets of the multialgebra A.
Remark 1.2.1. If Ai; Bi (i 2 f0; : : : ; n
 � 1g) are nonempty subsets of A such that Ai � Bi thenf
(A0; : : : ; An
�1) � f
(B0; : : : ; Bn
�1):Let us consider a nonnegative integer n and the universal algebra P�(A) = (P �(A); (f
)
<o(�)).We will denote by P (n)P�(A)(P�(A)) the set of the n-ary polynomial functions of the algebra P�(A)
and by P(n)P�(A)(P�(A)) the algebra (P (n)P�(A)(P�(A)); (f
)
<o(�)):
Remark 1.2.2. If n 2 N, p 2 P (n)P�(A)(P�(A)) and the nonempty subsets A0; : : : ; An�1, B0; : : : ; Bn�1of A are such that A0 � B0; : : : ; An�1 � Bn�1 then p(A0; : : : ; An�1) � p(B0; : : : ; Bn�1):In the algebraP(n)P�(A)(P�(A)) we consider the subalgebra P (n)(P�(A)) generated by the functionseni , i 2 f0; : : : ; n � 1g. The algebra P(n)(P�(A)) = (P (n)(P�(A)); (f
)
<o(�)) is the algebra of then-ary term functions of P�(A). We mention that the algebra P(0)(P�(A)) exists if and only if themultialgebra A has no nullary multioperations.For each a 2 A, we denote the polynomial function cnfag by cna and by P (n)A (P�(A)) the subalgebra
of P(n)P�(A)(P�(A)) generated by the subset fcna j a 2 Ag [ feni j i 2 f0; : : : ; n� 1gg:Let n 2 N. Starting from the symbols (f
)
<o(�) and x0; : : : ;xn�1 one can construct the algebraof the n-ary terms. We denote by P(n)(�) the set of the n-ary terms. For any 
 < o(�) the equalityf
(p0; : : : ;pn
�1) = f
(p0; : : : ;pn
�1) de�nes an n
-ary operation on P(n)(�). So, one obtains thealgebra P(n)(�) of the n-ary terms. The algebra P(0)(�) exists if and only if there exists 
 < o(�)such that f
 is the symbol of a nullary multioperation.
Remark 1.2.6. [29, Corollary 8.1] Any n-ary term function p of the algebra P�(A) is induced by ann-ary term p.
Notation. The term function induced by p on the algebra P�(A) will be denoted by p or by (p)P�(A).
1.3 The lattice of the submultialgebras. The generated sub-

multialgebra
De�nition 1.3.1. Let A = (A; (f
)
<o(�)) be a multialgebra and B � A: We will say that B is asubmultialgebra of A if for any 
 < o(�) and for all b0; : : : ; bn
�1 2 B; f
(b0; : : : ; bn
�1) � B:Remark 1.3.1. If B is a submultialgebra of A then the set B and the restrictions f
 jBn
 : Bn
 !P �(B) of the multioperations f
 form a multialgebra B of type � .
Notations. For a multialgebra A we will denote by S(A) the set of its submultialgebras, and for asubmultialgebra B, the multioperation f
 jBn
 of the multialgebra B will be denoted by f
 .
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Example 1.3.2. Let (H; �) be hypergroupoid. S � H is a subhypergroupoid of H if S is a submulti-algebra for (H; �). A subhypergroupoid of a semihypergroup is called subsemihypergroup.
Remark 1.3.3. Let H be a hypergroup and S � H a nonempty set. If we see the hypergroup H as amultialgebra (H; �; =; n) then the submultialgebras which have nonempty support sets are the closedsubhypergroups (see [10]) and S(H; �; =; n) is the union of the set of the closed subhypergroups ofH with f;g.
Theorem 1.3.4. [67, Theorem 3] Let A = (A; (f
)
<o(�)) be a multialgebra of type � and B � A.P �(B) is a subalgebra of P�(A) if and only if B is a submultialgebra of A.
Corollary 1.3.6. Let A = (A; (f
)
<o(�)) be a multialgebra of type � , B a submultialgebra of A,n 2 N and p 2 P (n)(P�(A)). If b0; : : : ; bn�1 2 B then p(b0; : : : ; bn�1) � B.In [33, Lemma 1] is presented the following result (even in a more general case which concerns amultialgebra whose multioperations are not necessarily �nitary):
Lemma 1.3.7. The set S(A) is an algebraic closure system on A.
Corollary 1.3.9. If X � A then hXi = TfB 2 S(A) j X � Bg is a submultialgebra of A.
De�nition 1.3.10. hXi will be called the submultialgebra of A generated by the subset X.
Theorem 1.3.13. Let A = (A; (f
)
<o(�)) be a multialgebra of type � , X � A: Then a 2 hXi if andonly if there exist n 2 N; p 2 P (n)(P�(A)) and x0; : : : ; xn�1 2 X such that a 2 p(x0; : : : ; xn�1):
1.4 Multialgebra homomorphisms
Maybe the most natural way to de�ne an homomorphism between two multialgebras is the oneprovided by considering the multialgebras as relational systems.
De�nition 1.4.1. Let A = (A; (f
)
<o(�)) and B = (B; (f
)
<o(�)) be two multialgebras of thesame type � . A map h : A! B is a homomorphism between the multialgebras A and B if for any
 < o(�) and a0; : : : ; an
�1 2 A we have
(1:4:1) h(f
(a0; : : : ; an
�1)) � f
(h(a0); : : : ; h(an
�1)):

Often, the homomorphisms we are dealing with have the property that the inclusion (1:4:1) is anequality. As in [67], we will call such a homomorphism, ideal homomorphism. Let us mention thatthe ideal homomorphisms are called relational homomorphisms in [75] { but we will not use thisterm in order to avoid the confusion with the notion of homomorphism between relational systems{ and tight homomorphisms in [90].
Remark 1.4.3. If H and H 0 are hypergroups and we see them as multialgebras with three binarymultioperations as in the paragraph 1.1 then a homomorphism between the hypergroupoids (H; �)and (H 0; �) is a homomorphism between the multialgebras (H; �; =; n) and (H 0; �; =; n):
De�nition 1.4.2. Let A and B be two multialgebras of the same type. A bijective map h : A! Bfor which h and h�1 are multialgebra homomorphisms between A and B is called isomorphism.
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Remark 1.4.4. A bijective multialgebra homomorphism is an isomorphism if and only if it is an idealhomomorphism.
De�nition 1.4.3. Let A = (A; (f
)
<o(�)) be a multialgebra and let � be an equivalence relation onA. The relation � is called ideal equivalence on A if for any 
 < o(�) and for any xi; yi 2 A havingthe property that xi�yi for all i 2 f0; : : : ; n
 � 1g we have

a 2 f
(x0; : : : ; xn
�1)) 9b 2 f
(y0; : : : ; yn
�1) such that a�b:
Let A be a set and let P �(A) be the set of its nonempty subsets. Let � be an equivalence relationon A and let � be the relation de�ned on P �(A) as follows:

A�B , 8a 2 A; 9b 2 B such that a�b �si 8b 2 B; 9a 2 A such that a�b:
One immediately notices that � is an equivalence relation on P �(A).
Theorem 1.4.5. Let A = (A; (f
)
<o(�)) be a multialgebra and let � be an equivalence relation onA. The relation � is an ideal equivalence on A if and only if the relation � is a congruence relationon P�(A).
Proposition 1.4.7. Let A = (A; (f
)
<o(�)) be a multialgebra and let � be an equivalence relationon A. The following statements are equivalent:(a) � is an ideal equivalence on A;(b) for any 
 < o(�) and any elements xi; yi 2 A such that xi�yi for all i 2 f0; : : : ; n
 � 1g we havef
(x0; : : : ; xn
�1)�f
(y0; : : : ; yn
�1);(c) for any 
 < o(�), any a; b; xi 2 A (i 2 f0; : : : ; n
 � 1g) such that a�b and any i 2 f0; : : : ; n
 � 1gwe have f
(x0; : : : ; xi�1; a; xi+1; : : : ; xn
�1)�f
(x0; : : : ; xi�1; b; xi+1; : : : ; xn
�1);(d) for any n 2 N, any p 2 P (n)(P�(A)) and any elements xi; yi 2 A with xi�yi (i 2 f0; : : : ; n� 1g)we have p(x0; : : : ; xn�1)�p(y0; : : : ; yn�1):Proposition 1.4.9. Let A = (A; (f
)
<o(�)) and B = (B; (f
)
<o(�)) be multialgebras of the sametype � , let h : A ! B be a homomorphism, n 2 N and p 2 P(n)(�). For any a0; : : : ; an�1 2 A wehave h(p(a0; : : : ; an�1)) � p(h(a0); : : : ; h(an�1)):Given a multialgebra A and an equivalence relation � on A the equalities:

f
(�ha0i; : : : ; �han
�1i) = f�hbi j b 2 f
(b0; : : : ; bn
�1); ai�bi; i 2 f0; : : : ; n
 � 1gg
de�ne multioperations on A=�, so A=� = (A=�; (f
)
<o(�)) is a multialgebra. We will call it the factormultialgebra determined by (or, modulo) �. The canonical projection �� : A! A=�, ��(a) = �hai isa multialgebra homomorphism.Applying Proposition 1.4.9 to �� : A! A=� we have:
(1:4:2) f�hai j a 2 (p)P�(A)(a0; : : : ; an�1)g � (p)P�(A=�)(�ha0i; : : : ; �han�1i)
for any n 2 N, p 2 P(n)(�) and a0; : : : ; an�1 2 A:
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Remark 1.4.10. The inclusion (1:4:2) holds if we replace the term functions (p)P�(A) and (p)P�(A=�)by the polynomial p 2 P (n)A (P�(A)) and, respectively, p0 2 P (n)A=�(P�(A=�)), where the polynomialfunction p0 corresponding to p is obtained as follows:(i) if p = cna then p0 = cn�hai;(ii) if p = eni = (xi)P�(A) then p0 = eni = (xi)P�(A=�);(iii) if p = f
(p0; : : : ; pn
�1) and the functions that correspond to p0; : : : ; pn
�1 2 P (n)A (P�(A)) arep00; : : : ; p0n
�1 2 P (n)A=�(P�(A=�)), respectively, then p0 = f
(p00; : : : ; p0n
�1):Since the polynomial function p0 is obtained in the same manner as p, with major changes onlyin step (i), we will write p instead of p0 and, consequently, we have:
(1:4:3) f�hai j a 2 p(a0; : : : ; an�1)g � p(�ha0i; : : : ; �han�1i):
Theorem 1.4.11. [67, Theorem 1] Let A be a multialgebra of type � . If � is an ideal equivalenceon A then �� : A ! A=�, ��(a) = �hai, is an ideal homomorphism. Conversely, if h : A ! Bis an ideal homomorphism between the multialgebras A and B of the same type then the relation�h = f(x; y) 2 A � A j h(x) = h(y)g is an ideal equivalence on A. Moreover, the correspondenceh(a) 7! ��h(a) is an isomorphism between the multialgebras h(A) and A=�h.Let h be an ideal homomorphism of multialgebras between A and B. The homomorphism hinduces a map h� : P �(A)! P �(B) de�ned by h�(X) = h(X) = fh(x) j x 2 Xg for any ; 6= X � A:
Theorem 1.4.12. [67, Theorem 2] The map h� is a homomorphism of universal algebras betweenP�(A) and P�(B) if and only if h is an ideal homomorphism between A and B.
Corollary 1.4.14. Let A = (A; (f
)
<o(�)) and B = (B; (f
)
<o(�)) be multialgebras of type � ,h : A ! B an ideal homomorphism, n 2 N and p 2 P(n)(�). For any a0; : : : ; an�1 2 A we haveh(p(a0; : : : ; an�1)) = p(h(a0); : : : ; h(an�1)):Remark 1.4.15. It is easy to observe that the multialgebras of type � , with the multialgebra homo-morphisms and the usual map composition form a category. We will denote it by Malg(�). Thecategory of universal algebras of type � , denoted here by Alg(�), is, obviously, a subcategory inMalg(�).
1.5 Factor multialgebras of universal algebras. A character-

ization theorem for multialgebras
G. Gr�atzer shows in [27] that any multialgebra can be obtained as in Example 1.1.3. Let B =(B; (f
)
<o(�)) be a universal algebra and let � be an equivalence relation on B. On the set B=� ofthe equivalence classes �hbi of the elements b 2 B, Gr�atzer de�nes, for any 
 < o(�);

f
(�hb0i; : : : ; �hbn
�1i) = f�hci j c = f
(c0; : : : ; cn
�1); ci 2 �hbii; i = 0; : : : ; n
 � 1g:
It results a multialgebra B=�. Such a multialgebra is called concrete multialgebra.
Theorem 1.5.1. [27, Theorem] Any multialgebra is concrete.
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Let A be a multialgebra of type � and q; r 2 P(n)(�): As in case of universal algebras, we willsay that the n-ary identity (or the strong n-ary identity) q = r is satis�ed on the multialgebra A ifq(a0; : : : ; an�1) = r(a0; : : : ; an�1) for any a0; : : : ; an�1 2 A: We will say that the weak identity (thenotation is intended to be as suggestive as possible) q \ r 6= ; is satis�ed on the multialgebra A ifq(a0; : : : ; an�1) \ r(a0; : : : ; an�1) 6= ; for any a0; : : : ; an�1 2 A:Many important particular multialgebras can be de�ned by using (strong and/or weak) identities.
Example 1.5.2. The semihypergroups are multialgebras of type (2) which satisfy the identity
(1:5:1) (x0 � x1) � x2 = x0 � (x1 � x2):
The Hv-semigroups can be de�ned in a similar way, replacing (1:5:1) by
(1:5:10) (x0 � x1) � x2 \ x0 � (x1 � x2) 6= ;:
Remark 1.5.3. Associating to a hypergroup (H; �) a multialgebra (H; �; =; n) with the multioperations=; n given by (1:1:2) we obtain an injective map (which is not bijective) from the class of hypergroupsinto the class of those multialgebras of type � = (2; 2; 2) which satisfy the identities (1:5:1), (1:5:2)and (1:5:3). A similar remark can be obtained for Hv-groups if we replace (1:5:1) by (1:5:10).
Example 1.5.5. Using the previous remarks, we can see a canonical hypergroup as a multialgebra(H;+; =; n; 0;�) of type (2; 2; 2; 0; 1) having the property that (H;+; =; n) is a hypergroup and whichveri�es the identities x0 + x1 = x1 + x0; x0 + 0 = x0; x0=x1 = �(x1=x0):Example 1.5.6. A Krasner hyperring can be seen as a multialgebra (H;+; =; n; 0;�; �) of type � =(2; 2; 2; 0; 1; 2) with (H;+; =; n; 0) canonical hypergroup, � binary operation which, in addition to theidentities of the semigroup (H; �), veri�es the identities x0 � 0 = 0; 0 � x0 = 0; x0 � (x1 + x2) =x0 � x1 + x0 � x2; (x1 + x2) � x0 = x1 � x0 + x2 � x0:Remark 1.5.7. Let B be a universal algebra, � an equivalence relation on B and B=� be thecorresponding factor multialgebra. If we take p as in Remark 1.4.10 and b0; : : : ; bn�1 2 B we have
(1:5:4) p(�hb0i; : : : ; �hbn�1i) � f�hci j c = p(c0; : : : ; cn�1); bi�ci; i 2 f0; : : : ; n� 1gg:
Remark 1.5.8. It follows immediately that if n 2 N; q; r 2 P(n)(�) and the identity q = r is satis�edon B then the weak identity q \ r 6= ; is satis�ed on B=�:

In general, the inclusion (1:5:4) is not an equality. Also, the weak identity established on B=� isnot, in general, a strong one.
Example 1.5.9. Let (Z5;+) be the additive cyclic group of order 5 and let Z5 be the equivalencerelation � = (f0; 1g � f0; 1g) [ (f2g � f2g) [ (f3; 4g � f3; 4g): In the factor hypergroup we have(�h2i+ �h2i) + �h3i = f�h0i; �h2i; �h3ig 6= f�h2i; �h3ig = f�hci j c = (b0 + b1) + b2; b0 = b1 = 2; b2 2f3; 4gg: We also have �h2i + (�h2i + �h3i) = f�h2i; �h3ig, so the associativity holds only in weakmanner for (Z5=�;+).

Yet, some identities, like those which characterize the commutativity of an operation in an algebraB, hold in a strong manner in the multialgebra B=�.



17

Let us see what is the factor multialgebra in the case of semigroups, (Abelian) groups and rings.
The case of semigroups. Let (S; �) be a semigroup and let � be an equivalence relation on S.According to Remark 1.5.8 the hypergroupoid (S=�; �) veri�es the associativity in a weak manner,so it is an Hv-semigroup.
The case of groups. Let (G; �) be a group and let � be a equivalence relation on G. The existenceand the uniqueness of the solution for each of the equations a = xb and a = by allows us tode�ne the operations a=b = fx 2 G j a = xbg; bna = fy 2 G j a = byg on G and to identifythe group G with a universal algebra (G; �; =; n) (with G 6= ;) which veri�es the following identities:(x0�x1)�x2 = x0�(x1�x2); x1 = x0�(x0nx1); x1 = (x1=x0)�x0; x1 = x0n(x0�x1); x1 = (x1�x0)=x0:Wewill obtain a multialgebra (G=�; �; =; n) on G=� which satis�es the above identities in a weak manner.So, (G=�; �) is an Hv-group. Moreover, the class �h1i 2 G=� of the unit 1 of G veri�es the condition�hai 2 �hai ��h1i\�hai ��h1i; for any a 2 G; so �h1i is a unit in G=�: Also, any class �hai 2 G=� hasan inverse since, if we consider the inverse a�1 of a in G, we have: �h1i 2 �ha�1i ��hai\�hai ��ha�1i:If the group G is Abelian then the Hv-group G=� is commutative.
The case of rings. A hyperstructure (R;+; �) is called Hv-ring if (R;+) is an Hv-group, (R; �) isan Hv-semigroup and for any a; b; c 2 R we have a(b+ c) \ (ab+ ac) 6= ;, (b+ c)a \ (ba+ ca) 6= ;:It is easy to observe that the factor multialgebra of a ring is an Hv-ring whose �rst multioperationis commutative.
Remark 1.5.11. In general, the factor multialgebra of a lattice is not a hyperlattice because theabsorption (which appears in the de�nition of a hyperlattice | see [1, 2.1, Lemma 4] or [32]) issatis�ed only in a weak manner in the factor multialgebra.
Example 1.5.12. Let us consider the lattice (N;^;_); where N is the set of the nonnegative integers,a^b = gcd(a; b) and a_b = lcm(a; b). We denote by P the set of the prime numbers and we considerthe relation � = P � P [ f(a; a) j a 2 N n Pg: Clearly, � is an equivalence relation on N and wehave �h2i 2 �h2i _ (�h2i ^ �h6i) = �h2i _ f�h1i; �h2ig = f�h2ig [ f�hpqi j p; q 2 P; p 6= qg; so, theabsorption holds only in a weak manner on N=�.

The fact that an identity of an algebra B is veri�ed in weak or strong manner on the factormultialgebra B=� also depends on the equivalence relation �. If � is a congruence relation on Bthen the factor algebra B=� veri�es the identities of the algebra B in a strong manner. This is notthe only example in this respect.
Example 1.5.13. Let us see a �nite group G as an universal algebra (G; �; 1), and let us consider anequivalence relation � on G and an identity 1 �x0 = x0: If the relation � = � is the conjugation on Gthen the multioperation �hxi � �hyi = f�hzi j z = x0y0; x � x0; y � y0g organize G=� as a canonicalhypergroup (see [72]). So, the above identity is satis�ed on (G=�; �; �h1i) in a strong manner.Things are di�erent in a factor multialgebra obtained from G as in Example 1.1.3. Let us considerthe symmetric group S3 (seen as a universal algebra (S3; �; (1))) and the equivalence relation (to theleft) determined by the subgroup H generated by the transposition (1; 2). In the hypergroup S3=H,H � ((1; 3) �H) = f(1; 3) �H; (2; 3) �Hg; thus the identity 1 � x0 = x0 is not satis�ed in a strongmanner on (S3=H; �; H).
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1.6 A class of ideal equivalences. The fundamental relation
of a multialgebra

Let A be a set and let P �(A) be the set of its nonempty subsets. Let � be an equivalence relationon A and let � be the relation de�ned on P �(A) by A�B , a�b; for any a 2 A; b 2 B: The relation� is symmetric, transitive, but is not always re
exive (for example, if �A is the equality relation onA and jAj � 2, then �A is not re
exive).
Proposition 1.6.1. Let A = (A; (f
)
<o(�)) be a multialgebra and let � be an equivalence relationon A. The following statements are equivalent:(a) A=� is a universal algebra;(b) for any 
 < o(�), any a; b; xi 2 A (i 2 f0; : : : ; n
 � 1g) such that a�b and any i 2 f0; : : : ; n
 � 1gwe have f
(x0; : : : ; xi�1; a; xi+1; : : : ; xn
�1)�f
(x0; : : : ; xi�1; b; xi+1; : : : ; xn
�1);(c) for any 
 < o(�) and for any xi; yi 2 A such that xi�yi for any i 2 f0; : : : ; n
 � 1g we havef
(x0; : : : ; xn
�1)�f
(y0; : : : ; yn
�1);(d) for any n 2 N; any p 2 P (n)A (P�(A)) and any xi; yi 2 A such that xi�yi for all i 2 f0; : : : ; n�1g;we have p(x0; : : : ; xn�1)�p(y0; : : : ; yn�1):We easily observe that any equivalence � on A for which A=� is a universal algebra is ideal.
Remark 1.6.3. If an equivalence � satis�es one of the equivalent conditions from Proposition 1.6.1then the operations of the algebra A=� are de�ned by f
(�ha0i; : : : ; �han
�1i) = �hbi, for anya0; : : : ; an
�1 2 A and b 2 f
(a0; : : : ; an
�1).Remark 1.6.5. Let (H; �) be a hypergroupoid. An equivalence relation � on H such that (H=�; �) is agroupoid is called strongly regular (see [10, De�nition 8]). If � is a strongly regular equivalence on Hand (H; �) is a semihypergroup then (H=�; �) is a semigroup. If (H; �) is a hypergroup then (H=�; �)is a group ([10, Theorem 31]). Moreover, if (H; �) is a hypergroup and we see it as a multialgebra(H; �; =; n) as in the paragraph 1.1 then the multioperations = and n become on H=� the binaryoperations which associate to each pair (�hai; �hbi) 2 H=��H=� the (unique) solution from H=� ofthe equation �hai = x � �hbi and of the equation �hai = �hbi � x, respectively.
Notation. We denote by Eua(A) the set of those equivalence relations � of A for which A=� is auniversal algebra.
Proposition 1.6.7. The set Eua(A) forms an algebraic closure system on A�A.
Corollary 1.6.9. If R � A � A then �(R) = Tf� 2 Eua(A) j R � �g is the smallest equivalencefrom Eua(A) which contains R.

If the multialgebra A is not an universal algebra then �A =2 Eua(A).
De�nition 1.6.1. Let A be a multialgebra. The smallest equivalence from Eua(A) is called thefundamental relation of A.

Let �A be the relation de�ned on A as follows: if x; y 2 A then x�Ay if and only if x; y 2p(a0; : : : ; an�1) for some n 2 N, p 2 P (n)A (P�(A)) and a0; : : : ; an�1 2 A.
Remark 1.6.11. If x; y 2 A then x�Ay if and only if x; y 2 p(a0; : : : ; an�1) for some n 2 N, someterm function p 2 P (n)(P�(A)) and some elements a0; : : : ; an�1 2 A.
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The relation �A is symmetric, re
exive, but is not always transitive (see [10, Remark 82]). Let��A be the transitive closure of �A.
Theorem 1.6.13. The relation ��A is the fundamental relation of A.
De�nition 1.6.2. Let A be a multialgebra and let ��A be its fundamental relation. The universalalgebra A=��A is called the fundamental algebra of A.
Remark 1.6.14. The canonical projection 'A : A! A=��A is an ideal homomorphism.
Example 1.6.15. The fundamental relation of a semihypergroup (H; �) is the transitive closure �� ofthe relation � = Sn2N� �n where x�ny , 9a1; : : : ; an 2 H : x; y 2 a1 � � � � � an:Example 1.6.16 If (H; �) is a hypergroup then � is transitive and it is the fundamental relation ofthe multialgebra (H; �; =; n) obtained as in the paragraph 1.1.
Example 1.6.17. Let (R;+; �) be a hyperring. The fundamental relation of the hyperring R is thetransitive closure 
� of the relation 
 from [83, De�nition 1]:

x
y , 9l; kj 2 N�; 9aij 2 R; j 2 f0; : : : ; l � 1g; i 2 f0; : : : ; kj � 1g : x; y 2 l�1X
j=0
0
@kj�1Y

i=0 aij
1
A :

Theorem 1.6.18 Let A, B be multialgebras of type � and A = A=��A, B = B=��B their correspond-ing fundamental algebras. If h : A! B is a multialgebra homomorphism then there exists a uniquealgebra homomorphism h : A! B such that
(1:6:1) 'B � h = h � 'A:
Corollary 1.6.19. If A is a multialgebra then 1A = 1A:Corollary 1.6.20. If A; B; C are multialgebras of type � and h : A ! B; g : B ! C aremultialgebra homomorphisms then g � h = g � h:
Remark 1.6.21. The factorization modulo fundamental relation determines a covariant functor Ffrom Malg(�) into Alg(�) de�ned by: F (A) = A for any multialgebra A and F (h) = h (from(1:6:1)) for any homomorphism h between the multialgebras A and B.
1.7 Identities on multialgebras. Complete multialgebras
Proposition 1.7.1. Let A be a multialgebra, n 2 N; and q; r 2 P(n)(�). If q \ r 6= ; is satis�ed onA then q = r is satis�ed on A.
Corollary 1.7.2. Let A be a multialgebra, n 2 N; and q; r 2 P(n)(�). If q = r is satis�ed on Athen q = r is satis�ed on A.
Remark 1.7.3. A result similar to Proposition 1.7.1 holds for any relation from Eua(A).
Remark 1.7.5. The fundamental algebra of a hypergroup is a group. Consequently, we can de�ne,as in Remark 1.6.21, a covariant functor F from the category HG of hypergroups into the categoryGrp of groups.
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Among the multialgebras which have the same fundamental algebra (supposing that this algebrahas more than one element) we can �nd multialgebras which verify the identities of their fundamentalalgebra, some of them in a weak manner, others, in a strong manner.
Proposition 1.7.6. Let A = (A; (f
)
<o(�)) be a multialgebra and let A = (A; (f
)
<o(�)) be itsfundamental algebra. If jAj 6= 1; n 2 N; q; r 2 P(n)(�) and q = r is satis�ed on A then there existsa structure of multialgebra A0 on A with the multioperation f 0
 ; 
 < o(�); such that A0 = A andq \ r 6= ; is satis�ed on A0.

If jAj > 1 then the multioperations f 0
 can be de�ned by:
(1:7:2) f 0
(a0; : : : ; an
�1) = fa 2 A j a = f
(a0; : : : ; an
�1)g:

The properties of the multialgebra A0 lead us to a particular class of multialgebras.
Proposition 1.7.11. For a multialgebra A = (A; (f
)
<o(�)) the following statements are equivalent:(i) for any 
 < o(�) and a0; : : : ; an
�1 2 A; a 2 f
(a0; : : : ; an
�1)) a = f
(a0; : : : ; an
�1);(ii) for any n 2 N; q; r 2 P(n)(�) n fxi j i 2 f0; : : : ; n � 1gg and a0, : : :, an�1, b0, : : :, bn�1 2 A;from q(a0; : : : ; an�1) \ r(b0; : : : ; bn�1) 6= ; it results that q(a0; : : : ; an�1) = r(b0; : : : ; bn�1):Example 1.7.13. For a semihypergroup (H; �), the condition (ii) from the previous proposition is thefollowing: for any m;n 2 N; m; n � 2 and any a1; : : : ; am; b1; : : : ; bn 2 H; from a1 � � � � �am\b1 � � � � �bn 6= ; it results that a1 � � � � �am = b1 � � � � � bn: This condition de�nes the complete semihypergroups(see [10, De�nition 137]).

These facts suggest the following de�nition:
De�nition 1.7.1. A multialgebra A which veri�es the equivalent conditions from Proposition 1.7.11is called complete multialgebra.
Remark 1.7.17. The multialgebra A0 from the proof of Proposition 1.7.6 is complete.
Remark 1.7.18. For any complete multialgebra A the relation �A is transitive.
Remark 1.7.19. The complete multialgebras of type � form a full subcategory CMalg(�) of Malg(�).
Proposition 1.7.20. Let A = (A; (f
)
<o(�)) be a multialgebra of type �: The multialgebra A iscomplete if and only if there exist a universal algebra B = (B; (f 0
)
<o(�)) and a partition fAb j b 2Bg of A such that Ab1 \Ab2 = ; for any b1 6= b2 from B and for any 
 < o(�) and a0; : : : ; an
�1 2 Awith ai 2 Abi (i 2 f0; : : : ; n
 � 1g); we have f
(a0; : : : ; an
�1) = Af
(b0;:::;bn
�1):
1.8 Identities and algebras obtained as factor multialgebras
We proved that if A is a multialgebra and � 2 Eua(A) then any identity (weak or strong) satis�edon A, is also satis�ed on the algebra A=�:
Remark 1.8.1. Let q; r be two n-ary terms and let Rqr = f(x; y) 2 A� A j x 2 q(a0; : : : ; an�1); y 2r(a0; : : : ; an�1); a0; : : : ; an�1 2 Ag: The smallest relation from Eua(A) for which the factor multial-gebra is a universal algebra which veri�es the identity q = r is �(Rqr) = Tf� 2 Eua(A) j Rqr � �g:Notation. We will denote the relation �(Rqr) by ��qr:
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Theorem 1.8.3. The relation ��qr is the transitive closure of the relation �qr � A � A de�nedby x�qry if and only if x 2 p(q(a0; : : : ; an�1)); y 2 p(r(a0; : : : ; an�1)) or y 2 p(q(a0; : : : ; an�1));x 2 p(r(a0; : : : ; an�1)) for some p 2 P (1)A (P�(A)) and a0; : : : ; an�1 2 A.Example 1.8.4. In [26] is presented a characterization for the smallest strongly regular equivalenceon a semihypergroup (H; �) for which the factor multialgebra is a commutative semigroup. Thisrelation, denoted by 
�, is the transitive closure of the relation 
 = Sn2N� 
n where 
1 = �Hand, for any n > 1, the relation 
n is de�ned by x
ny , 9z1; : : : ; zn 2 H; 9� 2 Sn : x 2z1 � � � � � zn; y 2 z�(1) � � � � � z�(n) (Sn denotes the set of the permutations of f1; : : : ; ng). Since theset f(1; 2); (2; 3); : : : ; (n� 1; n)g generates the group Sn it follows that 
� is the transitive closure ofthe relation 
0 = Sn2N� 
0n, where 
01 = �H and for n > 1, x
0ny if and only if
9z1; : : : ; zn 2 H; 9i 2 f1; : : : ; n� 1g : x 2 z1 � � � � � zi�1 � (zi � zi+1) � zi+2 � � � � � zn;y 2 z1 � � � � � zi�1 � (zi+1 � zi) � zi+2 � � � � � zn:

Clearly, 
0 = �qr where q = x0 � x1 and r = x1 � x0: In [26] it is also proved that if (H; �) is ahypergroup then 
 is transitive and 
� = 
 is the smallest equivalence on H such that H=
� is acommutative group.
Corollary 1.8.6. The fundamental relation �� of A is the transitive closure of the relation �0 �A�A de�ned by x�0y if and only if x; y 2 p(a) for some p 2 P (1)A (P�(A)) and a 2 A.

Let q; r 2 P(n)(�), let B be a universal algebra of type � and let � be an equivalence relationon B. We denote by �qr the smallest equivalence relation on B which contains � and the pairs(q(b0; : : : ; bn�1); r(b0; : : : ; bn�1)) with b0; : : : ; bn�1 2 B. Obviously, the smallest congruence relationon B which contains �qr, denoted here by �(�qr), is the smallest congruence on B which contains� [ f(q(b0; : : : ; bn�1); r(b0; : : : ; bn�1)) j b0; : : : ; bn�1 2 Bg:Theorem 1.8.9. (B=�)=��qr �= B=�(�qr):Example 1.8.10. Let (G; �) be a group, H a subgroup ofG and let (G=H; �) be the hypergroup obtainedas in Example 1.1.3. Let 
 be the smallest strongly regular equivalence on G=H such that the groupobtained as a factor of this hypergroup is commutative. If G0 is the derived subgroup of G thenTheorem 1.8.9, leads us to the group isomorphism h : (G=H)=
 ! G=(G0H); h(
hxHi) = x(G0H):The derived (sub)hypergroup D(K) of a hypergroup (K; �) is '�1K (1K=
), where 'K : K ! K=
 isthe canonical projection and 1K=
 is the unit of the group (K=
; �) (see [26, Theorem 3.1]). Let�H : G ! G=H and 'G=H : G=H ! (G=H)=
 be also the canonical projections. It follows thatD(G=H) = (h � 'G=H)�1(G0H) = fxH j x 2 G0Hg = (G0H)=H = �H(G0):
Corollary 1.8.11. B=� �= B=�(�):
Example 1.8.12. If (G; �) is a group, H is a subgroup of G, H is the smallest normal subgroupcontaining H then the fundamental group G=H is isomorphic to the factor group G=H.
Corollary 1.8.13. B=�qr �= B=�(�qr):Corollary 1.8.14. (B=�)=��qr �= B=�qr:



Chapter 2

Constructions of multialgebras

2.1 The direct product of multialgebras
Let (Ai j i 2 I) be a family of multialgebras of type � . The Cartesian product Qi2I Ai is a multial-gebra of type � with the multioperations f
((a0i )i2I ; : : : ; (an
�1i )i2I) =Qi2I f
(a0i ; : : : ; an
�1i ). Thismultialgebra is called the direct product of the multialgebras (Ai j i 2 I). The canonical projectionsof the product, eIj :Qi2I Ai ! Aj ; eIj ((ai)i2I) = aj (j 2 I), are multialgebra homomorphisms.
Proposition 2.1.1. The multialgebra Qi2I Ai, with the canonical projections eIi , i 2 I, is theproduct of the multialgebras (Ai j i 2 I) in the category Malg(�).
Lemma 2.1.2. For any n 2 N; p 2 P(n)(�) and (a0i )i2I ; : : : ; (an�1i )i2I 2 Qi2I Ai we havep((a0i )i2I ; : : : ; (an�1i )i2I) =Qi2I p(a0i ; : : : ; an�1i ):
Proposition 2.1.3. Let (Ai j i 2 I) be a family of multialgebras and let q; r be n-ary terms. If theweak identity q \ r 6= ; is satis�ed on each multialgebra Ai then q \ r 6= ; is satis�ed on Qi2I Ai.Proposition 2.1.4. Let (Ai j i 2 I) be a family of multialgebras and let q; r be n-ary terms. If theidentity q = r is satis�ed on each multialgebra Ai then the q = r is satis�ed on Qi2I Ai.Proposition 2.1.5. A direct product of hypergroups is a hypergroup.
Corollary 2.1.6. The category HG of hypergroups is isomorphic to a subcategory closed underproducts of the category Malg((2; 2; 2)).
Proposition 2.1.7. A direct product of complete multialgebras is a complete multialgebra.
Corollary 2.1.8. CMalg(�) is a subcategory closed under products of the category Malg(�).
2.2 The fundamental algebra of a direct product of multial-

gebras
Let (Ai j i 2 I) be a family of multialgebras and let (Ai j i 2 I) be the family of the correspondingfundamental algebras. Let us consider the universal algebra Qi2I Ai and the canonical projections
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�j : Qi2I Ai ! Aj (j 2 I): There exists a unique homomorphism ' of universal algebra such thateIj = �j �' for any j 2 I. The homomorphism ' is given by '((ai)i2I) = (ai)i2I and it is surjective.So, the universal algebra Qi2I Ai, with (eIi j i 2 I), is the product of the algebras (Ai j i 2 I) (inAlg(�)) if and only if ' is also injective. This does not always happen, as it follows from:
Example 2.2.1. Let (H1 = fa; b; cg; �), (H2 = fx; y; zg; �) be the hypergroupoids given bellow:

� a b ca a a ab a a ac a a a

� x y zx x y; z y; zy y; z y; z y; zz y; z y; z y; z
H1 �H2 has 8 elements, while H1 �H2 has only 6 elements.
Proposition 2.2.2. Let (Ai j i 2 I) be a family of multialgebras of type � . Suppose that I is �niteor �Ai is transitive for each i 2 I: The homomorphism ' is injective if and only if for any ni 2 N;qi 2 P(ni)(�); a0i ; : : : ; ani�1i 2 Ai (i 2 I) and any (xi)i2I ; (yi)i2I 2Qi2I qi(a0i ; : : : ; ani�1i ) there existm 2 N�; kj 2 N; qj 2 P(kj)(�) and (b0;ji )i2I ; : : : ; (bkj�1;ji )i2I 2 Qi2I Ai; j 2 f0; : : : ;m � 1g suchthat

(xi)i2I 2 q0((b0;0i )i2I ; : : : ; (bk0�1;0i )i2I); (yi)i2I 2 qm�1((b0;m�1i )i2I ; : : : ; (bkm�1�1;m�1i )i2I)
and for each j 2 f1; : : : ;m� 1g;
(2:2:1) qj�1((b0;j�1i )i2I ; : : : ; (bkj�1�1;j�1i )i2I) \ qj((b0;ji )i2I ; : : : ; (bkj�1;ji )i2I) 6= ;:
Corollary 2.2.3. Let (Ai j i 2 I) be a family of multialgebras of type � . Suppose that I is �nite or�Ai is transitive for each i 2 I. If for any ni 2 N; qi 2 P(ni)(�); a0i ; : : : ; ani�1i 2 Ai (i 2 I) thereexist n 2 N; q 2 P(n)(�) and b0i ; : : : ; bn�1i 2 Ai (i 2 I) such that
(2:2:2) Y

i2I qi(a0i ; : : : ; a
ni�1i ) � q((b0i )i2I ; : : : ; (bn�1i )i2I)

then the homomorphism ' is injective.
Let C be a subcategory of Malg(�), let U : C �! Malg(�) be the inclusion functor and let Fbe the functor from Remark 1.6.21. In the following propositions we will refer to F � U as F .

Proposition 2.2.5. Let C be a subcategory of Malg(�) closed under �nite products. Assume thatfor any �nite set I; for any family (Ai j i 2 I) of multialgebras from C and for any ni 2 N; qi 2P(ni)(�); a0i ; : : : ; ani�1i 2 Ai (i 2 I) there exist n 2 N; q 2 P(n)(�) and b0i ; : : : ; bn�1i 2 Ai (i 2 I)such that (2:2:2) holds. Then the functor F : C �! Alg(�) preserves the �nite products.
Proposition 2.2.6. Let C be a subcategory of Malg(�) closed under products and let us considerthat �A is transitive for each A 2 C. Assume that for any set I; for any family (Ai j i 2 I) ofmultialgebras from C and for any ni 2 N; qi 2 P(ni)(�); a0i ; : : : ; ani�1i 2 Ai (i 2 I) there existn 2 N; q 2 P(n)(�) and b0i ; : : : ; bn�1i 2 Ai (i 2 I) such that (2:2:2) holds. Then the functorF : C �! Alg(�) preserves the products.
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The case of hypergroups
Proposition 2.2.7. F : HG �! Grp (from Remark 1.7.5) preserves the �nite products.

Yet, F does not preserve the arbitrary products of hypergroups.
Example 2.2.8. Let us consider the hypergroupoid (Z; �) on the set of integers Z, given by x �y = fx + y; x + y + 1g for any x; y 2 Z: (Z; �) is a hypergroup with the fundamental relation� = Z � Z: The fundamental group of the hypergroup (ZN; �) has at least two elements sincef; g : N! Z; f(n) = 0; g(n) = n (n 2 N) are not in the same equivalence class of the fundamentalrelation of the hypergroup (ZN; �):

For the arbitrary products of hypergroups we have:
Theorem 2.2.9. Let us consider the hypergroups Hi; i 2 I; with the fundamental relations �Hi :The group Qi2I Hi; with the homomorphisms (eIi j i 2 I); is the product of the groups (Hi j i 2 I) ifand only if there exists n 2 N� such that �Hi � �Hin ; for all i from I except for a �nite number.
Corollary 2.2.10 Let n 2 N. If Cn is the class of those hypergroups which satisfy the condition� = �n then Cn is closed under the formation of the direct products and the functor F : Cn �! Grpdetermined by the factorization with the fundamental relation preserves the products.
Corollary 2.2.11. The functor F preserves the products of complete hypergroups.
The case of complete multialgebras
Theorem 2.2.12. Let (Ai j i 2 I) be a family of complete multialgebras of type � . The followingstatements are equivalent:i) Qi2I Ai (with the homomorphisms (eIi j i 2 I) is the product of the universal algebras (Ai j i 2 I);ii) for any ni 2 N, qi 2 P(ni)(�) and a0i ; : : : ; ani�1i 2 Ai; (i 2 I) there exist n 2 N; q 2 P(n)(�) andb0i ; : : : ; bn�1i 2 Ai (i 2 I) such that (2:2:2) holds;iii) for any ni 2 N; qi 2 P(ni)(�) and a0i ; : : : ; ani�1i 2 Ai (i 2 I) we have ��Qi2I qi(a0i ; : : : ; ani�1i )�� = 1or there exist 
 < o(�); b0i ; : : : ; bn
�1i 2 Ai (i 2 I) such that
(2:2:3) Y

i2I qi(a0i ; : : : ; a
ni�1i ) � f
((b0i )i2I ; : : : ; (bn
�1i )i2I):

Remark 2.2.16. From Corollary 2.2.11 we deduce that the complete hypergroups are completemultialgebras such that for any family of such multialgebras, the fundamental algebra of the directproduct is the direct product of the corresponding fundamental algebras.
2.3 The direct limit of a direct system of multialgebras
Let ((Ai j i 2 I); ('ij : Ai ! Aj j i; j 2 I; i � j)) be a a direct system of sets and let A1 = A=� =fbx j x 2 Ag be the direct limit of the given direct system of sets (see [29, De�nition 22.2]).

If each Ai is the support of a multialgebra Ai of type � and 'ij are multialgebra homomorphismsthen A = ((Ai j i 2 I); ('ij j i; j 2 I; i � j)) is a direct system of multialgebras. If (I;�) is wellordered then we will call the direct system A, well ordered.
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We will obtain a multialgebra A1 of type � on A1 if we consider for any 
 < o(�);
f
(cx0; : : : ;\xn
�1) = fbx0 j 9m 2 I; 8j 2 f0; : : : ; n
 � 1g; 9x0j 2 bxj \Am : x0 2 f
(x00; : : : ; x0n
�1)g:
Example 2.3.3. For a direct system of semihypergroups ((Hi; �i) j i 2 I) the multioperation � isde�ned on the direct limit direct of the sets Hi by bz 2 bx � by if and only if there exist m 2 I;xm 2 bx \Am; ym 2 by \Am and zm 2 bz \Am such that zm 2 xm �m ym: In this way one obtains in[70] the direct limit (H1; �) of the direct system of semihypergroups ((Hi; �i) j i 2 I).
Lemma 2.3.4. Let 
 < o(�) and cx0; : : : ;\xn
�1 2 A1. If i0; : : : ; in
�1 2 I are such that x0 2Ai0 ,. . . ,xn
�1 2 Ain
�1 then f
(cx0; : : : ;\xn
�1) = fbx0 2 A1 j 9m 2 I; i0 � m; : : : ; in
�1 � m : x0 2f
('i0m(x0); : : : ; 'in
�1m(xn
�1))g:Remark 2.3.5. If for 
 < o(�), f
 is an operation in all the multialgebras Ai then f
 is an operationin A1. As a matter of fact, in order that f
 be an operation for an ordinal 
 < o(�) it is enoughthat for any two elements from I to exist an upper bound m 2 I such that in Am, f
 is an operation.
Remark 2.3.6. The maps 'i1 : Ai ! A1, 'i1(x) = bx are multialgebra homomorphisms.
Theorem 2.3.7. Let us see the direct system of multialgebras ((Ai j i 2 I); ('ij : Ai ! Aj j i; j 2I; i � j)) as a covariant functor G : I �!Malg(�). The multialgebra A1 with the homomorphisms('i1 j i 2 I) is the direct limit of G:
De�nition 2.3.1. We will call the multialgebra A1 the direct limit of the direct system of multial-gebras A and we will denote it by lim�!A or by lim�!i2IAi.The next results are generalizations for some results known for universal algebras (see [29, x21]).Now, we will consider that (I;�) is a directed partially ordered set. Let A = ((Ai j i 2 I); ('ij ji; j 2 I; i � j)) be a direct system of multialgebras and let us consider J � I such that (J;�)is also a directed partially ordered set. We will denote by AJ the direct system consisting of themultialgebras (Ai j i 2 J) whose carrier is (J;�) and the homomorphisms are ('ij j i; j 2 J; i � j):Proposition 2.3.8. If the subset J is co�nal with (I;�) then the multialgebras lim�!A and lim�!AJare isomorphic.

Let A = ((Ai j i 2 I); ('ij j i; j 2 I; i � j)) be a direct system of multialgebras with I = Sp2P Ip;where (Ip;�) is a directed partially ordered subset of (I;�) for each p 2 P and (P;�) is also adirected partially ordered set such that Ip � Iq; whenever p; q 2 P; p � q: Denote lim�!A = A1 =(A1; (f
)
<o(�)) and lim�!AIp = Ap1 = (Ap1; (f
)
<o(�)) if p 2 P: For any p; q 2 P; p � q we cande�ne the map  pq : Ap1 ! Aq1;  pq(bxIp) = bxIq ; (where x 2 Ai; for some i 2 Ip). This way weobtain a direct system of multialgebras A=P consisting of (P;�); the multialgebras Ap1; and thehomomorphisms  pq:Theorem 2.3.10. The multialgebras lim�!A and lim�!A=P are isomorphic.
As in the case of universal algebras, we will call algebraic class of multialgebras a class of multi-algebras closed under the formation of the formation of isomorphic images.

Theorem 2.3.12. An algebraic class of multialgebras is closed under the formation of the directlimits of arbitrary direct families if and only if it is closed under the formation of the direct limitsof well ordered direct families.
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Applications to particular multialgebras

Lemma 2.3.13. Let A = ((Ai j i 2 I); ('ij j i; j 2 I; i � j)) be a direct system of multialgebras,p 2 P(n)(�) and a0; : : : ; an�1 2 A: If i0; : : : ; in�1 2 I are such that aj 2 Aij for any j 2 f0; : : : ; n�1gthen
p( ba0; : : : ;[an�1) =fba j 9m 2 I; 8j 2 f0; : : : ; n� 1g; 9a0j 2 baj \Am : a 2 p(a00; : : : ; a0n�1)g=fba j 9m 2 I; i0; : : : ; in�1 � m; a 2 p('i0m(a0); : : : ; 'in�1m(an�1))g:

Proposition 2.3.14. Let A = ((Ai j i 2 I); ('ij j i; j 2 I; i � j)) be a direct system of multialgebrasand let q; r 2 P(n)(�). If the weak identity q\ r 6= ; is satis�ed on each multialgebra Ai (i 2 I) thenthe weak identity q \ r 6= ; is satis�ed on A1:Proposition 2.3.16. let A = ((Ai j i 2 I); ('ij j i; j 2 I; i � j)) be a direct system of multialgebrasand let q; r 2 P(n)(�). If the identity q = r is satis�ed on each multialgebra Ai (i 2 I) then theidentity q = r is satis�ed on A1:Proposition 2.3.18. The direct limit of a direct system of complete multialgebras is a completemultialgebra.
The case of hypergroups. Let (((Hi; �i) j i 2 I); ('ij j i; j 2 I; i � j)) be a direct system ofsemihypergroups and let us denote by (H 0; �) its direct limit. From Proposition 2.3.16 we deduce:
Theorem 2.3.20. [70, Theorem 3] (H 0; �) is a semihypergroup.

Using Proposition 2.3.8 and Proposition 2.3.14 we can obtain the following theorem from [70]:
Theorem 2.3.21. [70, Theorem 4] If for any i; j 2 I there exists k 2 I, i � k, j � k such that(Hk; �k) is a hypergroup then (H 0; �) is a hypergroup.

The heart !H of a hypergroup (H; �) is the set of those x 2 H for which the class x of thefundamental group (H; �) is the unit from H. Using Proposition 2.3.8 we deduce the followingresult:
Theorem 2.3.23. [40, Theorem 10] Let ((Hi; �i) j i 2 I) be a direct system of semihypergroupssuch that the following conditions hold:1) for any i; j 2 I there exist k 2 I, i � k, j � k such that Hk is a hypergroup;2) K = fk 2 I j Hk is a hypergroupg is such that jKj < @0:If s = maxfk j k 2 Kg then there exist baj 2 H 0 (j 2 f1; : : : ; ng) such that !H0 = ba1 � � � � �can if andonly if for all j 2 f1; : : : ; ng there exists as;j 2 baj such that !Hs = as;1 � � � � � as;n:
The case of SHR-semigroups. A semigroup (S; �) is called SHR-semigroup if we can enrich theset S with an element 0 such that x � 0 = 0 � x = 0 for all x 2 S (if we do not already have suchan element in S) and we can de�ne a multioperation + on S0 = S [ f0g such that (S0;+; �; 0) isa Krasner hyperring. From Proposition 2.3.8, 2.3.16, Remark 1.5.3, 2.3.5 and Example 1.5.5, 1.5.6follows the next theorem which is one of the main results in [46]:
Theorem 2.3.24. [46, Theorem 3] Let (((Hi; �i) j i 2 I); (fij j i; j 2 I; i � j)) be a direct systemof semigroups, such that for all i 2 I, there exists k 2 I, i � k for which (Hk; �k) is an SHR
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semigroup. Let K = fk 2 I j (Hk; �k) is an SHR semigroupg: So, for each k 2 K, there existsa multioperation �k on H0k such that (H0k ;�k; �k; 0k) is a hyperring. If for any k; l 2 K, k � l,fkl is a homomorphism of hyperrings, then the direct limit of the direct family of semihypergroups((Hi; �i) j i 2 I) is an SHR semigroup.
On a subcategory of multialgebrasThe properties presented in the �rst part of this paragraph hold for the subcategory of Malg(�)obtained by considering as morphisms the ideal homomorphisms. In other words, the results es-tablished here hold if we replace `homomorphism' by `ideal homomorphism'. In this case, we cande�ne the multioperations on A1 as follows: for each 
 < o(�) and for any cx0; : : : ;\xn
�1 2 A1with x0 2 Ai0 ; : : : ; xn
�1 2 Ain
�1 we consider m 2 I, i0; : : : ; in
�1 � m and we set
(2:3:1) f
(cx0; : : : ;\xn
�1) = fbx j x 2 f
('i0m(x0); : : : ; 'in
�1m(xn
�1))g:
Remark 2.3.32. Since the algebra homomorphisms are ideal homomorphisms, the de�nition of theoperations from the the direct limit of a direct system of universal algebras is (2:3:1). We deducethat the direct limit of a direct system of multialgebras generalize the direct limit of a direct systemof universal algebras.
2.4 The fundamental algebra of the direct limit of a direct

system of multialgebras
Theorem 2.4.1. The functor F : Malg(�) �! Alg(�) (from Remark 1.6.21) is a left adjoint forthe inclusion functor U : Alg(�) �!Malg(�):
Corollary 2.4.2. Let (I;�) be a directed preordered set and let A = ((Ai j i 2 I); ('ij j i; j 2 I; i �j)) be a direct system of multialgebras of type � with the direct limit A1. The universal algebras(Ai j i 2 I) and the homomorphisms ('ij j i; j 2 I; i � j) form a direct system A of universalalgebras of type � and the direct limit algebra of the direct system A is isomorphic to the universalalgebra A1:Remark 2.4.3. From Theorem 2.3.7 we obtain the isomorphism � between lim�!A and lim�!A de�ned
by �(\��Aihai) = ��A1hbai; (where a 2 Ai, i 2 I).
Remark 2.4.4. Let (Hi j i 2 I) be a direct system of semihypergroups, let us consider that thesemihypergroup Hi has the fundamental relation ��Hi and let us denote by H 0 the direct limit of thisdirect system and by �H0 its fundamental relation. In [70, Theorem 5] it is proved that if x; y 2 Hi;x��Hiy then bx�H0by, and that if x; y 2 H 0, bx��H0by then there exist i 2 I, xi 2 bx\Hi, yi 2 by \Hi suchthat xi��Hiyi. These statements also result from the fact that � from Remark 2.4.3 is well de�nedand injective.
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2.5 On the inverse limit of an inverse system of multialgebras
Let ((Ai j i 2 I); ('kj : Aj ! Ak j j; k 2 I; j � k)) be an inverse system of sets. Let us considerthat each Ai is a support set for a multialgebra Ai of type � and that each 'kj (j; k 2 I; j � k) isa homomorphism. This way we obtain an inverse system of multialgebras A = ((Ai j i 2 I); ('kj :Aj ! Ak j j; k 2 I; j � k)): If (I;�) is a well ordered set then we say that A is a well orderedinverse system of multialgebras. We should remind that the inverse limit of the inverse system ofsets ((Ai j i 2 I); ('kj : Aj ! Ak j j; k 2 I; j � k)) is the set A1 = f(ai)i2I 2 Qi2I Ai j 8j; k 2I; j � k; 'kj (ak) = ajg; together with the maps '1j : A1 ! Aj ; '1j ((ai)i2I) = aj : We also remindthat the inverse limit of an inverse system of nonempty sets can be empty (see [29, p.132]).

In [29] it is mentioned that the inverse limits for �rst order structures are de�ned the same wayas for algebras, as suitable substructures of the direct product. If we see each n
-ary multioperationin each Ai as an (n
 + 1)-ary relation r
 as in (1:1:3), we obtain the de�nitions for the relations onA1 : given 
 < o(�) and (a0i )i2I ; : : : ; (an
�1i )i2I ; (ai)i2I 2 A1 we have
((a0i )i2I ; : : : ; (an
�1i )i2I ; (ai)i2I) 2 r
 , ai 2 f
(a0i ; : : : ; an
�1i ); 8i 2 I:

Since we are dealing with multialgebras our question is whether the relational system obtained inthis way is a multialgebra. If the answer were a�rmative then, using again (1:1:3), it would followthat its multioperations would be de�ned by:
(2:5:1) f
((a0i )i2I ; : : : ; (an
�1i )i2I) =Yi2I f
(a0i ; : : : ; an
�1i ) \A1;
for any 
 < o(�) and (a0i )i2I ; : : : ; (an
�1i )i2I 2 A1:Remark 2.5.3. The inverse limit A1 of the inverse system of sets ((Ai j i 2 I); ('kj : Aj ! Ak j j; k 2I; j � k)) is not, in general, a submultialgebra of Qi2I Ai, thus the intersection with A1 cannot beomitted in (2:5:1).
Example 2.5.4. Let us consider I = f1; 2g ordered by the relation �; induced by the usual orderingfrom N: Let us also consider the inverse system consisting of the hypergroupoids (H1; �); (H2; �)de�ned onH1 = H2 = fx; yg by x�x = x�y = y�x = y�y = fx; yg and by the (ideal) homomorphisms'11 = 1H1 ; '22 = 1H2 and '21 : H2 ! H1; '21(x) = y; '21(y) = x: Then H1 = f(x; y); (y; x)g is not asubhypergroupoid of H1 �H2:Remark 2.5.5. The correspondences f
 given by (2:5:1) are not always multioperations on A1.Even if A1 6= ;; the intersection in the second member of the equality can be the empty set. Asa matter of fact, for any 
 < o(�); (a0i )i2I ; : : : ; (an
�1i )i2I 2 A1 and any j; k 2 I; j � k; thesets (f
(a0i ; : : : ; an
�1i ) j i 2 I) with the corresponding restrictions of the maps 'jk, form an inversesystem of sets and the second member in (2:5:1) is the inverse limit of this system of sets. So,f
((a0i )i2I ; : : : ; (an
�1i )i2I) can be empty even if A1 is not.
Example 2.5.6. In [35], G. Higman and A. H. Stone present an example of inverse system of (count-able) sets (S� j � < !1), with surjective maps and empty inverse limit. It follows that the family(S� j 1 � � < !1), with the corresponding maps, form an inverse system with empty limit. Let
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us consider for each 1 � � < !1; A� = S� [ f0E�g; where 0E� : E� ! R; 0E�(
) = 0: Let usde�ne the binary multioperation � on A� by f � g = S�, if f = 0E� = g or f 6= 0E� 6= g andf � g = f0E�g; otherwise. The maps '�� : A� ! A�; '��(f) = f jE� (� < �) are (ideal) homomor-phisms. This way we obtain an inverse system of hypergroupoids. We have A1 = f(0E�)1��<!1gand (0E�)1��<!1 � (0E�)1��<!1 = ;:
Remark 2.5.7. In order to obtain a multialgebra A1 on A1 6= ; de�ned by (2:5:1) it would berequired that for every 
 < o(�) and (a0i )i2I ; : : : ; (an
�1i )i2I 2 A1; lim �i2If
(a0i ; : : : ; an
�1i ) 6= ;:Such a case is given by the condition that for every i 2 I; 
 < o(�) and a0i ; : : : ; an
�1i 2 Ai; the setf
(a0i ; : : : ; an
�1i ) to be nonempty and �nite (see [29, x21]).
Remark 2.5.8. Since jf
(a0i ; : : : ; an
�1i )j = 1 for any universal universal algebra with nonemptysupport set, we deduce that the universal algebras satisfy the above conditions. It is also clear thatif for 
 < o(�), f
 is an operation in each multialgebra Ai then f
 is an operation in A1. If thisis the case, (2:5:1) can be rewritten as f
((a0i )i2I ; : : : ; (an
�1i )i2I) = (f
(a0i ; : : : ; an
�1i ))i2I ; for any(a0i )i2I ; : : : ; (an
�1i )i2I .Remark 2.5.9. If A1 is a multialgebra then the maps '1j (j 2 I) are multialgebra homomorphisms.
Theorem 2.5.12. The inverse system of multialgebras ((Ai j i 2 I); ('kj j j; k 2 I; j � k))determines a contravariant functor G : I �!Malg(�). If A1 = (A1; (f
)
<o(�)) is a multialgebrathen, together with the homomorphisms ('1j j j 2 I), is the inverse limit of G.

The last three results of this section are generalizations for some results presented for universalalgebras in [29, x21]. From now on we will consider that (I;�) is a directed partially ordered set.Let A = ((Ai j i 2 I); ('kj j j; k 2 I; j � k)) be an inverse system of multialgebras and let usconsider J � I such that (J;�) is also a directed partially ordered set. We will denote by AJ theinverse system of multialgebras (Ai j i 2 J) whose carrier is (J;�) and whose homomorphisms are'ij ; with i; j 2 J; i � j:
Proposition 2.5.14. If J is co�nal with (I;�), then the relational system lim �A is a multialgebraif and only if lim �AJ is a multialgebra. If this is the case, the two multialgebras are isomorphic.
Remark 2.5.15. The inverse limits from [16], [44] and [46] are inverse limits of inverse systemsof (particular) multialgebras with the carrier (I;�) directed ordered set with a maximum. FromProposition 2.5.14, it follows that such an inverse limit exists and it is isomorphic to the member ofthe system having this maximum as an index. It is clear that such an inverse limit exists and it hasall the properties of this member.

Let us consider that the support set I of the carrier (I;�) of the inverse system A = (Ai j i 2 I)of multialgebras can be written as I = Sp2P Ip; where (P;�) and (Ip;�) (p 2 P ) are directedpartially ordered sets such that Ip � Iq; whenever p; q 2 P; p � q: We will denote
lim �A = A1 = (A1; (f
)
<o(�)); lim �AIp = A1p = (A1p ; (f
)
<o(�)) (p 2 P ):

For any p; q 2 P; p � q we can de�ne the map  qp : A1q ! A1p ;  qp((ai)i2Iq ) = (ai)i2Ip : In this waywe obtain an inverse system of sets A=P consisting of (P;�); the sets A1p ; and the maps  qp:
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Theorem 2.5.16. Assume that for each p 2 P , A1p is a multialgebra. Then A=P is an inversesystem of multialgebras and lim �A is a multialgebra if and only if lim �A=P is a multialgebra. If thisis the case, the two multialgebras are isomorphic.
Theorem 2.5.17. An algebraic class of multialgebras is closed under the formation of inverse limitsof arbitrary inverse systems if and only if it is closed under the formation of inverse limits of wellordered inverse systems.
2.6 On the fundamental algebra of the inverse limit of an

inverse system of multialgebras
In general, the functor F from Remark 1.6.21 does not preserve the inverse limits of inverse familiesof multialgebras, even if they are multialgebras. This will result from Example 2.6.2.
Example 2.6.1. An useful example of inverse limit of multialgebras can be given as in [29, p.133].So, let us consider a set I and a family (Ai j i 2 I) of multialgebras of type �: We can get aninverse system of multialgebras taking (J;�) to be the set of all the �nite nonempty subsets of theset I; ordered with the set inclusion, Bj = Qi2j Ai; for any j 2 J; and the canonical projections'j0j1 from Qi2j0 Ai onto Qi2j1 Ai; for any j0 � j1 from J: The inverse limit of this inverse system ofmultialgebras exists and it is isomorphic to Qi2I Ai:Example 2.6.2. In the previous example we take I = N and Ai = (Z; �) from Example 2.2.8 for eachi 2 I. It will result an inverse system consisting of the hypergroups (Hj ; �) = (Zj ; �) with j � N�nite. The fundamental group of each hypergroup Hi is a one element group. It follows that theinverse limit of the inverse system of the corresponding fundamental groups is the one element group.But the fundamental group of the inverse limit of the inverse system ((Hj ; �) j j � N; j is �nite) isisomorphic to the fundamental group of the direct power ZN, and this has at least two elements.

Let A = ((Ai j i 2 I); ('kj j j; k 2 I; j � k)) be an inverse system of multialgebras. We willdenote by A the inverse system of the fundamental algebras (Ai j i 2 I) of the multialgebras from A;with the homomorphisms ('ij j i; j 2 I; i � j). So, if we see the inverse system A as a contravariantfunctor G then A is the functor F �G: In this section, we will refer to the inverse limit lim �A of theinverse system A as the inverse limit (A1; ('1i j i 2 I)) of G. Clearly, lim �A = lim �(FG): If wedenote (A1; ('1i j i 2 I)) by lim �A, we have:
Proposition 2.6.3. Let A be an inverse system of multialgebras with the carrier (I;�) and let usconsider J � I with (J;�) a directed partially ordered set co�nal with (I;�): Consider that lim �AJ isa multialgebra. Under these conditions, lim �A is the inverse limit of the inverse system of universalalgebras A if and only if lim �AJ is the inverse limit of the inverse system of universal algebras AJ :Proposition 2.6.4. Using the notations from the previous section, let us consider that A1p , p 2 P ,and A1 are multialgebras. Let us also consider that for each p 2 P , lim �AIp is the inverse limitof the inverse system AIp of universal algebras. Then lim �A is the inverse limit of A if and only iflim �A=P is the inverse limit of A=P :
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If K is a class of multialgebras of type � then we can obtain a subcategory K of Malg(�) ifwe consider as morphisms only those homomorphisms which are de�ned between two multialgebrasfrom K. Knowing the de�nition of U , in the next theorem we may use F instead of the compositionF � U of the functor F with the inclusion functor U : K �!Malg(�).
Theorem 2.6.5. Let K be an algebraic class of multialgebras closed under the formation of inverselimits of well ordered inverse systems. Then F preserves the inverse limits of arbitrary inversesystems of multialgebras from K if and only if F preserves the inverse limits of well ordered inversesystems of multialgebras from K:



Concluding remarks

Along the previous contributions in the theory of multialgebras, such as those of H. E. Pickett and G.Gr�atzer, our thesis con�rms once again especially through the results obtained in the �rst chapterthe fact that the theory of multialgebras is a natural extension of the theory of universal algebras.One can obtain important results concerning multialgebras as they are particular cases of relationalsystems and, at the same time, generalizations of the universal algebras. We also notice that thestudy of multialgebras and of the identities on multialgebras provide interesting information aboutsome particular classes of multialgebras. Given the above a�rmations and the genesis of this thesis,we will formulate a few problems which may be a continuation of this research.We noticed that an important role in the study of multialgebras is played by the algebra thenonempty subsets of a multialgebra. This algebra was introduced starting form a multialgebra oftype � , A = (A; (f
)
<o(�)), de�ning the operations on the set P �(A) of the nonempty subsets ofthe set A through the equalities:
f
(A0; : : : ; An
�1) =[ff
(a0; : : : ; an
�1) j ai 2 Ai; i 2 f0; : : : ; n
 � 1gg:

A �rst problem could be the characterization of the universal algebras that have the set P �(A) assupport and which can be obtained as above from a multialgebra of support A.Looking at the characterization of the complete multialgebras given in Proposition 1.7.20, weobserve that a complete multialgebra A = (A; (f
)
<o(�)) with the support set A results from auniversal algebra A0 = (A; (f 0
)
<o(�)) on A (of the same type) and an equivalence relation � on Aby considering for any 
 < o(�) and a0; : : : ; an
�1 2 A
f
(a0; : : : ; an
�1) = �hf 0
(a0; : : : ; an
�1)i:

Another problem could be the characterization of the equivalence relations of the support set of auniversal algebra which lead us to complete multialgebras by using the above procedure.Given the characterization theorem for multialgebras formulated by Gr�atzer, as well as theconstruction of the free algebra over a class of universal algebras, the following question arises: canwe generalize the construction of the free algebra in categories of multialgebras?We saw that the factor of a universal algebra B modulo an equivalence � is a multialgebra whichveri�es in a weak manner the identities that are satis�ed on B: Some identities on B, such as thosethat characterize the commutativity of an operation, are satis�ed even in a strong manner on anyfactor multialgebra B=�. Also, owed to the equivalence used for the factorization the identities of
32
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the algebra B can be satis�ed in a strong manner on the factor multialgebra. Can one characterizethe identities of a universal algebra which are satis�ed in a strong manner in any multialgebraobtained as a factor of the given universal algebra modulo an equivalence relation? What about theequivalences of a universal algebra for which an identity of the algebra holds in a strong manner onthe factor multialgebra?The inverse limit of an inverse system of multialgebras that we studied is the limit in the categoryof the relational systems (of the same type). Supposing that this limit is a multialgebra, what can besaid about the identities veri�ed on each multialgebra in the given inverse system? Let us considerthat the contravariant functor determined by an inverse system of multialgebras of the type � . Thefollowing question arises: when does the limit of this functor in the category Malg(�) exist?Of course, there also are other constructions of universal algebras that can be generalized tomultialgebras, as well as constructions of relational systems that can be particularized to multi-algebras. Among the constructions that are important both to the theory of universal algebrasand the model theory, we mention ultraproducts. For a set I, a family of universal algebras(Ai = (Ai; (f
)
<o(�)) j i 2 I) �and an ultra�lter U over I one considers the relation
�U �Yi2I Ai �Yi2I Ai; a�Ub, fi 2 I j a(i) = b(i)g 2 U

�and it can be noticed that �U is a congruence on Qi2I Ai. The factor algebra �Qi2I Ai� =�U iscalled an ultraproduct of the family of algebras (Ai j i 2 I) (see [6, x6, Cap. IV]). Starting thisconstruction by using a family of multialgebras (Ai j i 2 I) and given the fact that �U is anequivalence relation on Qi2I Ai, Qi2I Ai=�U is a multialgebra. From here results the followingquestion: when is the fundamental algebra of an ultraproduct of multialgebras isomorphic with anultraproduct of the corresponding fundamental algebras?It would also be interesting to see when �U 2 Eua �Qi2I Ai�? Given the numerous applicationsof ultraproducts in the model theory and in the theory of universal algebras, the above constructionopens up new possibilities of research in the �eld of multialgebras.
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