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Let H be a set and let R be a binary relation on H and

let
−1
R be the inverse of the relation R.

−1
R(X) = D(R) = {x ∈ H | ∃y ∈ H : xRy}

is called the domain of the relation R.

If x, x1, . . . , xn ∈ H, X ⊆ H we denote

R〈x〉 = {y ∈ H | xRy}, R(X) = {y ∈ H | ∃x ∈ X : xRy},

R(x1, . . . , xn) = R({x1, . . . , xn}).

An element x ∈ H is an outer element of (the relation)
R if there exists h ∈ H such that (h, x) /∈ R2.
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Rosenberg associated to the binary relation R ⊆ H ×H
the partial hypergroupoid HR = (H, ◦) defined by

x ◦ y = R(x, y).

Obviously, x2 = x ◦ x = R〈x〉 and x ◦ y = x2 ∪ y2.

Lemma 1. Let H be a set and let R be a binary rela-
tion on H. The partial hypergroupoid HR = (H, ◦) is a
hypergroupoid if and only if the domain of R is H.

Proposition 1. Let R be a binary relation on H with full
domain. The hypergroupoid HR is a semihypergroup if
and only if R ⊆ R2 and

(a, x) ∈ R2 ⇒ (a, x) ∈ R

whenever x is an outer element of R.

Proposition 2. Let H 6= ∅ and let R be a binary relation
on H. The hypergroupoid HR is a hypergroup if and only
if the following conditions hold:

1)
−1
R(H) = H;

2) R(H) = H;
3) R ⊆ R2;
4) whenever x is an outer element of R we have

(a, x) ∈ R2 ⇒ (a, x) ∈ R.
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Proposition 3. Let (H, ∗) be a semihypergroup. There
exists a binary relation R on H such that (H, ∗) = HR if
and only if the following conditions are satisfied for any
x, y ∈ H:
a) x ∗ y = x2 ∪ y2;
b) x2 ⊆ (x2)2;
c) (x2)2 ∩ (H \ (y2)2) ⊆ x2.

The binary relation R ⊆ H ×H from Rosenberg’s proof
is defined by

xRy ⇔ y ∈ x ∗ x

and
−1
R(H) = H. The above proposition can be restated:

Proposition 4. Let (H, ∗) be a hypergroupoid. There
exists a binary relation R on H such that (H, ∗) = HR if
and only if

(∗) x ∗ y = x2 ∪ y2, ∀x, y ∈ H.

A hypergroupoid (H, ∗) which satisfies the condition (∗)
is a semihypergroup if and only if it verifies the condi-
tions b) and c) from previous Proposition.

Remark 1. A hypergroupoid (H, ∗) which satisfies the
condition (∗) is a hypergroup if and only if it verifies the
above conditions b), c), and

⋃
x∈H x2 = H.
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Corsini proved that:

Theorem 1. If ((Hi, Ri) | i ∈ I) is a direct system of
relational systems, (H, R) = lim−→i∈I(Hi, Ri), and if for any

i ∈ I there exists k ∈ I, i ≤ k such that (Hk)Rk
is a

hypergroup then HR is a hypergroup.
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If R is a binary relation on the set H and D(R) = H,
we can identify (H, R) with the multialgebra (H, f) with
one unary multioperation f : H → P ∗(H) defined by

xRy ⇔ y ∈ f(x).

If (H ′, R′) is also a relational system with D(R′) = H ′,
(H ′, f ′) is the corresponding monounary multialgebra and
h : H → H ′ is a relational homomorphisms between
(H, R) and (H ′, R′) then h is a relational homomorphism
between (H, R) and (H ′, R′) if and only if h is a homo-
morphism between the multialgebras (H, f) and (H ′, f ′).

Let R2 be the category of the relational systems with
one binary relation, and let us denote by R′

2 its full sub-
category whose objects are the relational systems (H, R)
for which D(R) = H. The category R′

2 is isomorphic to
the category Malg(1) of the monounary multialgebras.

⇒ we can translate the results of Rosenberg in terms of
monounary multialgebras;

If H 6= ∅ and (H, f) is a monounary multialgebra then
the hypergroupoid Hf is a hypergroup if and only if the
following conditions hold:

i) f(H) = H;

ii) f(x) ⊆ f(f(x)), ∀x ∈ H;

iii) whenever x is an outer element we have

x ∈ f(f(a)) ⇒ x ∈ f(a).

⇒ a hypergroupoid (or semihypergroup, or hypergroup)
(H, ∗) is determined by a unary multioperation f on H
if and only if (H, ∗) satisfies the condition (∗).

6



Besides R2, R′
2 and Malg(1), the following categories

drew our attention:

• the category Malg(2) of hypergroupoids: the mor-
phisms are the hypergroupoid homomorphisms and the
product of two morphisms is the usual composition of
homomorphisms;

• the full subcategory of Malg(2) whose object are the
hypergroupoids which satisfy (∗), denoted by Malg′(2);

• the full subcategory of Malg(2) whose object are the
semihypergroups, denoted by SHG;

• the full subcategory of SHG whose object are the
semihypergroups which satisfy (∗), denoted by SHG′;

• the category HG of hypergroups with hypergroup ho-
momorphisms and the usual composition;

• the full subcategory of HG whose object are the hy-
pergroups which satisfy (∗), denoted by HG′;

• the full subcategory Malg′(1) of Malg(1) whose ob-
jects are the monounary multialgebras (H, f) which sat-
isfy the conditions ii),iii);

• the full subcategory Malg′′(1) of Malg(1) whose ob-
jects are the monounary multialgebras (H, f), H 6= ∅,
which satisfy the conditions i), ii), iii).
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Lemma 2. Let (H, f), (H ′, f ′) be two multialgebras from
Malg(1), let Hf = (H, ◦), H ′

f ′ = (H ′, ◦′) be the hyper-

groupoids associated to the multioperations f and f ′,
respectively. The mapping h : H → H ′ is a homomor-
phism from (H, f) into (H ′, f ′) if and only if h is a ho-
momorphism from Hf into H ′

f ′.

⇒ the correspondence (H, f) 7→ Hf = (H, ◦) defines a
covariant functor F : Malg(1) → Malg′(2).

If in the previous Lemma we consider two multialgebras
(H, f) and (H ′, f ′) from Malg′(1) then h is a morphism in
SHG′ between Hf and H ′

f ′. Hence, we obtain a functor

F ′ : Malg′(1) → SHG′.

If in we consider two multialgebras (H, f) and (H ′, f ′)
from Malg′′(1) then h is a morphism in HG′ between Hf

and H ′
f ′. Hence, we obtain a covariant functor

F ′′ : Malg′′(1) → HG′.
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If (H, ∗) is a hypergroupoid and we consider

f∗ : H → P ∗(H), f∗(x) = x ∗ x

then (H, f∗) ∈ Malg(1), and if h ∈ HMalg(2)((H, ∗), (H ′, ∗′))
then h ∈ HMalg(1)((H, f∗), (H ′, f∗′)).

⇒ the correspondences

(H, ∗) 7→ (H, f∗), h 7→ h

define a covariant functor Malg(2) → Malg(1).

Compose this functor with the inclusion functor

Malg′(2) → Malg(2)

and we obtain a covariant functor

G : Malg′(2) → Malg(1).

Lemma 3. F is an isomorphism between the categories
Malg(1) and Malg′(2), and G is the inverse of F .

Corollary 1. F ′ is an isomorphism between Malg′(1) and
SHG′, and the inverse of F ′ is G′ : SHG′ → Malg′(1),

G′(H, ∗) = (H, f∗), G′(h) = h.

Corollary 2. F ′′ is an isomorphism between Malg′′(1)
and HG′, and the inverse of F ′′ is G′′ : HG′ → Malg′′(1),

G′′(H, ∗) = (H, f∗), G′′(h) = h.

9



Let H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct
system of multialgebras from Malg(1) and for each i ∈ I
let F (Hi, fi) = (Hi, ◦i). Then

((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))

is a direct system of hypergroupoids, denoted by F (H).

Remember that (I,≤) is a directed preordered set and
the homomorphisms ϕij (i, j ∈ I, i ≤ j) are such that

ϕii = 1Ai
, ∀i ∈ I and ϕjk ◦ϕij = ϕik, ∀i, j, k ∈ I, i ≤ j ≤ k.

The relation ≡ defined on the disjoint union H of the
sets Hi as follows: for any x, y ∈ A there exist i, j ∈ I
such that x ∈ Hi, y ∈ Hj, and

x ≡ y ⇔ ∃k ∈ I, i ≤ k, j ≤ k : ϕik(x) = ϕjk(y)

is an equivalence relation on H and the factor set

H∞ = H/≡ = {x̂ | x ∈ H}
is the direct limit of the direct system of sets

((Hi | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)).

The direct limit lim−→H of the direct system of multial-

gebras H is the monounary multialgebra (H∞, f) with f
defined as follows: if x̂ ∈ A∞ and i ∈ I such that x ∈ Hi

then

f(x̂) = {ŷ | ∃m ∈ I, i ≤ m, y ∈ fm(ϕim(x))}.
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The direct limit of the direct system of hypergroupoids
((Hi, ◦i) | i ∈ I) (in Malg(2)) is the hypergroupoid (H∞, ◦)
with ◦ defined as follows: if x̂1, x̂2 ∈ A∞ and i1, i2 ∈ I
such that x1 ∈ Hi1, x2 ∈ Hi2 then

x̂1◦x̂2 = {ŷ | ∃m ∈ I, i1 ≤ m, i2 ≤ m, y ∈ ϕi1m(x1)◦mϕi2m(x2)}.
Theorem 2. The hypergroupoid (H∞, ◦) is the hyper-
groupoid determined by the multialgebra (H∞, f).

Corollary 3. The subcategory Malg′(2) of Malg(2) is
closed under direct limits of direct systems.

Corollary 4. If H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))
is a direct system of multialgebras from Malg(1) and
F (H) is the direct system of hypergroupoids

((F (Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))

then F (lim−→H) is the direct limit of F (H) in Malg(2).

Corollary 5. If ((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is
a direct system of hypergroupoids from Malg′(2) then
the direct limit of the direct system of multialgebras
((G(Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) from Malg(2) is
the monounary multialgebra which determines the direct
limit of the hypergroupoids ((Hi, ◦i) | i ∈ I).
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Since the direct limit of a direct system of (semi)hypergroups
is a (semi)hypergroup, we have:

Corollary 6. The subcategory Malg′(1) of Malg(1) is
closed under direct limits of direct systems. Moreover,
if H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct
system of multialgebras from Malg′(1) and F ′(H) is the
direct system of semihypergroups

((F ′(Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))

then F ′(lim−→H) is the direct limit of F ′(H) in Malg(2).

Corollary 7. The subcategory Malg′′(1) of Malg(1) is
closed under direct limits of direct systems. Moreover,
if H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct
system of multialgebras from Malg′′(1) and F ′′(H) is the
direct system of semihypergroups

((F ′′(Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))

then F ′′(lim−→H) is the direct limit of F ′′(H) in Malg(2).
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Let (I,≤) be a directed partially ordered set and let

A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))

be a direct system of multialgebras and let us consider
J ⊆ I such that (J,≤) is also a directed partially ordered
set. Denote by AJ the direct system consisting of the
multialgebras (Ai | i ∈ J) whose carrier is (J,≤) and the
homomorphisms are (ϕij | i, j ∈ J, i ≤ j).

Proposition 5. (Pelea) Let A be a direct system of
multialgebras with the carrier (I,≤) and let us consider
J ⊆ I such that (J,≤) is a directed partially ordered
set cofinal with (I,≤). Then the multialgebras lim−→A and
lim−→AJ are isomorphic.

Corollary 8. Let (I,≤) be a directed partially ordered
set and J ⊆ I such that (J,≤) is a directed partially
ordered set cofinal with (I,≤). If ((Hi, fi) | i ∈ I) is a
direct system of monounary multialgebras and for any
i ∈ J, (Hi, fi) satisfies the conditions ( i), ) ii), iii) then
the direct limit multialgebra lim−→i∈I(Hi, fi) satisfies the

conditions ( i), ) ii), iii). The hypergroupoid deter-
mined by the monounary multialgebra lim−→i∈I(Hi, fi) is a

(hypergroup) semihypergroup which is the direct limit
of the (hypergroup) semihypergroups ((Hi)fi

| i ∈ J) in
Malg(2).

⇒ the theorem of Corsini.
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