6-th CONGRESS OF ROMANIAN MATHEMATICIANS June 28 - July 4, 2007, Bucharest, Romania

Multialgebras, universal algebras and identities

Cosmin Pelea

C. Pelea, I. Purdea, 'Multialgebras, universal algebras and identities', *J. Aust. Math. Soc*, **81**, 2006, 121–139

A recipe:

The first example of multialgebra (hypergroup) was introduced by Marty at The 8th Congress of the Scandinavian Mathematicians (Stockholm, 1934) as follows:

Let (G, \cdot) be a group, $H \leq G$ and

 $G/H = \{xH \mid x \in G\}.$

The equality

(1) $(xH)(yH) = \{zH \mid z = x'y', x' \in xH, y' \in yH\}.$ defines an operation on G/H if and only if $H \leq G$.

Otherwise, (1) defines a function

$$G/H \times G/H \to P^*(G/H)$$

called binary multioperation (on G/H).

A multialgebra $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ consists in a set A and a family of multioperations

$$f_\gamma: A^{n_\gamma} o P^*(A), \ \gamma < o(au)$$

 $(f_{\gamma} \text{ is a multioperation of arity } n_{\gamma} \text{ that corresponds to a symbol } \mathbf{f}_{\gamma}).$

The recipe:

Later, in 'A representation theorem for multi-algebras', *Arch. Math.*, **3** 1962, 452–456, Grätzer proved that:

Any multialgebra ${\mathfrak A}$ results from a universal algebra ${\mathfrak B}$ and an appropriate equivalence on B as before, i.e. by considering

$$egin{aligned} &f_\gamma(
ho\langle a_0
angle,\ldots,
ho\langle a_{n_\gamma-1}
angle)=\{
ho\langle b
angle\mid b\in f_\gamma(b_0,\ldots,b_{n_\gamma-1}),\ a_i
ho b_i,\ &i\in\{0,\ldots,n_\gamma-1\}\}. \end{aligned}$$

 \Rightarrow the importance of factor multialgebras in multialgebra theory.

The start:

M. Dresher, O. Ore, 'Theory of multigroups', Amer. J. Math., 60 1938, 705–733.

T. Vougiouklis, 'Representations of hypergroups by generalized permutations', *Algebra Universalis*, **29** 1992, 172–183.

D. Freni, 'A new characterization of the derived hypergroup via strongly regular equivalences', *Comm. Algebra*, **30** 2002, 3977–3989.

 \Rightarrow among the equivalence relations of (semi)hypergroups, a great importance have those equivalence relations for which the factor hypergroup(oid) is a group (strongly regular equivalences) Let (H, \cdot) be a (semi)hypergroup.

• the smallest strongly regular equivalence of $(H, \cdot) =$ the fundamental relation of $(H, \cdot) =$ the transitive closure β^* of the relation

$$x\beta y \Leftrightarrow \exists n \in \mathbb{N}^*, \ \exists a_1, \dots, a_n \in H : \ x, y \in a_1 \cdots a_n$$

(if (H, \cdot) is a hypergroup, then $\beta^* = \beta$)

• the smallest strongly regular equivalence of (H, \cdot) for which the factor hypergroup is a commutative group = the transitive closure γ^* of the relation

$$\gamma = \bigcup_{n \in \mathbb{N}^*} \gamma_n,$$

where $\gamma_1 = \delta_H$ and, for any n > 1, γ_n is defined by

$$x\gamma_n y \Leftrightarrow \exists z_1, \dots, z_n \in H, \exists \sigma \in S_n : x \in \prod_{i=1}^n z_i, y \in \prod_{i=1}^n z_{\sigma(i)}$$

(if (H, \cdot) is a hypergroup, then $\gamma^* = \gamma$)

The problems:

1. Define the fundamental relation α^* for a (general) multialgebra and prove that

$$(\mathfrak{B}/\rho)/\alpha^* \cong \mathfrak{B}/\theta(\rho),$$

where \mathfrak{B} is a universal algebra, $\rho \in E(B)$, and $\theta(\rho)$ is the smallest congruence relation on \mathfrak{B} which contains ρ .

2. Given $\mathbf{q}, \mathbf{r} \in \mathbf{P}^{(n)}(\tau)$ $(n \in \mathbb{N})$, determine the smallest equivalence relation $\alpha_{\mathbf{qr}}^*$ of a (general) multialgebra for which the factor multialgebra is a universal algebra satisfying the identity

$$\mathbf{q} = \mathbf{r}$$

and prove that

$$(\mathfrak{B}/\rho)/\alpha_{\mathrm{qr}}^* \cong \mathfrak{B}/\theta(\rho_{\mathrm{qr}}),$$

where \mathfrak{B} is a universal algebra, $\rho \in E(B)$, ρ_{qr} is the smallest equivalence on B containing ρ and all the pairs

$$(q(b_0,\ldots,b_{n-1}),r(b_0,\ldots,b_{n-1})), b_0,\ldots,b_{n-1} \in B,$$

 $\theta(\rho_{qr})$ is the smallest congruence relation on \mathfrak{B} which contains ρ and gives (after factorization) a universal algebra satisfying the identity $\mathbf{q} = \mathbf{r}$ (i.e. the smallest congruence relation on \mathfrak{B} containing

$$ho \cup \{(q(b_0,\ldots,b_{n-1}),r(b_0,\ldots,b_{n-1})) \mid b_0,\ldots,b_{n-1} \in B\}).$$

The tools:

Let $\mathfrak{A} = (A, (f_{\gamma})_{\gamma < o(\tau)})$ be a multialgebra.

 \bullet the (universal) algebra $\mathfrak{P}^*(\mathfrak{A})$ of the nonempty subsets of $\mathfrak{A},$ defined by

$$f_{\gamma}(A_0, \dots, A_{n_{\gamma}-1}) = \bigcup \{ f_{\gamma}(a_0, \dots, a_{n_{\gamma}-1}) \mid a_i \in A_i, i \in \{0, \dots, n_{\gamma}-1\} \};$$

• the algebra $\mathfrak{P}^{(n)}(\mathfrak{P}^*(\mathfrak{A}))$ of the *n*-ary term functions of the universal algebra $\mathfrak{P}^*(\mathfrak{A})$;

• the algebra $\mathfrak{P}_{P^*(A)}^{(n)}(\mathfrak{P}^*(\mathfrak{A}))$ of the *n*-ary polynomial functions of the universal algebra $\mathfrak{P}^*(\mathfrak{A})$;

• the subalgebra $\mathfrak{P}^{(n)}_A(\mathfrak{P}^*(\mathfrak{A}))$ of $\mathfrak{P}^{(n)}_{P^*(A)}(\mathfrak{P}^*(\mathfrak{A}))$ generated by

 $\{c_a^n \mid a \in A\} \cup \{e_i^n \mid i \in \{0, \dots, n-1\}\},\$ where $c_a^n, e_i^n : P^*(A)^n \to P^*(A)$ are given by

$$c_a^n(A_0,\ldots,A_{n-1}) = \{a\}$$
 and $e_i^n(A_0,\ldots,A_{n-1}) = A_i;$

• the set $E_{ua}(\mathfrak{A})$ of the equivalence relations ρ on A for which \mathfrak{A}/ρ is a universal algebra (which proves to be an algebraic closure system on $A \times A$).

The results:

• the fundamental relation α^* of the multialgebra $\mathfrak{A} =$ the smallest element from $E_{ua}(\mathfrak{A}) =$ the transitive closure of the relation α defined by

$$x \alpha y \Leftrightarrow x, y \in p(a_0, \dots, a_{n-1})$$

for some $n \in \mathbb{N}$, $p \in P^{(n)}(\mathfrak{P}^*(\mathfrak{A}))$ and $a_0, \ldots, a_{n-1} \in A$;

• the smallest equivalence relation α_{qr}^* from $E_{ua}(\mathfrak{A})$ for which the factor multialgebra is a universal algebra satisfying the identity $\mathbf{q} = \mathbf{r}$ is the transitive closure of the relation

$$x\alpha_{\mathbf{qr}}y \Leftrightarrow \exists p \in P_A^{(1)}(\mathfrak{P}^*(\mathfrak{A})), \exists a_0, \dots, a_{n-1} \in A :$$
$$x \in p(q(a_0, \dots, a_{n-1})), y \in p(r(a_0, \dots, a_{n-1})) \text{ or }$$
$$y \in p(q(a_0, \dots, a_{n-1})), x \in p(r(a_0, \dots, a_{n-1}));$$

 \Rightarrow the fundamental relation α^* of a multialgebra ${\mathfrak A}$ is, also, the transitive closure of the relation

$$x \alpha' y \Leftrightarrow \exists p \in P_A^{(1)}(\mathfrak{P}^*(\mathfrak{A})), \exists a \in A : x, y \in p(a);$$

• the correspondence

$$(B/\rho)/\alpha_{qr}^* \to B/\theta(\rho_{qr}), \ \alpha_{qr}^* \langle \rho \langle a \rangle \rangle \mapsto \theta(\rho_{qr}) \langle a \rangle$$

is a universal algebra isomorphism.

A return to hypergroups:

• Let (H, \cdot) be a hypergroup. The strongly regular relation $\gamma^* = \gamma$ is the transitive closure of

$$\gamma' = \alpha_{\mathbf{x}_0 \mathbf{x}_1, \mathbf{x}_1 \mathbf{x}_0}$$

i.e.

$$\gamma' = \bigcup_{n \in \mathbb{N}^*} \gamma'_n,$$

where $\gamma_1' = \delta_H$ and for n > 1,

$$egin{aligned} x\gamma_n'y&\Leftrightarrow \exists z_1,\ldots,z_n\in H,\ \exists i\in\{1,\ldots,n-1\}:\ x\in z_1\cdots z_{i-1}(z_iz_{i+1})z_{i+2}\cdots z_n,\ y\in z_1\cdots z_{i-1}(z_{i+1}z_i)z_{i+2}\cdots z_n, \end{aligned}$$

which is, clearly, (the transitive closure of) the relation

$$\gamma = \bigcup_{n \in \mathbb{N}^*} \gamma_n,$$

with $\gamma_1 = \delta_H$ and, for any n > 1,

$$x\gamma_n y \Leftrightarrow \exists z_1, \ldots, z_n \in H, \exists \sigma \in S_n : x \in \prod_{i=1}^n z_i, y \in \prod_{i=1}^n z_{\sigma(i)},$$

since the cycles $(1, 2), (2, 3), \ldots, (n - 1, n)$ generate the symmetric group (S_n, \circ) .

9

The derived subhypergroup of a hypergroup (K, \cdot) is

$$D(K) = \varphi_K^{-1}(\mathbf{1}_{K/\gamma}),$$

where $\varphi_K : K \to K/\gamma$ is the canonical projection and $1_{K/\gamma}$ is the identity of the group $(K/\gamma, \cdot)$.

• Let (G, \cdot) be a group, G' its derived subgroup, $H \leq G$ and $(G/H, \cdot)$ the hypergroup defined by

(1)
$$(xH)(yH) = \{zH \mid z = x'y', x' \in xH, y' \in yH\}.$$

Let $\pi_H : G \to G/H$ and $\varphi_{G/H} : G/H \to (G/H)/\gamma$ be the canonical projections. The group isomorphism

$$h: (G/H)/\gamma \to G/(G'H), \ h(\gamma \langle xH \rangle) = x(G'H)$$

helped us to establish a connection between the derived subhypergroup of G/H and the derived subgroup of G

$$D(G/H) = (h \circ \varphi_{G/H})^{-1}(G'H) = (G'H)/H = \pi_H(G').$$

The conference participation was supported by the research grant CEEX-ET 19/2005