
COURSE 4

Preparing the tools

Integral domains, units

A set R endowed with two binary operations + and · is a commutative ring if (R,+) is an

Abelian group, (R, ·) is a commutative monoid and · is distributive with respect to +. A non-zero

commutative ring (R,+, ·) is an integral domain if it has no zero divisors.

Remark 1. In an integral domain R,

a, b ∈ R, ab = 0 ⇒ a = 0 or b = 0.

It is important for the multiplicative monoid (R, ·) of an integral domain (R,+, ·) that one can

simplify with any non-zero element. More precisely, for any a, x, y ∈ R, with a 6= 0, we have

ax = ay ⇔ a(x− y) = ax− ay = 0
a 6=0
=⇒ x− y = 0⇒ x = y.

An element a ∈ R of a commutative ring R is a unit if there exists x−1 ∈ R such that xx−1 = 1.

A non-zero commutative ring is a field if all its non-zero elements are units. Obviously, any field

is an integral domain.

Next, we denote by U(R) the set of the units of the ring R.

Remark 2. The set U(R) = {x ∈ R | ∃x−1 ∈ R : xx−1 = 1} is closed in (R, ·) and, with the

operation induced by · , (U(R), ·) is a (commutative) group.

Examples 3. a) The ring of intergers (Z,+, ·) is an integral domain which is not a field. Its units

are −1 and 1.

b) The sets Q,R,C are fields with the usual addition and multiplication. If K is a field (particularly,

if K is one of the above number fields), then U(K) = K \ {0} = K∗.

c) Let R be a commutative ring and let

R[X] = {f = a0 + a1X + · · ·+ anX
n | a0, a1, . . . , an ∈ R, n ∈ N}

be the set of the polynomials in X over R. The polynomial addition and polynomial multiplication

make (R[X],+, ·) a commutative ring which includes R and U(R) ⊆ U(R[X]).

d) If d ∈ Z \ {1} is a square-free integer then Z[
√
d ] = {a + b

√
d | a, b ∈ Z} is an integral

domain with the usual number addition and multiplication. Indeed, since 0, 1 ∈ Z[
√
d ] and for any

z1 = a1 + b1
√
d and z2 = a2 + b2

√
d with a1, a2, b1, b2 ∈ Z we have

z1 − z2 = (a1 − a2) + (b1 − b2)
√
d ∈ Z[

√
d ],

and

z1z2 = (a1a2 + b1b2d) + (a1b2 + a2b1)
√
d ∈ Z[

√
d ] ,

Z[
√
d ] is a subring of the field (C,+, ·). Thus Z[

√
d ] is a non-zero commutative ring with no zero

divisors, i.e. it is an integral domain.

If d < 0 one considers
√
d = i

√
|d| and Z[

√
d ] = Z[i

√
|d| ] = {a + bi

√
|d| | a, b ∈ Z}. In

particular, Z[−1] = Z[i] = {a+ bi | a, b ∈ Z} is the ring of Gaussian integers.
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e) If d ∈ Z \ {1} is a square-free integer then Q(
√
d ) = {a + b

√
d | a, b ∈ Q} is a field with the

usual number addition and multiplication. Obviously, 0, 1 ∈ Q(
√
d ), and one can prove as in the

case of Z[
√
d ] that z1 − z2, z1z2 ∈ Q(

√
d ) for all z1, z2 ∈ Q(

√
d ).

Let z = a+ b
√
d (with a, b ∈ Q) be a non-zero element from Q(

√
d ). Let us remark that from√

d /∈ Q (see the end of the previous course) one deduces that

a+ b
√
d = 0⇔ a2 − b2d = 0⇔ a = b = 0.

Indeed,

a+ b
√
d = 0⇒ a2 − b2d = (a+ b

√
d)(a− b

√
d) = 0,

a = b = 0⇒ a+ b
√
d = 0,

and if a2−b2d = (a+b
√
d)(a−b

√
d) = 0 in C and b 6= 0 then either

√
d =

a

b
∈ Q, or

√
d = −a

b
∈ Q,

which is not possible. Thus also,

a2 − b2d = 0⇒ b = 0 and (consequently) a = 0.

Now, if we compute the inverse of z = a+ b
√
d 6= 0 in C, we obtain

z−1 =
1

a+ b
√
d

=
a− b

√
d

(a+ b
√
d)(a− b

√
d)

=
a− b

√
d

a2 − b2d
=

a

a2 − b2d
+

−b
a2 − b2d

√
d ∈ Q(

√
d ).

Therefore, Q(
√
d ) is a subfield of (C,+, ·), hence Q(

√
d ,+, ·) is a field.

f) Let n ∈ N, n ≥ 2. If b ∈ Z we denote

b̂ = b+ nZ = {b+ nk | k ∈ Z}.

By the Division Algorithm, it follows that for any b ∈ Z there exists a unique i ∈ {0, 1, . . . , n− 1}
such that b̂ = î (i is the remainder of b when divided bty n). Of course, the existence of the

remainder from the Division Algorithm implies 0̂∪ 1̂∪ · · · ∪ n̂− 1 = Z and from the uniqueness of

the remainder we deduce that î ∩ ĵ = ∅ for any i, j ∈ {0, 1, . . . , n− 1} with i 6= j. Thus the classes

0̂, 1̂, . . . , n̂− 1 form a partition of Z which corresponds to the equivalence relation

a ≡ b( modn)⇔ n | b− a

called congruence modulo n. Indeed, for any a, b ∈ Z,

â = b̂⇔ a and b give the same remainder when divided by n⇔ n | b− a⇔ a ≡ b( modn).

If we denote Zn = {0̂, 1̂, . . . , n̂− 1}, then the operations

â+ b̂ = â+ b, â · b̂ = â · b

are well-defined on Zn, since for any a′ ∈ â and b′ ∈ b̂, there exist k1, k2 ∈ Z such that a′ = a+nk1

and b′ = b+ nk2 and we have

a′ + b′ = (a+ b) + n(k1 + k2) ∈ â+ b and a′b′ = ab+ n(nk1k2 + ak2 + bk1) ∈ âb.

From the definitions of the operations in Zn and the properties of the addition and multiplication

in Z one can easily deduce that (Zn,+, ·) is a commutative ring, called the residue class ring.

Its additive identity element is 0̂ and 1̂ is its multiplicative identity element.

Depending on n, the ring (Zn,+, ·) may have or may have not zero divisors. For instance, in

Z4, 2̂ is a zero divisor since 2̂ · 2̂ = 4̂ = 0̂, even if 2̂ 6= 0̂. But (Z2,+, ·) is a field since Z2 \ {0̂} = {1̂}
and 1̂ is a unit.
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A necessary tool for our future work is the degree of a polynomial. Let R be a commutative

ring. Any non-zero polynomial f from R[X] can be uniquely written as

f = a0 + a1X + · · ·+ anX
n, a0, a1, . . . , an ∈ R, an 6= 0.

Under these circumstances, the degree of f is the number n ∈ N (we write deg f = n). By defi-

nition, the degree of the zero polynomial 0 is −∞. One notices that the degree 0 polynomials

are the non-zero elements of R. Naturally extendingthe addition and the the order relation from N
to N∪{−∞}, it follows that the degree of a polynomial defines a mapping deg : R[X]→ N∪{−∞}
which has the following properties:

1) deg(f + g) ≤ max{deg f, deg g}, ∀f, g ∈ R[X].

2) deg(fg) ≤ deg f + deg g, ∀f, g ∈ R[X].

3) If R is an integral domain, then

deg(fg) = deg f + deg g, ∀f, g ∈ R[X].

Exercise 1. Show that for an integral domain R, the ring R[X] is also an integral domain and

U(R[X]) = U(R).

Solution: Since deg(fg) = deg f + deg g, for any f, g ∈ R[X],

fg = 0⇒ −∞ = deg(fg) = deg f + deg g ⇒ deg f = −∞ or deg g = −∞⇔ f = 0 or g = 0,

hence R[X] has no zero divisors, the only missing condition to conclude that R[X] is an integral

domain.

As we already saw, U(R) ⊆ U(R[X]). Let f be a unit in R[X]. Since

fg = 1⇒ 0 = deg(fg) = deg f + deg g ⇒ deg f = deg g = 0⇔ f, g ∈ R∗,

fg = 1 in R∗, g is the inverse of f in R, hence f is a unit in R. Thus U(R[X]) ⊆ U(R).

Remark 4. If K is a field, then U(K[X]) = K∗, thus K[X] is another example of integral domain

which is not a field.

Exercise 2. Let d ∈ Z \ {1} be a square-free integer. If a, b ∈ Q and z = a + b
√
d ∈ C then the

number z = a− b
√
d is called the conjugate of z. Show that:

a) the correspondence z 7→ |z · z| defines a mapping from Z[
√
d ] into N (we refer to as the norm

map);

b) the map δ : Z[
√
d ]→ N, δ(z) = |z · z| has the following properties:

i) δ(z1z2) = δ(z1)δ(z2) for all z1, z2 ∈ Z[
√
d ];

ii) δ(z) = 0 (z ∈ Z[
√
d ]) if and only if z = 0;

iii) z ∈ Z[
√
d ] is a unit in Z[

√
d ] if and only if δ(z) = 1;

c) the statements i) and ii) from b) are also valid for the map

δ0 : Q(
√
d )→ Q, δ0(z) = |z · z|.

Solution: a) If a, b ∈ Z and z = a+ b
√
d, then δ(z) = |a2 − b2d| ∈ N.

b)i) δ(z1z2) = |z1z2z1z2| = |z1z2z1z2| = |z1z1||z2z2| = δ(z1)δ(z2), for any z1, z2 ∈ Z[
√
d ].

ii) From the example 3 e) one deduces that for any a, b ∈ Z,

z = a+ b
√
d = 0⇔ a2 − b2d = 0⇔ δ(z) = |a2 − b2d| = 0.
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iii) If z is a unit and z−1 is the inverse of z then δ(z)δ(z−1) = δ(zz−1) = δ(1) = 1 in N, and this

implies δ(z) = 1. Conversely, if δ(z) = |zz| = 1 then zz = ±1, hence z is a unit and its inverse is

either z or −z.

c) The solution is very similar to the proof of b)i) and b)ii).

Exercise 3. Show that:

a) For any square-free integer d ≥ 2, the set uf the units of

Z[
√
−d ] = Z[i

√
d ] = {a+ bi

√
d | a, b ∈ Z}

is U(Z[i
√
d ]) = {−1, 1}.

b) The units of the ring of Gaussian integers Z[i] = {a+ bi | a, b ∈ Z} are −1, 1,−i, i.
c) The ring Z[

√
2] has infinitely many units.

Solution: a) Let us consider z = a+ bi
√
d with a, b ∈ Z. If z is a unit in Z[

√
d] then

δ(z) = a2 + db2 = 1.

Therefore, the natural number a2 is at most 1, hence we have to study the cases a2 = 1 and a2 = 0.

It follows that (a, b) ∈ {(1, 0), (−1, 0)}, hence z ∈ {1,−1}. Conversely, if z ∈ {1,−1} then it is

obviously a unit. In conclusion, U(Z[
√
d]) = {1,−1}.

b) Let z = a + bi be a Gaussian integer (a, b ∈ Z). We compute the norm of z, and we obtain

δ(z) = a2 + b2. Therefore z is a unit if and only if a2 + b2 = 1. Then a2 is at most 1, hence we

have to study the cases a2 = 1 and a2 = 0. It follows that (a, b) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}
and this is equivalent to z ∈ {1,−1, i,−i}.
c) The sequence un = (1 +

√
2)n, n ∈ N, is an infinite sequence of elements from Z[

√
2] which

verify the condition b) iii) from the previous exercise.

Exercise 4. Let n ∈ N, n ≥ 2. For a non-zero class â ∈ Zn the following conditions are equivalent:

a) â is not a zero divizor in the ring (Zn,+, ·);
b) â is a unit in the ring (Zn,+, ·);
c) the integers a and n are coprime integers.

Solution: b)⇒a) Multiplying the equality âb̂ = 0̂ with the inverse of â, one deduces b̂ = 0̂.

a)⇒b) Given a non-zero divisor â ∈ Zn, b̂1, b̂2 ∈ Zn,

â · b̂1 = â · b̂2 ⇒ â · (b̂1 − b̂2) = 0̂⇒ b̂1 − b̂2 = 0̂⇒ b̂1 = b̂2.

Thus the correspondence Zn → Zn, b̂ 7→ â · b̂ is injective. Since Zn is finite, it is also surjective,

hence there exists ĉ ∈ Z such that â · ĉ = 1̂.

b)⇒c) If there exists ĉ ∈ Z such that â · ĉ = 1̂ (i.e. â · c = 1̂) then n|1 − ac, hence there exists

k ∈ Z such that 1 = kn+ ca, thus (n, a) = 1.

c)⇒b) If (a, n) = 1 then there exist k, c ∈ Z such that ca+kn = 1. Then 1̂ = ̂ca+ nk = ĉa+ n̂k =

ĉ · â+ 0̂ = ĉ · â, hence â ∈ U(Zn) and â−1 = ĉ.

Remarks 5. a) The equivalence a)⇔b) can be proved in any non-zero finite (unital) ring, therefore

any finite integral domain is a field.
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b) Let n ∈ N, n ≥ 2. Since in the ring (Zn,+, ·) the elements which are not zero divisors are exactly

the units, (Zn,+, ·) is an integral domain if and only if (Zn,+, ·) is a field. But this happens if

and only if 1̂, 2̂, . . . , n̂− 1 are units, or, equivalently, if

(1, n) = (2, n) = · · · = (n− 1, n) = 1.

One can easily notice that under these circumstances, the only natural numbers that divide n are

1 and n, thus (Zn,+, ·) is a field if and only if n is a prime number.

Ideals, principal ideals

Let (R,+, ·) be a commutative ring and I ⊆ R. On says that I is an ideal of R if it fulfils the

following conditions:

1) I 6= ∅
2) if x, y ∈ I then x+ y ∈ I;

3) if a ∈ R and x ∈ I then xa ∈ I.

Actually, any ideal of R is a subring, thus it contains the zero element of R. This is how we

check 1) most of the time.

Remarks 6. a) In the ideal definition of a (gebneral) ring, one may find instead of 2) the condition

2’) if x, y ∈ I then x− y ∈ I,

since we want I to be a subgroup of (R,+). Since all our rings are unital rings, for any x ∈ I, we

have −x = x · (−1) ∈ I, so the conditions 1), 2’), 3) are equivalent to 1), 2), 3).

b) Any ideal of R is a subring R.

Proposition 7. For a commutative ring R, the following statements hold:

i) 0 = {0} and R ar ideals of R.

ii) If I is an ideal of R which contains a unit of R then I = R.

iii) If I and J are ideals then I ∩ J is also an ideal.

iv) If I and J are ideals then I + J = {x+ y | x ∈ I, y ∈ J} is also an ideal.

v) If I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ . . . , n ∈ N∗, is an ascending chain of ideals then
⋃

n∈N∗ In is an ideal.

vi) If a1, . . . , an ∈ R then

(a1, . . . , an)
not
= {a1x1 + · · ·+ anxn | x1, . . . , xn ∈ R}

is the smallest ideal of R (with respect to set inclusion) which contains a1, . . . , an.

Proof. i) is obvious.

ii) If there exists a unit u of R such that u ∈ I, then for any a ∈ R, thus

a = 1 · a = (uu−1)a = u(u−1a) ∈ I,

since u−1a ∈ R and u ∈ I. Thus R = I.

iii) 0 ∈ I and 0 ∈ J implies 0 ∈ I ∩ J .

If x, y ∈ I ∩ J then x, y ∈ I and x, y ∈ J , therefore x+ y ∈ I and x+ y ∈ J , thus x+ y ∈ I ∩ J.
If a ∈ R and x ∈ I ∩ J then xa ∈ I and xa ∈ J , thus xa ∈ I ∩ J .

iv) 0 ∈ I and 0 ∈ J implies 0 = 0 + 0 ∈ I + J .

If b, b′ ∈ I + J there exist x, x′ ∈ I and y, y′ ∈ J such that b = x+ y and b′ = x′ + y′. Since

b+ b′ = (x+ y) + (x′ + y′) = (x+ x′) + (y + y′)
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and x+ x′ ∈ I and y + y′ ∈ J , we have b+ b′ ∈ I + J.

If a ∈ R and b ∈ I + J then there exist x ∈ I and y ∈ J such that b = x+ y. Since xa ∈ I and

ya ∈ J , we have ba = (x+ y)a = xa+ ya ∈ I + J .

v) Obviously, 0 ∈
⋃

n∈N∗ In.

Let x, y ∈
⋃

n∈N∗ In. Then there exist i, j ∈ N∗ such that x ∈ Ii and y ∈ Ij . If k = max{i, j}
then k ∈ N∗, x ∈ Ii ⊆ Ik and y ∈ Ij ⊆ Ik. Therefore x+ y ∈ Ik ⊆

⋃
n∈N∗ In.

If a ∈ R then xa ∈ Ii ⊆
⋃

n∈N∗ In.

vi) Obviously, ai = a1 · 0 + · · · + ai−1 · 0 + ai · 1 + ai+1 · 0 + · · · + an · 0 ∈ (a1, . . . , an), for each

i = 1, . . . , n. This also implies (a1, . . . , an) 6= ∅.
Let b, b′ ∈ (a1, . . . , an) and a ∈ R. Then there exist x1, . . . , xn, x

′
1, . . . , x

′
n ∈ R such that

b = a1x1 + · · ·+ anxn and b′ = a1x
′
1 + · · ·+ anx

′
n. Hence

b+ b′ = (a1x1 + · · ·+ anxn) + (a1x
′
1 + · · ·+ anx

′
n) = a1(x1 + x′1) · · ·+ an(xn + x′n) ∈ (a1, . . . , an),

ba = (a1x1 + · · ·+ anxn)a = a1(x1a) + · · ·+ an(xna) ∈ (a1, . . . , an).

Finally, if I is another ideal of R which contains a1, . . . , an, then for any b ∈ (a1, . . . , an), there

exist x1, . . . , xn ∈ R such that b = a1x1 + · · ·+ anxn. Since for each i = 1, . . . , n, aixi ∈ I we have

b = a1x1 + · · ·+ anxn ∈ I. Thus (a1, . . . , an) ⊆ I.

The ideal (a1, . . . , an) is called the ideal of R generated by a1, . . . , an. In particular, the

ideal (a) = {ax | x ∈ R} not
= aR is called the principal ideal of R generated by a ∈ R, and

(a1, . . . , an) = a1R+ · · ·+ anR.

Definitions 8. Let R be a commutative ring. An ideal I of R is called principal ideal if there

exists a ∈ R such that I = (a) = aR. If R is an integral domain and all its ideals are principal

ideals, R is called principal ideal domain (abreviated PID).

Exercise 5. Show that the set of the ideals of the ring of integers (Z,+, ·) is {nZ | n ∈ N}.

Solution 1: First, let us check that for any n ∈ N, nZ is an ideal of (Z,+, ·). Of course, 0 = n·0 ∈ nZ.

For any a ∈ Z and x, y ∈ nZ, there exist k, l ∈ Z such that x = nk and y = nl. Therefore

x+ y = n(k + l) ∈ nZ and xa = n(ka) ∈ nZ.

Conversely, let I be an ideal of Z. We plan to find a natural nuber n such that I = nZ. If

I = {0} then n = 0, otherwise I has at least a nonzero element x. Since also −x ∈ I either x or x

is a nonzero natural number, we have I ∩ N∗ 6= ∅, therefore there exsts a minimum

n = min(I ∩ N∗).

We will see that I = nZ. Clearly, for any k ∈ Z, n ∈ I implies nk ∈ I. Thus I ⊇ nZ.

Conversely, let x ∈ I ⊆ Z. From the Division Algorithm we deduce the existence of q, r ∈ Z
such that x = nq + r, with r ∈ N and r < n. Since

x, nq ∈ I ⇒ r = x− nq ∈ I,

thus r ∈ I ∩ N and r < n, so the only possible value of r is r = 0. Hence x = nq ∈ nZ, which

complets the proof of I ⊆ nZ and the solution.
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Solution 2: Any ideal of (Z,+, ·) is a subring of (Z,+, ·) and any subring of (Z,+, ·) is a subgroup

of (Z,+) which is a cyclic group. Thus the subgroups of (Z,+) are

〈n〉 = nZ = {nk | k ∈ Z} = 〈−n〉, n ∈ N.

Once we check (as in Solution 1) that each nZ is an ideal of (Z,+, ·), the solution is complete.

From this exercise one deduces that:

Remark 9. The ring of integers (Z,+, ·) is a principal ideal domain. We have

(0) = {0} = 0 · Z and (n) = (−n) = nZ = {nk | k ∈ Z}, ∀n ∈ Z∗.
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