COURSE 4

Preparing the tools

Integral domains, units

A set R endowed with two binary operations + and - is a commutative ring if (R,+) is an
Abelian group, (R, ) is a commutative monoid and - is distributive with respect to 4+. A non-zero
commutative ring (R, +, ) is an integral domain if it has no zero divisors.

Remark 1. In an integral domain R,
a,beR, ab=0 = a=0o0rb=0.

It is important for the multiplicative monoid (R,-) of an integral domain (R,+,-) that one can

simplify with any non-zero element. More precisely, for any a,z,y € R, with a # 0, we have
a#0
ar=ay<alr—y)=ax—ay=0="z—y=0=>z=y.

An element a € R of a commutative ring R is a unit if there exists 7! € R such that z2~! = 1.
A non-zero commutative ring is a field if all its non-zero elements are units. Obviously, any field
is an integral domain.

Next, we denote by U(R) the set of the units of the ring R.

Remark 2. The set U(R) = {z € R| 327! € R: zz=! = 1} is closed in (R,-) and, with the

operation induced by -, (U(R),-) is a (commutative) group.

Examples 3. a) The ring of intergers (Z, +, -) is an integral domain which is not a field. Its units
are —1 and 1.

b) The sets Q, R, C are fields with the usual addition and multiplication. If K is a field (particularly,
if K is one of the above number fields), then U(K) = K \ {0} = K*.

¢) Let R be a commutative ring and let

RX|={f=a+a1 X+ -+a,X" |ag,a1,...,a, € R, n € N}

be the set of the polynomials in X over R. The polynomial addition and polynomial multiplication
make (R[X],+, ) a commutative ring which includes R and U(R) C U(R[X]).

d) If d € Z\ {1} is a square-free integer then Z[vd] = {a + bV/d | a,b € Z} is an integral
domain with the usual number addition and multiplication. Indeed, since 0,1 € Z[v/d] and for any
21 =a; +bvVd and z5 = as + byv/d with ai,as, by, by € Z we have

21— 22 = (a1 — ag) + (b1 — b2)Vd € Z[Vd],
and
2129 = (a1a2 + blbgd) + (albg + agbl)\/a € Z[\/g] s
Z[Vd] is a subring of the field (C, +,-). Thus Z[v/d] is a non-zero commutative ring with no zero

divisors, i.e. it is an integral domain.
If d < 0 one considers vd = i+/]d| and Z[Vd] = Z[i\/|d]] = {a + bi\/|d] | a,b € Z}. In
particular, Z[—1] = Z[i] = {a + bi | a,b € Z} is the ring of Gaussian integers.



e) If d € Z\ {1} is a square-free integer then Q(v/d) = {a + bVd | a,b € Q} is a field with the
usual number addition and multiplication. Obviously, 0,1 € Q(\/& ), and one can prove as in the
case of Z[V/d] that 21 — 22,212 € Q(V/d) for all 21, 2 € Q(/d).

Let z = a4 bvd (with a,b € Q) be a non-zero element from Q(v/d). Let us remark that from
Vd ¢ Q (see the end of the previous course) one deduces that

a+bVd =0&a*—btd=0sa=b=0.
Indeed,
a+bV/d=0=a®—b%d = (a+bVd)(a—bVd) =0,
a:b:0:>a—|—b\/g207
and if a2 —b%d = (a+bv/d)(a—bv/d) = 0in C and b # 0 then either \/d = % €Q,orVd= f% €Q,
which is not possible. Thus also,
a* —b*d = 0= b =0 and (consequently) a = 0.

Now, if we compute the inverse of z = a + bv/d # 0 in C, we obtain

-1 1 a—b/d a—b\/ﬁ_ a

T atbvd  (atbVd)(a—bVd) a®—b*d a2 —bd

Therefore, Q(v/d) is a subfield of (C,+,), hence Q(d, +,-) is a field.
f) Let n € N, n> 2. If b € Z we denote

+ :bb2d Vd € Q(Vd).

b=b+nZ={b+nk|keZ}.

By the Division Algorithm, it follows that for any b € Z there exists a unique ¢ € {0,1,...,n — 1}
such that b = i (¢ is the remainder of b when divided bty n). Of course, the existence of the
remainder from the Division Algorithm implies 0UTU---Un—1=2Z and from the uniqueness of
the remainder we deduce that i Nj = ) for any 4, j € {0,1,...,n— 1} with 4 # j. Thus the classes

~ o~

0,1,..., n—1 form a partition of Z which corresponds to the equivalence relation
a=b(modn) & n|b—a
called congruence modulo n. Indeed, for any a,b € Z,
@ =0+ aand b give the same remainder when divided by n < n | b—a < a=blmodn).

If we denote Z,, = {6, 1,... ,n/—\l}, then the operations

G+b=atbh G-b=a b
are well-defined on Z,, since for any o’ € @ and b’ € 3, there exist k1, ko € Z such that a’ = a+nk;
and b = b+ nky and we have

@'+ = (a+b)+nlky +ks) € atband 't = ab+n(nkiky + aks + bk1) € ab.

From the definitions of the operations in Z,, and the properties of the addition and multiplication
in Z one can easily deduce that (Z,,+,) is a commutative ring, called the residue class ring.
Its additive identity element is 0 and 1 is its multiplicative identity element.

Depending on n, the ring (Z,,+, ) may have or may have not zero divisors. For instance, in

Zy, 2 is a zero divisor since 2-2 =4 = 0, even if 2 # 0. But (Zy,+, -) is a field since Zy \ {0} = {1}
and 1 is a unit.



A necessary tool for our future work is the degree of a polynomial. Let R be a commutative

ring. Any non-zero polynomial f from R[X] can be uniquely written as
f=a+a X+ - +a, X" ap,a1,...,a, € R, a, #0.

Under these circumstances, the degree of f is the number n € N (we write deg f = n). By defi-
nition, the degree of the zero polynomial 0 is —co. One notices that the degree 0 polynomials
are the non-zero elements of R. Naturally extendingthe addition and the the order relation from N
to NU{—o0}, it follows that the degree of a polynomial defines a mapping deg : R[X] — NU{—o0}
which has the following properties:

1) deg(f +g) < max{deg f,degg}, Vf,g € R[X].

2) deg(fg) < deg f + degg, Vf.g € RIX].

3) If R is an integral domain, then

deg(fg) = deg f + degg, Vf, g € R[X].

Exercise 1. Show that for an integral domain R, the ring R[X] is also an integral domain and
U(R[X]) = U(R).
Solution: Since deg(fg) = deg f + degg, for any f,g € R[X],

fg=0= —oco =deg(fg) =deg f+degg =deg f=—o0cor degg=—-c0< f=0o0r g=0,

hence R[X] has no zero divisors, the only missing condition to conclude that R[X] is an integral
domain.
As we already saw, U(R) C U(R[X]). Let f be a unit in R[X]. Since

fg=1=0=deg(fg) =deg f+degg=degf=degg=0% f,g€R",
fg=11in R*, g is the inverse of f in R, hence f is a unit in R. Thus U(R[X]) C U(R).

Remark 4. If K is a field, then U(K[X]) = K*, thus K[X] is another example of integral domain
which is not a field.

Exercise 2. Let d € Z\ {1} be a square-free integer. If a,b € Q and z = a + bv/d € C then the
number Z = a — bV/d is called the conjugate of z. Show that:
a) the correspondence z — |z - Z| defines a mapping from Z[v/d] into N (we refer to as the norm
map);
b) the map 6 : Z[v/d] — N, 6(z) = |z - Z| has the following properties:

1) 6(2122) = 0(21)0(22) for all 2y, 29 € Z[Vd];

ii) §(z) = 0 (2 € Z[V/d)]) if and only if z = 0;

iil) z € Z[Vd] is a unit in Z[v/d] if and only if 6(z) = 1;
¢) the statements i) and ii) from b) are also valid for the map

b0 : Q(Wd) = Q, d(2) = |z - 7.

Solution: a) If a,b € Z and z = a + bV/d, then §(z) = |a® — b?d| € N.
b)i) §(z122) = |21227123| = |z122Z122| = |21Z1||22Z2] = d(21)d(22), for any 21,29 € Z[\/ﬁ]
ii) From the example 3 e) one deduces that for any a,b € Z,

z=a+bVd =0 a?—0*d=0<6(z) = |a® — b2d| = 0.



iii) If 2 is a unit and 2! is the inverse of z then §(2)8(271) = 6(zz7!) = §(1) = 1 in N, and this
implies 0(z) = 1. Conversely, if 6(z) = |2Z] = 1 then 2Z = %1, hence z is a unit and its inverse is

either Z or —%.

¢) The solution is very similar to the proof of b)i) and b)ii).

Exercise 3. Show that:

a) For any square-free integer d > 2, the set uf the units of
ZIN—d] = Z[iVd] = {a+biVd | a,b € 7}

is U(Z[ivVd]) = {-1,1}.
b) The units of the ring of Gaussian integers Z[i| = {a + bi | a,b € Z} are —1,1, —i
¢) The ring Z[+/2] has infinitely many units.

Solution: a) Let us consider z = a + biv/d with a,b € Z. If 2 is a unit in Z[v/d] then

)b

§(2) = a® + db* = 1.

Therefore, the natural number a2 is at most 1, hence we have to study the cases a®> = 1 and a? = 0.
It follows that (a,b) € {(1,0),(—1,0)}, hence z € {1,—1}. Conversely, if z € {1,—1} then it is
obviously a unit. In conclusion, U(Z[Vd]) = {1, —1}.

b) Let z = a + bi be a Gaussian integer (a,b € Z). We compute the norm of z, and we obtain
§(z) = a® + b?. Therefore z is a unit if and only if a® + > = 1. Then a? is at most 1, hence we
have to study the cases a? = 1 and a? = 0. It follows that (a,b) € {(1,0),(-1,0),(0,1),(0,—1)}
and this is equivalent to z € {1, —1,, —i}.

¢) The sequence u, = (1 ++/2)", n € N, is an infinite sequence of elements from Z[v/2] which
verify the condition b) iii) from the previous exercise.

Exercise 4. Let n € N, n > 2. For a non-zero class a € Z,, the following conditions are equivalent:
a) @ is not a zero divizor in the ring (Z,, +,);

b) @ is a unit in the ring (Z,, +,-);

¢) the integers a and n are coprime integers.

Solution: b)=-a) Multiplying the equality @b = 0 with the inverse of a, one deduces b=0.

a)=-b) Given a non-zero divisor a € Z,,, 31,32 € L,

G-by=a-by=a-(by —by) =0=>by —by=0= by = by.

Thus the correspondence Z,, — Z,, 3 ~ a - b is injective. Since Z, is finite, it is also surjective,
hence there exists ¢ € Z such that @ -¢ = 1.
b)=-c) If there exists ¢ € Z such that @-¢ = 1 (i.e. @-¢ = 1) then n|l — ac, hence there exists
k € Z such that 1 = kn + ca, thus (n,a) = 1.

¢)=b) If (a,n) = 1 then there exist k, ¢ € Z such that ca+kn = 1. Then 1 = ca +nk = éa+nk =

~

¢-4+0==¢-a, hence @ € U(Zy) and a~! = ¢

Remarks 5. a) The equivalence a)<b) can be proved in any non-zero finite (unital) ring, therefore

any finite integral domain is a field.



b) Let n € N, n > 2. Since in the ring (Z,,, +, -) the elements which are not zero divisors are exactly
the units, (Z,,+,-) is an integral domain if and only if (Zy,+,-) is a field. But this happens if
and only if T, 2,... ,n/—\l are units, or, equivalently, if

(IL,n)=(2,n)=---=(Mnm-1,n)=1.

One can easily notice that under these circumstances, the only natural numbers that divide n are
1 and n, thus (Z,,+,) is a field if and only if n is a prime number.

Ideals, principal ideals

Let (R,+,) be a commutative ring and I C R. On says that I is an ideal of R if it fulfils the
following conditions:

1) T +0

2)if x,y €I thenz+yé€I;

3)if a € Rand x € I then za € I.

Actually, any ideal of R is a subring, thus it contains the zero element of R. This is how we
check 1) most of the time.

Remarks 6. a) In the ideal definition of a (gebneral) ring, one may find instead of 2) the condition
2 ifx,y €l thenz—yel,

since we want I to be a subgroup of (R, +). Since all our rings are unital rings, for any = € I, we

have —z = z - (—=1) € I, so the conditions 1), 2’), 3) are equivalent to 1), 2), 3).

b) Any ideal of R is a subring R.

Proposition 7. For a commutative ring R, the following statements hold:
i) 0 = {0} and R ar ideals of R.

ii) If I is an ideal of R which contains a unit of R then I = R.

iii) If I and J are ideals then I N J is also an ideal.

iv) If I and J are ideals then T+ J ={ax +y |z € I, y € J} is also an ideal.
v)If I, CI, C---CI, C..., neN* is an ascending chain of ideals then |J
vi) If a1,...,a, € R then

nene In is an ideal.

t
(al,...,an)Ig {a1z1 4+ -+ apzy | 21,...,2, € R}

is the smallest ideal of R (with respect to set inclusion) which contains ay, ..., ap.

Proof. i) is obvious.
i) If there exists a unit v of R such that u € I, then for any a € R, thus

a=1-a=(uu)a=u(u"ta)ecl,

since u"'a € Rand v € I. Thus R=1I.
iii)0€ I and 0 € J implies0 € I N J.
Ifx,y e INJ then z,y € I and z,y € J, therefore t+y €l andz+y € J, thusa+y e INJ.
Ifae Rand x € INJ then za € I and xza € J, thus xa € I N J.
iv)0eland 0€ Jimplies0=0+0€ T+ J.
If b, € I + J there exist z,2’ € I and y,y’ € J such that b=z + y and V' = 2’ + 3. Since

b+ = (z+y)+ @ +y) = (@+2)+(y+y)



andx+a2' € Tandy+y € J, wehave b+ b €T+ J.

If a € Rand b e I+ J then there exist € I and y € J such that b = z 4+ y. Since za € I and
ya € J, we have ba = (x +y)a=za+ya €+ J.
v) Obviously, 0 € U,,cn+ In-

Let 2,y € U, cn- In- Then there exist 4,7 € N* such that x € I; and y € I;. If k = max{i, j}
then k € N*, w € [; C Iy and y € I; C Iy. Therefore x +y € Iy € U, cn+ In-

If a € R then za € I; C J,,cn+ In-
vi) Obviously, a; = a1 -0+ ---4+a;—1-0+a;-1+aj41-04+---+ap-0 € (ay,...,a,), for each
i=1,...,n. This also implies (a1, ...,a,) # 0.

Let b,b" € (a1,...,a,) and a € R. Then there exist z1,...,2,,2,,...,2, € R such that

b=aiz1+ -+ apx, and b’ = a1x] + - - + apx),. Hence

b+V = (a1x1 + -+ anzy) + (12 + -+ apz)) = a1 (xy + 7)) -+ an(zn + 7)) € (a1,...,a,),

ba = (a121 + -+ + anxn)a = a1(x1a) + - - + an(xna) € (a1, ..., an).
Finally, if I is another ideal of R which contains ay, ..., a,, then for any b € (a1, ...,a,), there
exist x1,...,2, € R such that b=a1xy + -+ apx,. Since for each i = 1,...,n, a;x; € I we have
b=ayx1+ -+ apx, € I. Thus (a1,...,a,) C I. =

The ideal (ay,...,a,) is called the ideal of R generated by ai,...,a,. In particular, the
ideal (a) = {az | z € R} "2 aR is called the principal ideal of R generated by a € R, and

(a1y...,an) =a1R+ -+ apR.

Definitions 8. Let R be a commutative ring. An ideal I of R is called principal ideal if there
exists @ € R such that I = (a) = aR. If R is an integral domain and all its ideals are principal

ideals, R is called principal ideal domain (abreviated PID).

Exercise 5. Show that the set of the ideals of the ring of integers (Z, +,-) is {nZ | n € N}.
Solution 1: First, let us check that for any n € N, nZ is an ideal of (Z, 4+, -). Of course, 0 = n-0 € nZ.
For any a € Z and z,y € nZ, there exist k,l € Z such that x = nk and y = nl. Therefore
x+y=n(k+1) €nZ and za = n(ka) € nZ.
Conversely, let I be an ideal of Z. We plan to find a natural nuber n such that I = nZ. If
I = {0} then n = 0, otherwise I has at least a nonzero element x. Since also —x € I either = or x

is a nonzero natural number, we have I N N* # (), therefore there exsts a minimum
n = min(I NN*).

We will see that I = nZ. Clearly, for any k € Z, n € I implies nk € I. Thus I D nZ.
Conversely, let x € I C Z. From the Division Algorithm we deduce the existence of ¢q,r € Z
such that x = ng 4+ r, with » € N and r < n. Since

z,ng€e€l = r=x—nqgel,

thus r € INN and r < n, so the only possible value of r is r = 0. Hence x = nq € nZ, which
complets the proof of I C nZ and the solution.



Solution 2: Any ideal of (Z, +,-) is a subring of (Z,+, ) and any subring of (Z,+, ) is a subgroup
of (Z,+) which is a cyclic group. Thus the subgroups of (Z,+) are

(n)=nZ={nk|keZ}=(—n), neN.

Once we check (as in Solution 1) that each nZ is an ideal of (Z, +, -), the solution is complete.

From this exercise one deduces that:

Remark 9. The ring of integers (Z, +, -) is a principal ideal domain. We have

(0)={0}=0-Zand (n) =(—n)=nZ ={nk |k € Z}, Yn € Z".



