COURSE 7

Irreducible elements, prime elements

We know that for an integer $p \in \mathbb{Z}^*$, $p \neq \pm 1$, for p to be prime, it must fulfill one of the following two equivalent conditions:

i) p has no other divisors but ± 1 and $\pm p$.

ii) $a, b \in \mathbb{Z}; p \mid ab \Rightarrow p \mid a \text{ or } p \mid b.$

We will see that for an arbitrary integral domain $(R, +, \cdot)$, the conditions i) and ii) can define different mathematical objects.

In the following part, we consider an integral domain $(R, +, \cdot)$.

Definition 1. An element $p \in R^*$ is an **irreducible element** if it satisfies the following conditions:

1) p is not a unit.

2) p has no non-trivial divisors, i.e.

$$x \in R, x \mid p \Rightarrow x \text{ is a unit or } x \sim p.$$

Remarks 2. a) An element $p \in R^*$ is irreducible if it fulfills the condition 1) from the above definition and any of the following equivalent conditions:

2') $p = xy \Rightarrow x$ is a unit or y is a unit.

 $2'') \ p = xy \Rightarrow x \sim p \text{ or } y \sim p.$

2''') [p] is a minimal element in $(R/ \sim \setminus \{[1]\}, \leq)$.

b) If $p \in R$ is irreducible then any associate of p is also irreducible.

c) A necessary and sufficient condition for a non-zero non-unit of R to be not irreducible is to non-trivially factorize into two factors.

Examples 3. a) The irreducible elements p from $(\mathbb{Z}, +, \cdot)$ are the primes and their opposites.

b) Let R be an integral domanin. A no-zero polynomial $f \in R[X]$ which is not a unit is irreducible if and only if it has no non-trivial factorizations. Thus, the polynomial $f = 2X + 2 \in \mathbb{Z}[X]$ is not irreducible in $\mathbb{Z}[X]$ since 2 and X + 1 from its decomposition f = 2(X + 1) are both non-units. But the polynomial 2X + 2 from $\mathbb{R}[X]$ is irreducible since any degree 1 polynomial with coefficients in a field is irreducible.

c) If K is a field and $f \in K[X]$ has the degree 2 or 3, then f is irreducible if and only if f has no root in K. For the polynomials with the degree at least 4, the lack of roots in K means not necessarily that they are irreducible (e.g. $(X^2 + 1)^2 \in \mathbb{R}[X]$ is not irreducible).

d) A polynomial $f \in \mathbb{C}[X]$ is irreducible in $\mathbb{C}[X]$ if and only if deg f = 1.

e) A polynomial $f \in \mathbb{R}[X]$ is irreducible in $\mathbb{R}[X]$ if and only if deg f = 1 of $f = aX^2 + bX + c$ with $a, b, c \in \mathbb{R}$ and $a \neq 0$, and $\Delta = b^2 - 4ac < 0$.

Remarks 4. a) If $d \in \mathbb{Z} \setminus \{1\}$ is a square-free integer and $\delta : \mathbb{Z}[\sqrt{d}] \to \mathbb{N}, \delta(z) = |z \cdot \overline{z}|$ is the norm map, then, for any $z_1, z_2, z \in \mathbb{Z}[\sqrt{d}]$:

- i) $z_1|z_2 \Rightarrow \delta(z_1)|\delta(z_2);$
- ii) $z_1 \sim z_2 \Leftrightarrow \delta(z_1) = \delta(z_2)$ and $z_1|z_2$;
- iii) $\delta(z_1) = \delta(z_2)$ does not imply, in general, $z_1 \sim z_2$;
- iv) if $\delta(z)$ is a prime then z is an irreducible element of $\mathbb{Z}[\sqrt{d}]$.

b) In the integral domain ($\mathbb{Z}[i], +, \cdot$) the elements 1 + i are 1 + 2i are irreducible elements (because of iv) above), 3 and 7 are irreducible elements (even if their norm is not a prime), and 2, 5 and 17 are not irreducible elements.

Definition 5. An element $p \in R^*$ is a **prime element** if it satisfies the following conditions:

- α) p is not a unit.
- $\beta) \ x,y \in R; \ p \mid xy \Rightarrow p \mid x \text{ or } p \mid y.$

Remarks 6. a) If $p \in R$ is a prime element, then any associate of p in R is also a prime element. b) If $p \in R$ is a prime element and p divides the product $x_1 \dots x_n$ of elements of R then p divides at least one of the factors x_1, \dots, x_n .

Examples 7. i) The prime elements of $(\mathbb{Z}, +, \cdot)$ are the (natural) primes and their opposites. ii) In the integral domain $(\mathbb{Z}[i\sqrt{5}], +, \cdot), i\sqrt{5}$ is a prime element, 3 is an irreducible element which is not a prime element.

Theorem 8. For an integral domanin R we have:

1) Any prime element from R is an irreducible element.

2) If any two elements of R have a gcd, then any irreducible element of R is a prime element.

We proved in the previous course that in a PID R, there exists a gcd for any $a, b \in R$ and

$$d = (a, b) \Leftrightarrow dR = aR + bR.$$

Thus, from the previous theorem one deduces the following:

Corollary 9. In a PID, an element is irreducible if and only if it is prime.

Since \mathbb{Z} is a PID, the previous corollary gives, once again, a reason why the integers which are prime numbers are the same as the integers which are irreducible numbers. But, as example 7 ii) shows, the converse of the statement 1) from the previous theorem is not always valid.

Remarks 10. a) From the statement 2) of the previous theorem and the fact that 3 is irreducible in $\mathbb{Z}[i\sqrt{5}]$, but not prime, we expect to find elements in $\mathbb{Z}[i\sqrt{5}]^*$ which have no gcd. For instance, 6 and $2(1+i\sqrt{5})$ have no gcd in $\mathbb{Z}[i\sqrt{5}]$. Yet, 3 and $1+i\sqrt{5}$ are coprime in $\mathbb{Z}[i\sqrt{5}]$, so they have a gcd (and it is 1).

b) From remark a) one deduces that $\mathbb{Z}[i\sqrt{5}]$ is not a PID. One reason why we did not involve the notion of prime element in the examples we gave in $\mathbb{C}[X]$, $\mathbb{R}[X]$, $\mathbb{Z}[i]$ is that each one of these integral domains is a PID (and even more, as we will further see) so, in these integral domains the notions of prime element and irreducible element coincide.