4th European Conference on Intelligent Systems and Technologies, Iasi, Romania, September 21-23, 2006

Direct limits of direct systems of hypergroupoids associated to binary relations

Cosmin Pelea and Ioan Purdea

Corsini, P., On the hypergroups associated with binary relations, *Multiple Valued Logic* **5** (2000) 407–419.

Rosenberg, I. G., Hypergroups and join spaces determined by relations, *Riv. Math. Pura e Appl.* **4** (1998) 93–101.

Corsini, P.; Leoreanu, V., Applications of hyperstructure theory, *Kluwer Academic Publishers, Boston-Dordrecht-London* 2003.

Let *H* be a set and let *R* be a binary relation on *H* and let $\stackrel{-1}{R}$ be the inverse of the relation *R*.

$$\overset{-1}{R}(X) = D(R) = \{x \in H \mid \exists y \in H : xRy\}$$

is called the domain of the relation R.

If $x, x_1, \ldots, x_n \in H$, $X \subseteq H$ we denote

 $R\langle x\rangle = \{y \in H \mid xRy\}, \ R(X) = \{y \in H \mid \exists x \in X : xRy\},\$

$$R(x_1,\ldots,x_n)=R(\{x_1,\ldots,x_n\}).$$

An element $x \in H$ is an *outer element* of (the relation) R if there exists $h \in H$ such that $(h, x) \notin R^2$.

Rosenberg associated to the binary relation $R \subseteq H \times H$ the partial hypergroupoid $H_R = (H, \circ)$ defined by

$$x \circ y = R(x, y).$$

Obviously, $x^2 = x \circ x = R\langle x \rangle$ and $x \circ y = x^2 \cup y^2$.

Lemma 1. Let H be a set and let R be a binary relation on H. The partial hypergroupoid $H_R = (H, \circ)$ is a hypergroupoid if and only if the domain of R is H.

Proposition 1. Let R be a binary relation on H with full domain. The hypergroupoid H_R is a semihypergroup if and only if $R \subseteq R^2$ and

$$(a,x) \in R^2 \Rightarrow (a,x) \in R$$

whenever x is an outer element of R.

Proposition 2. Let $H \neq \emptyset$ and let R be a binary relation on H. The hypergroupoid H_R is a hypergroup if and only if the following conditions hold:

1) $\stackrel{-1}{R}(H) = H;$ 2) R(H) = H;3) $R \subseteq R^2;$ 4) whenever x is an outer element of R we have $(a, x) \in R^2 \Rightarrow (a, x) \in R.$

Proposition 3. Let (H, *) be a semihypergroup. There exists a binary relation R on H such that $(H, *) = H_R$ if and only if the following conditions are satisfied for any $x, y \in H$: a) $x * y = x^2 \cup y^2;$ b) $x^2 \subseteq (x^2)^2;$ c) $(x^2)^2 \cap (H \setminus (y^2)^2) \subseteq x^2.$

The binary relation $R \subseteq H \times H$ from Rosenberg's proof is defined by

$$xRy \Leftrightarrow y \in x * x$$

and $\dot{R}(H) = H$. The above proposition can be restated:

Proposition 4. Let (H, *) be a hypergroupoid. There exists a binary relation R on H such that $(H, *) = H_R$ if and only if

(*)
$$x * y = x^2 \cup y^2, \ \forall x, y \in H.$$

A hypergroupoid (H, *) which satisfies the condition (*)is a semihypergroup if and only if it verifies the conditions b) and c) from previous Proposition.

Remark 1. A hypergroupoid (H, *) which satisfies the condition (*) is a hypergroup if and only if it verifies the above conditions b), c), and $\bigcup_{x \in H} x^2 = H$.

Corsini proved that:

Theorem 1. If $((H_i, R_i) | i \in I)$ is a direct system of relational systems, $(H, R) = \varinjlim_{i \in I} (H_i, R_i)$, and if for any $i \in I$ there exists $k \in I$, $i \leq k$ such that $(H_k)_{R_k}$ is a hypergroup then H_R is a hypergroup.

If R is a binary relation on the set H and D(R) = H, we can identify (H, R) with the multialgebra (H, f) with one unary multioperation $f : H \to P^*(H)$ defined by

$$xRy \Leftrightarrow y \in f(x).$$

If (H', R') is also a relational system with D(R') = H', (H', f') is the corresponding monounary multialgebra and $h : H \to H'$ is a relational homomorphisms between (H, R) and (H', R') then h is a relational homomorphism between (H, R) and (H', R') if and only if h is a homomorphism between the multialgebras (H, f) and (H', f').

Let \mathcal{R}_2 be the category of the relational systems with one binary relation, and let us denote by \mathcal{R}'_2 its full subcategory whose objects are the relational systems (H, R)for which D(R) = H. The category \mathcal{R}'_2 is isomorphic to the category Malg(1) of the monounary multialgebras.

 \Rightarrow we can translate the results of Rosenberg in terms of monounary multialgebras;

If $H \neq \emptyset$ and (H, f) is a monounary multialgebra then the hypergroupoid H_f is a hypergroup if and only if the following conditions hold:

i)
$$f(H) = H;$$

ii) $f(x) \subseteq f(f(x)), \ \forall x \in H;$

iii) whenever x is an outer element we have

$$x \in f(f(a)) \Rightarrow x \in f(a).$$

 \Rightarrow a hypergroupoid (or semihypergroup, or hypergroup) (H,*) is determined by a unary multioperation f on H if and only if (H,*) satisfies the condition (*). Besides \mathcal{R}_2 , \mathcal{R}'_2 and Malg(1), the following categories drew our attention:

• the category Malg(2) of hypergroupoids: the morphisms are the hypergroupoid homomorphisms and the product of two morphisms is the usual composition of homomorphisms;

• the full subcategory of Malg(2) whose object are the hypergroupoids which satisfy (*), denoted by Malg'(2);

 \bullet the full subcategory of Malg(2) whose object are the semihypergroups, denoted by SHG;

• the full subcategory of SHG whose object are the semihypergroups which satisfy (*), denoted by SHG';

 \bullet the category HG of hypergroups with hypergroup homomorphisms and the usual composition;

 \bullet the full subcategory of HG whose object are the hypergroups which satisfy (*), denoted by $HG^{\prime};$

• the full subcategory Malg'(1) of Malg(1) whose objects are the monounary multialgebras (H, f) which satisfy the conditions ii),iii);

• the full subcategory Malg''(1) of Malg(1) whose objects are the monounary multialgebras $(H, f), H \neq \emptyset$, which satisfy the conditions i), ii), iii).

Lemma 2. Let (H, f), (H', f') be two multialgebras from Malg(1), let $H_f = (H, \circ)$, $H'_{f'} = (H', \circ')$ be the hypergroupoids associated to the multioperations f and f', respectively. The mapping $h : H \to H'$ is a homomorphism from (H, f) into (H', f') if and only if h is a homomorphism from H_f into $H'_{f'}$.

⇒ the correspondence $(H, f) \mapsto H_f = (H, \circ)$ defines a covariant functor $F : Malg(1) \rightarrow Malg'(2)$.

If in the previous Lemma we consider two multialgebras (H, f) and (H', f') from Malg'(1) then h is a morphism in SHG' between H_f and $H'_{f'}$. Hence, we obtain a functor

F': Malg'(1) \rightarrow SHG'.

If in we consider two multialgebras (H, f) and (H', f')from Malg''(1) then h is a morphism in HG' between H_f and $H'_{f'}$. Hence, we obtain a covariant functor

F'': Malg''(1) \rightarrow HG'.

If (H, *) is a hypergroupoid and we consider

 $f_*: H \to P^*(H), f_*(x) = x * x$

then $(H, f_*) \in Malg(1)$, and if $h \in H_{Malg(2)}((H, *), (H', *'))$ then $h \in H_{Malg(1)}((H, f_*), (H', f_{*'}))$.

 \Rightarrow the correspondences

$$(H,*)\mapsto (H,f_*),\ h\mapsto h$$

define a covariant functor $Malg(2) \rightarrow Malg(1)$.

Compose this functor with the inclusion functor

 $Malg'(2) \rightarrow Malg(2)$

and we obtain a covariant functor

 $G: \operatorname{Malg}'(2) \to \operatorname{Malg}(1).$

Lemma 3. F is an isomorphism between the categories Malg(1) and Malg'(2), and G is the inverse of F.

Corollary 1. F' is an isomorphism between Malg'(1) and SHG', and the inverse of F' is $G' : SHG' \rightarrow Malg'(1)$,

$$G'(H,*) = (H, f_*), G'(h) = h.$$

Corollary 2. F'' is an isomorphism between Malg''(1)and HG', and the inverse of F'' is $G'' : HG' \to Malg''(1)$,

$$G''(H,*) = (H, f_*), G''(h) = h.$$

9

Let $\mathcal{H} = (((H_i, f_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$ be a direct system of multialgebras from Malg(1) and for each $i \in I$ let $F(H_i, f_i) = (H_i, \circ_i)$. Then

$$((H_i, \circ_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$$

is a direct system of hypergroupoids, denoted by $F(\mathcal{H})$.

Remember that (I, \leq) is a directed preordered set and the homomorphisms φ_{ij} $(i, j \in I, i \leq j)$ are such that

 $\varphi_{ii} = 1_{A_i}, \forall i \in I \text{ and } \varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}, \forall i, j, k \in I, i \leq j \leq k.$ The relation \equiv defined on the disjoint union H of the sets H_i as follows: for any $x, y \in A$ there exist $i, j \in I$ such that $x \in H_i, y \in H_j$, and

$$x \equiv y \Leftrightarrow \exists k \in I, \ i \leq k, \ j \leq k : \ \varphi_{ik}(x) = \varphi_{jk}(y)$$

is an equivalence relation on H and the factor set

$$H_{\infty} = H/_{\equiv} = \{ \widehat{x} \mid x \in H \}$$

is the direct limit of the direct system of sets

$$((H_i \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j)).$$

The direct limit $\varinjlim \mathcal{H}$ of the direct system of multialgebras \mathcal{H} is the monounary multialgebra (H_{∞}, f) with fdefined as follows: if $\hat{x} \in A_{\infty}$ and $i \in I$ such that $x \in H_i$ then

$$f(\widehat{x}) = \{\widehat{y} \mid \exists m \in I, \ i \leq m, \ y \in f_m(\varphi_{im}(x))\}.$$

10

The direct limit of the direct system of hypergroupoids $((H_i, \circ_i) | i \in I)$ (in Malg(2)) is the hypergroupoid (H_∞, \circ) with \circ defined as follows: if $\widehat{x_1}, \widehat{x_2} \in A_\infty$ and $i_1, i_2 \in I$ such that $x_1 \in H_{i_1}, x_2 \in H_{i_2}$ then

 $\widehat{x_1} \circ \widehat{x_2} = \{ \widehat{y} \mid \exists m \in I, i_1 \leq m, i_2 \leq m, y \in \varphi_{i_1m}(x_1) \circ_m \varphi_{i_2m}(x_2) \}.$

Theorem 2. The hypergroupoid (H_{∞}, \circ) is the hypergroupoid determined by the multialgebra (H_{∞}, f) .

Corollary 3. The subcategory Malg'(2) of Malg(2) is closed under direct limits of direct systems.

Corollary 4. If $\mathcal{H} = (((H_i, f_i) | i \in I), (\varphi_{ij} | i, j \in I, i \leq j))$ is a direct system of multialgebras from Malg(1) and $F(\mathcal{H})$ is the direct system of hypergroupoids

 $((F(H_i, f_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$

then $F(Iim\mathcal{H})$ is the direct limit of $F(\mathcal{H})$ in Malg(2).

Corollary 5. If $((H_i, \circ_i) | i \in I), (\varphi_{ij} | i, j \in I, i \leq j))$ is a direct system of hypergroupoids from Malg'(2) then the direct limit of the direct system of multialgebras $((G(H_i, \circ_i) | i \in I), (\varphi_{ij} | i, j \in I, i \leq j))$ from Malg(2) is the monounary multialgebra which determines the direct limit of the hypergroupoids $((H_i, \circ_i) | i \in I)$. Since the direct limit of a direct system of (semi)hypergroups is a (semi)hypergroup, we have:

Corollary 6. The subcategory $\operatorname{Malg}'(1)$ of $\operatorname{Malg}(1)$ is closed under direct limits of direct systems. Moreover, if $\mathcal{H} = (((H_i, f_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$ is a direct system of multialgebras from $\operatorname{Malg}'(1)$ and $F'(\mathcal{H})$ is the direct system of semihypergroups

 $((F'(H_i, f_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$

then $F'(\underline{lim}\mathcal{H})$ is the direct limit of $F'(\mathcal{H})$ in Malg(2).

Corollary 7. The subcategory $\operatorname{Malg}^{"}(1)$ of $\operatorname{Malg}(1)$ is closed under direct limits of direct systems. Moreover, if $\mathcal{H} = (((H_i, f_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$ is a direct system of multialgebras from $\operatorname{Malg}^{"}(1)$ and $F^{"}(\mathcal{H})$ is the direct system of semihypergroups

 $((F''(H_i, f_i) \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$

then $F''(\underline{lim}\mathcal{H})$ is the direct limit of $F''(\mathcal{H})$ in Malg(2).

Let (I, \leq) be a directed partially ordered set and let

$$\mathcal{A} = ((\mathfrak{A}_i \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$$

be a direct system of multialgebras and let us consider $J \subseteq I$ such that (J, \leq) is also a directed partially ordered set. Denote by \mathcal{A}_J the direct system consisting of the multialgebras $(\mathfrak{A}_i \mid i \in J)$ whose carrier is (J, \leq) and the homomorphisms are $(\varphi_{ij} \mid i, j \in J, i \leq j)$.

Proposition 5. (Pelea) Let \mathcal{A} be a direct system of multialgebras with the carrier (I, \leq) and let us consider $J \subseteq I$ such that (J, \leq) is a directed partially ordered set cofinal with (I, \leq) . Then the multialgebras $\varinjlim \mathcal{A}$ and $\lim \mathcal{A}_J$ are isomorphic.

Corollary 8. Let (I, \leq) be a directed partially ordered set and $J \subseteq I$ such that (J, \leq) is a directed partially ordered set cofinal with (I, \leq) . If $((H_i, f_i) | i \in I)$ is a direct system of monounary multialgebras and for any $i \in J$, (H_i, f_i) satisfies the conditions (i),) ii), iii) then the direct limit multialgebra $\lim_{i \in I} (H_i, f_i)$ satisfies the conditions (i),) ii), iii). The hypergroupoid determined by the monounary multialgebra $\lim_{i \in I} (H_i, f_i)$ is a (hypergroup) semihypergroup which is the direct limit of the (hypergroup) semihypergroups $((H_i)_{f_i} | i \in J)$ in Malg(2).

 \Rightarrow the theorem of Corsini.

Acknowledgements.

The first author was supported by the grant CEEX-ET 19/2005