
COURSE 9

Euclidean domains

Definition 1. An integral domain R is an Euclidean domain if there exists a map δ : R∗ → N
which satisfies the following condition: for any a, b ∈ R with b 6= 0, there exist q, r ∈ R such that

a = bq + r, where r = 0 or δ(r) < δ(b). (∗)

Example 2. 1) From the integer division algorithm one deduces that Z, with the absolute value

mapping δ : Z→ N, δ(n) = |n| is an Euclidean domain.

2) The Gauss integers domain Z[i], with the norm map δ : Z[i] → N, δ(z) = |zz|, is an Euclidian

domain.

Remark 3. In the Euclidean domain definition, the existence of q, r ∈ R which satify (∗) does

not imply, in general, their uniqueness. For instance, for Z and the absolute value map, we have:

− 4 = 3(−1) + (−1), with 1 = | − 1| < |3| = 3,

− 4 = 3(−2) + 2, with 2 = |2| < |3| = 3.

Obviously, only the second equality provides us with the quotient and the remainder of the division

of −4 by 3 in Z.

Theorem 4. If R is an Euclidean domain, then R is a PID.

Corollary 5. If R is an Euclidean domain, then R is a UFD.

Remark 6. As in the 4th course, one can show that the usual addition and multiplication provide
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with an integral domain structure. In the Appendix

of the Romanian version you can find a quite elementary proof for the fact that Z
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a PID which is not an Euclidean domain.

From corollary 5 one deduces that if (R, δ) is an Euclidean domain then any a, b ∈ R have a

gcd. As for integers, we can use the Euclid’s algorithm for finding a gcd of a and b in R. If one

of the elements a, b ∈ R is zero then the other element is a gcd. If a 6= 0 and b 6= 0, then there

exist q1, r1 ∈ R such that a = bq1 + r1, where r1 = 0 or δ(r1) < δ(b). If r1 6= 0, then there exist

q2, r2 ∈ R such that b = r1q2 + r2 where r2 = 0 or δ(r1) > δ(r2). If r2 6= 0, the algorithm continues

and it provides us with a decreasing chain of natural numbers δ(r1) > δ(r2) > · · · . Since such a

chain has to be finite, in a certain number of steps, say n + 1, we get rn+1 = 0, so the algorithm

gives us a finite sequence of equalities:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−2 = rn−1qn + rn

rn−1 = rnqn−1

(∗∗)
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where ri 6= 0, i = 1, . . . , n.

Theorem 7. If (R, δ) is an Euclidean domain and a, b ∈ R∗, then rn from the equalities (∗∗) is

the gcd of a and b.

Remark 8. If R is an Euclidean domain and d is a gcd for a and b, then there exist u, v ∈ R such

that d = au+ bv, and we can use the Euclid’s algorithm for finding u and v.

In the next course we will discuss some details concerning the arithmetic of polynomial rings.

An important tool in this respect is the division algorithm for polynomials over fields:

Theorem 9. Let K be a field. For any f, g ∈ K[X], g 6= 0 there exist q, r ∈ K[X], uniquely

determined, such that

f = gq + r and deg r < deg g.

Corollary 10. Let K be a field and c ∈ K. The remainder of f ∈ K[X] when divided by X − c
is f(c).

Corollary 11. Let K be a field. An element c ∈ K is a root of f if and only if (X − c) | f .

Corollary 12. If K is a field then any non-zero polynomial f ∈ K[X] of degree k has at most k

roots in K.

Corollary 13. Let K be a field. From theorem 9 it follows that the domain K[X], with the degree

function δ : K[X]∗ → N, δ(f) = deg f , is an Euclidean domain.

Example 14. We can use the Euclid’s algorithm to show that in Q[X] the polynomials

f = X3 − 6X2 + 9X + 3 and g = X2 − 6X + 8

are coprime and also to show that for the polynomials u = − 1

35
(X−9) and v =

1

35
(X2− 9X+ 1),

the equality uf + vg = 1 holds.
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