COURSE 5

Divisibility in integral domains
Let (R,+,-) be an integral domain.

Definition 1. The relation | defined on R by
albe3JzeR, b=ax

is called the divisibility relation on R, and if « | b one says that a divides b or a is a divisor

of b or b is a multiple of a or b factorizes through a.

Theorem 2. (Some properties of the divisibility relation)
Let a,a’,b,b',c € R. The following statements hold:
iyl|a,ala,al0;
ii) 0| a if and only if a = 0;
iii) if a | b and b | ¢ then a | ¢;
iv)ifa | band o’ | b then aa’ | b ;
v) if a | b then a | bc;
vi) for ¢ # 0, a | b if and only if ac | be;
ii)ifa|band a|cthenal|b+c;

viii) if a | b4+ cand a | b then a | ¢;.
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Remark 3. The divisibility relation is a reflexive and transitive relation which is not always a

partial order. The integral domain (Z,+, -) is an example in this respect since, as we already saw,
2| -2, =2 |2 and 2 # —2.

Definition 4. One says that the elements a,b € R are associates (or associated elements),

and we write a ~ b, if a | b and b | a.
The previous notion determines a relation ~ on R.

Theorem 5. (Some properties of the relation ~)
Let a,a’,b,b’,c € R. The following statement hold:
iya~a;

ii) if a ~ b then b ~ a;

iii) if @ ~ b and b ~ ¢ then a ~ ¢;

v)ifa~band o ~ b then aa’ ~ bb';
vija~1 < a|l & aisaunitin R;
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(iv) a ~ 0 if and only if a = 0;
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(vii) a@ ~ b if and only if there exists u € U(R) such that b = ua.

Corollary 6. The relation ~ is an equivalence relation on R. If a € R then the equivalence class
of a modulo ~ is

[a] = aU(R) = {ax |z € U(R)}.

Remarks 7. i) In any integral domain R, the class [0] has only one element which is 0.

ii) For any a € R the units of R and the associates of a are divisors of a. Any other divisor of a is
called non-trivial divisor.

iii) The divisibility relation on R is a partial order if and only if the only unit of R is 1.



Theorem 8. Let R be an integral domain. The quotient set R/ ~= {[a] | a € R} is a partial
ordered set (poset) with respect to the relation < defined by:

[a] <] < alb.

Remark 9. From theorem 5 one deduces that [1] = U(R), and from theorem 2 it follows that [1]
is the smallest element of the poset (A/ ~, <).

Examples 10. a) In the integral domain (Z,+,-), [1] = U(Z) = {-1,1}. So,
m~n<sme{-—n,n}

and [n] = {—n,n} for any n € Z*. In the poset (Z/ ~,<), [0] = {0} is the greatest element

element, and if m,n € Z* then
{-m,m} <{-n,n} & m|n.

Since each class from Z/ ~ contains exactly one natural number, studying the divisibility in Z
comes to studying the divisibility in N.

b) If K is a field (for instance, K can be Q, R, C, or Z, (with p prime)) then K is an integral
domain with U(K) = K*. Thus in K, a ~ b for any a,b € K*, hence K/ ~ has only two elements:
{0} (which is [0] and is the greatest element) and K* (which is [1] and is the smallest element).
¢) If R is an integral domain then U(R[X]) = U(R), hence for any f,g € R[X],

f~g & Ja€ R unit in (R,-) such that f = ag.

In particular, if f,g € Z[X]* then
f~g9 < [=4g,
and if K is a field, then in the integral domain K[X],
f~g e JaceK*: f=ag.

Thus, each class from K[X]*/ ~ contains exacly one polynomial with the leading coefficient 1.
d) We saw in the previous course that U(Z[i]) = {—1,1, —, 1}, so, if 21, 2o € Z[i] then

21~ 2o & 29 € {—21,21, —iZl,iZQ}.
e) Since U(Z[iv/5]) = {—1,1}, 21 ~ 23 in Z[i"/5] if and only if 2o € {—21, 21}

Theorem 11. Let R be an integral domain and a,b € R. Then:
iya|lb & (b)C(a) & DRCaR;
ii)a~b < (a)=(b) & aR=DR.

From the previous theorem one immediately deduce the following;:

Corollary 12. For any elements a,b € R of an integral domain R we have:
[a] < [b] & bR CaR;
[a] =[b] & aR=D0bR.



The greatest common divisor and the least common multiple
Let (R,+,-) be an integral domain.

Definition 13. Let aq,...,a, € R. We say that d € R is a greatest common divisor (abrevi-
ated ged) of aq,...,a, € R if in the poset (R/ ~, <)

dinf([a1], ..., [an]) € R/ ~ and [d] = inf([a1], ..., [an]).
If a,b € R and inf([a], [b]) = [1], i.e. 1 is a ged of a and b, we say that a and b are coprime.

We identify each class from R/ ~ by a representantive and, this way, the fact that d a ged of
ai,...,a, is denoted, as for integers, by d = (as,...,ay).

Remarks 14. a) If d = (aq,...,a,) then
d = (a,...,a,) & d ~d.
b) Since [a] < [b] in R/ ~ means a|b in R, one can rewrite the ged definition as follows:

dlai, ..., d]|ay

d=(ay,...,a,) <
(v, an) {d’eR, dar,....d |apn=d|d

¢) For a,b € R,

alb < (a,b) =a.
d) If any two elements from R have a ged, then for any aj, as, a3 € R there exists a ged (a1, az,a3)
and ((a1,a2),as) = (a1, a2,a3) = (a1, (az,a3)).
e) If any two elements from R have a ged, then, for any n € N* and any ay,...,a, € R, there
exists (ay,...,an).

Theorem 15. If any two elements from R have a gcd and a, b, ¢ € R then:
(1) (a,b)c = (ac, be);
(2) (a,b) =1 and (a,c) =1 = (a,bc) =1,
(3) a|bcand (a,b)=1=a|c.

Corollary 16. If d = (a,b) and a = da’, b = db’ then (d/,¥’) = 1.

Definition 17. Let aj,...,a, € R. One says that m € R is a least (or lowest) common
multiple (abreviated lcm) of ay, ..., a, if in the poset (R/ ~, <)

Isup([a1], ..., [an]) € R/ ~ and [m] = sup([ai], ..., [an]).

We identify each class from R/ ~ by a reprezentantive and, this way, the fact that m is a lem

of aj,...,a, is denoted by m = [aq,...,a,].
Remarks 18. a) If m = [a4, ..., a,] then
m' =lai,...,a,] & m' ~m.

b) One can rewrite the lem definition by means of divisibility relation as follows:

ay|lm, ..., an|m

m=[ai,...,a
(@1, -, an] {m’ER, ap |m's. o an |m = m|m.



¢) For a,b € R,
al|b<s [a, bl =b.

d) If any two elements of R have a lem, then for any aj,as,a3 € R there exists a lem [ag, as, as]
and [[a1, as), as] = [a1, a2, a3] = [a1, [ag, a]]- €) If any two elements of R have a lcm, then for any

n € N* and any ay,...,a, € R there exists [a1, ..., an].

Theorem 19. If for any a,b € R there exists (a,b) then there also exists a lem for a and b and

we can choose it such that ab = (a,b)]a, b].

Theorem 20. If R is a principal ideal domain (PID) then:
1) For any a,b € R there exist a gcd and a lem.
2) d = (a,b) & dR = aR + bR.
3) m=[a,b] & mR =aRNbR.

Corollary 21. If Ris a PID and a,b,d € R then
a)d=(a,b) = Ju,v € R; d=au+ by
b) (a,b) =1 Ju,v e R; au+bv=1.

Remark 22. Since Z is a PID the Bézout representation of the ged of two integers is a particular

case of the previous corollary.



