
COURSE 5

Divisibility ı̂n integral domains

Let (R,+, ·) be an integral domain.

Definition 1. The relation | defined on R by

a | b⇔ ∃ x ∈ R, b = ax

is called the divisibility relation on R, and if a | b one says that a divides b or a is a divisor

of b or b is a multiple of a or b factorizes through a.

Theorem 2. (Some properties of the divisibility relation)

Let a, a′, b, b′, c ∈ R. The following statements hold:

(i) 1 | a, a | a, a | 0 ;

(ii) 0 | a if and only if a = 0 ;

(iii) if a | b and b | c then a | c ;

(iv) if a | b and a′ | b′ then aa′ | bb′ ;
(v) if a | b then a | bc ;

(vi) for c 6= 0, a | b if and only if ac | bc ;

(vii) if a | b and a | c then a | b + c ;

(viii) if a | b + c and a | b then a | c ; .

Remark 3. The divisibility relation is a reflexive and transitive relation which is not always a

partial order. The integral domain (Z,+, ·) is an example in this respect since, as we already saw,

2 | −2, −2 | 2 and 2 6= −2.

Definition 4. One says that the elements a, b ∈ R are associates (or associated elements),

and we write a ∼ b, if a | b and b | a.

The previous notion determines a relation ∼ on R.

Theorem 5. (Some properties of the relation ∼)

Let a, a′, b, b′, c ∈ R. The following statement hold:

(i) a ∼ a ;

(ii) if a ∼ b then b ∼ a ;

(iii) if a ∼ b and b ∼ c then a ∼ c ;

(iv) a ∼ 0 if and only if a = 0 ;

(v) if a ∼ b and a′ ∼ b′ then aa′ ∼ bb′ ;

(vi) a ∼ 1 ⇔ a | 1 ⇔ a is a unit in R ;

(vii) a ∼ b if and only if there exists u ∈ U(R) such that b = ua .

Corollary 6. The relation ∼ is an equivalence relation on R. If a ∈ R then the equivalence class

of a modulo ∼ is

[a] = aU(R) = {ax | x ∈ U(R)} .

Remarks 7. i) In any integral domain R, the class [0] has only one element which is 0.

ii) For any a ∈ R the units of R and the associates of a are divisors of a. Any other divisor of a is

called non-trivial divisor.

iii) The divisibility relation on R is a partial order if and only if the only unit of R is 1.
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Theorem 8. Let R be an integral domain. The quotient set R/ ∼= {[a] | a ∈ R} is a partial

ordered set (poset) with respect to the relation ≤ defined by:

[a] ≤ [b]⇔ a | b .

Remark 9. From theorem 5 one deduces that [1] = U(R), and from theorem 2 it follows that [1]

is the smallest element of the poset (A/ ∼,≤).

Examples 10. a) In the integral domain (Z,+, ·), [1] = U(Z) = {−1, 1}. So,

m ∼ n⇔ m ∈ {−n, n}

and [n] = {−n, n} for any n ∈ Z∗. In the poset (Z/ ∼,≤), [0] = {0} is the greatest element

element, and if m,n ∈ Z∗ then

{−m,m} ≤ {−n, n} ⇔ m | n.

Since each class from Z/ ∼ contains exactly one natural number, studying the divisibility in Z
comes to studying the divisibility in N.

b) If K is a field (for instance, K can be Q, R, C, or Zp (with p prime)) then K is an integral

domain with U(K) = K∗. Thus in K, a ∼ b for any a, b ∈ K∗, hence K/ ∼ has only two elements:

{0} (which is [0] and is the greatest element) and K∗ (which is [1] and is the smallest element).

c) If R is an integral domain then U(R[X]) = U(R), hence for any f, g ∈ R[X],

f ∼ g ⇔ ∃ a ∈ R∗ unit in (R, ·) such that f = ag.

In particular, if f, g ∈ Z[X]∗ then

f ∼ g ⇔ f = ±g,

and if K is a field, then in the integral domain K[X],

f ∼ g ⇔ ∃ a ∈ K∗ : f = ag.

Thus, each class from K[X]∗/ ∼ contains exacly one polynomial with the leading coefficient 1.

d) We saw in the previous course that U(Z[i]) = {−1, 1,−i, i}, so, if z1, z2 ∈ Z[i] then

z1 ∼ z2 ⇔ z2 ∈ {−z1, z1,−iz1, iz2}.

e) Since U(Z[i
√

5]) = {−1, 1}, z1 ∼ z2 in Z[i
√

5] if and only if z2 ∈ {−z1, z1}.

Theorem 11. Let R be an integral domain and a, b ∈ R. Then:

i) a | b ⇔ (b) ⊆ (a) ⇔ bR ⊆ aR;

ii) a ∼ b ⇔ (a) = (b) ⇔ aR = bR.

From the previous theorem one immediately deduce the following:

Corollary 12. For any elements a, b ∈ R of an integral domain R we have:

[a] ≤ [b] ⇔ bR ⊆ aR ;

[a] = [b] ⇔ aR = bR .
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The greatest common divisor and the least common multiple

Let (R,+, ·) be an integral domain.

Definition 13. Let a1, . . . , an ∈ R. We say that d ∈ R is a greatest common divisor (abrevi-

ated gcd) of a1, . . . , an ∈ R if in the poset (R/ ∼,≤)

∃ inf([a1], . . . , [an]) ∈ R/ ∼ and [d] = inf([a1], . . . , [an]).

If a, b ∈ R and inf([a], [b]) = [1], i.e. 1 is a gcd of a and b, we say that a and b are coprime.

We identify each class from R/ ∼ by a representantive and, this way, the fact that d a gcd of

a1, . . . , an is denoted, as for integers, by d = (a1, . . . , an).

Remarks 14. a) If d = (a1, . . . , an) then

d′ = (a1, . . . , an) ⇔ d′ ∼ d.

b) Since [a] ≤ [b] in R/ ∼ means a|b in R, one can rewrite the gcd definition as follows:

d = (a1, . . . , an)⇔

{
d | a1, . . . , d | an

d′ ∈ R, d′ | a1, . . . , d′ | an ⇒ d′ | d
.

c) For a, b ∈ R,

a | b ⇔ (a, b) = a.

d) If any two elements from R have a gcd, then for any a1, a2, a3 ∈ R there exists a gcd (a1, a2, a3)

and ((a1, a2), a3) = (a1, a2, a3) = (a1, (a2, a3)).

e) If any two elements from R have a gcd, then, for any n ∈ N∗ and any a1, . . . , an ∈ R, there

exists (a1, . . . , an).

Theorem 15. If any two elements from R have a gcd and a, b, c ∈ R then:

(1) (a, b)c = (ac, bc);

(2) (a, b) = 1 and (a, c) = 1⇒ (a, bc) = 1;

(3) a | bc and (a, b) = 1⇒ a | c.

Corollary 16. If d = (a, b) and a = da′, b = db′ then (a′, b′) = 1.

Definition 17. Let a1, . . . , an ∈ R. One says that m ∈ R is a least (or lowest) common

multiple (abreviated lcm) of a1, . . . , an if in the poset (R/ ∼,≤)

∃ sup([a1], . . . , [an]) ∈ R/ ∼ and [m] = sup([a1], . . . , [an]).

We identify each class from R/ ∼ by a reprezentantive and, this way, the fact that m is a lcm

of a1, . . . , an is denoted by m = [a1, . . . , an].

Remarks 18. a) If m = [a1, . . . , an] then

m′ = [a1, . . . , an] ⇔ m′ ∼ m.

b) One can rewrite the lcm definition by means of divisibility relation as follows:

m = [a1, . . . , an]⇔

{
a1 | m, . . . , an | m

m′ ∈ R, a1 | m′, . . . , an | m′ ⇒ m | m′.
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c) For a, b ∈ R,

a | b⇔ [a, b] = b.

d) If any two elements of R have a lcm, then for any a1, a2, a3 ∈ R there exists a lcm [a1, a2, a3]

and [[a1, a2], a3] = [a1, a2, a3] = [a1, [a2, a3]]. e) If any two elements of R have a lcm, then for any

n ∈ N∗ and any a1, . . . , an ∈ R there exists [a1, . . . , an].

Theorem 19. If for any a, b ∈ R there exists (a, b) then there also exists a lcm for a and b and

we can choose it such that ab = (a, b)[a, b].

Theorem 20. If R is a principal ideal domain (PID) then:

1) For any a, b ∈ R there exist a gcd and a lcm.

2) d = (a, b)⇔ dR = aR + bR.

3) m = [a, b]⇔ mR = aR ∩ bR.

Corollary 21. If R is a PID and a, b, d ∈ R then

a) d = (a, b)⇒ ∃ u, v ∈ R; d = au + bv;

b) (a, b) = 1⇔ ∃ u, v ∈ R; au + bv = 1.

Remark 22. Since Z is a PID the Bézout representation of the gcd of two integers is a particular

case of the previous corollary.
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