Term functions in multialgebra theory

Cosmin Pelea

21-25 June 2012

The participation to the conference was supported by the CNCS-UEFISCDI grant PN-II-RU-TE-2011-3-0065.

- ∢ ⊒ ⊳

Multialgebra

An *n*-ary multioperation f on a set A is a mapping

$$f: A^n \to P^*(A).$$

 $(P^*(A)$ denotes the set of the nonempty subsets of A).

Let \mathcal{F} be a type of (multi)algebras.

A multialgebra $\mathbf{A} = (A, F)$ of type \mathcal{F} consists of a set A and a family of multioperations F obtained by associating a multioperation $f^{\mathbf{A}}$ (or, simply, f) on A to each symbol f from \mathcal{F} .

高 ト イ ヨ ト イ ヨ ト

The tools

 The universal algebra of the nonempty subsets of a multialgebra (Pickett): each multialgebra A determines a universal algebra P*(A) on P*(A) defining

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,\ldots,A_n) = \bigcup \{f^{\mathbf{A}}(a_1,\ldots,a_n) \mid a_i \in A_i, i = 1,\ldots,n\}$$

個 と く ヨ と く ヨ と …

æ

The tools

 The universal algebra of the nonempty subsets of a multialgebra (Pickett): each multialgebra A determines a universal algebra P*(A) on P*(A) defining

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,...,A_n) = \bigcup \{ f^{\mathbf{A}}(a_1,...,a_n) \mid a_i \in A_i, i = 1,...,n \}$$

the clone Clo(P*(A)) of the term functions of P*(A)

・ 回 ト ・ ヨ ト ・ ヨ ト …

æ

The tools

 The universal algebra of the nonempty subsets of a multialgebra (Pickett): each multialgebra A determines a universal algebra P*(A) on P*(A) defining

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,...,A_n) = \bigcup \{f^{\mathbf{A}}(a_1,...,a_n) \mid a_i \in A_i, i = 1,...,n\}$$

- the clone Clo(P*(A)) of the term functions of P*(A)
- ► *Identities:* if *q*, *r* are *n*-ary terms of type *F*,

$$q = r \text{ on } \mathbf{A} \Leftrightarrow q^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n) = r^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n),$$

$$\forall a_1, \dots, a_n \in A,$$

$$q \cap r \neq \emptyset \text{ on } \mathbf{A} \Leftrightarrow q^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n) \cap r^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n) \neq \emptyset,$$

$$\forall a_1, \dots, a_n \in A.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Submultialgebras

Let $\mathbf{A} = (A, F)$ be a multialgebra. A subset $B \subseteq A$ is a *submultialgebra* of \mathbf{A} if for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$ and any $b_1, \ldots, b_n \in B$

$$f^{\mathbf{A}}(b_1,\ldots,b_n)\subseteq B.$$

Theorem (Pickett)

A subset $B \subseteq A$ is a submultialgebra of **A** if and only if $P^*(B)$ is a subalgebra of $\mathbf{P}^*(\mathbf{A})$.

 \Rightarrow If *B* is a submultialgebra of **A**, *t* is an *n*-ary term of type \mathcal{F} and $b_1, \ldots, b_n \in B$ then

$$t^{\mathbf{P}^*(\mathbf{A})}(b_1,\ldots,b_n)\subseteq B$$

⇒ (Madarasz) If $X \subseteq A$ then $a \in [X]$ if and only if there exist $n \in \mathbb{N}$, an *n*-ary term *t* and $x_1, \ldots, x_n \in X$ such that

$$a \in t^{\mathbf{P}^*(\mathbf{A})}(x_1,\ldots,x_n).$$

Let $\mathbf{A} = (A, F)$ and $\mathbf{B} = (B, F)$ be multialgebras of type \mathcal{F} and $h : A \rightarrow B$.

h is a multialgebra homomorphism from A into B if for any n ∈ N, any f ∈ F_n and any a₁,..., a_n ∈ A,

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n)) \subseteq f^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

・ 回 と ・ ヨ と ・ ヨ と

Let $\mathbf{A} = (A, F)$ and $\mathbf{B} = (B, F)$ be multialgebras of type \mathcal{F} and $h : A \to B$.

h is a *multialgebra homomorphism* from **A** into **B** if for any *n* ∈ N, any *f* ∈ *F_n* and any *a*₁,..., *a_n* ∈ *A*,

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n)) \subseteq f^{\mathbf{B}}(h(a_1),\ldots,h(a_n))$$

h is an *ideal homomorphism* if for any *n* ∈ N, any *f* ∈ F_n and any *a*₁,..., *a_n* ∈ A,

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n))=f^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

イロト イポト イヨト

Let $\mathbf{A} = (A, F)$ and $\mathbf{B} = (B, F)$ be multialgebras of type \mathcal{F} and $h : A \to B$.

h is a *multialgebra homomorphism* from **A** into **B** if for any *n* ∈ N, any *f* ∈ *F_n* and any *a*₁,..., *a_n* ∈ *A*,

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n)) \subseteq f^{\mathbf{B}}(h(a_1),\ldots,h(a_n))$$

h is an *ideal homomorphism* if for any *n* ∈ N, any *f* ∈ F_n and any *a*₁,..., *a_n* ∈ A,

$$h(f^{\mathbf{A}}(a_1,\ldots,a_n))=f^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

the multialgebra isomorphisms are the bijective ideal homomorphisms.

The mapping h induces the mapping

$$h_*: P^*(A) \to P^*(B), \ h_*(X) = h(X) = \{h(x) \mid x \in X\}.$$

Theorem (Pickett)

h is an ideal multialgebra homomorphism if and only if h_* is a universal algebra homomorphism.

 $\Rightarrow (\mathsf{Madarasz}) \text{ If } h: A \rightarrow B \text{ is an ideal homomorphism, } t \text{ is an } n\text{-ary term of type } \mathcal{F} \text{ and } a_1, \ldots, a_n \in A \text{ then}$

$$h(t^{\mathbf{P}^*(\mathbf{A})}(a_1,\ldots,a_n))=t^{\mathbf{P}^*(\mathbf{B})}(h(a_1),\ldots,h(a_n)).$$

(4) (3) (4) (3) (4)

The mapping h induces the mapping

$$h_*: P^*(A) \to P^*(B), \ h_*(X) = h(X) = \{h(x) \mid x \in X\}.$$

Theorem (Pickett)

h is an ideal multialgebra homomorphism if and only if h_* is a universal algebra homomorphism.

⇒ (Madarasz) If $h : A \to B$ is an ideal homomorphism, t is an *n*-ary term of type \mathcal{F} and $a_1, \ldots, a_n \in A$ then

$$h(t^{\mathbf{P}^*(\mathbf{A})}(a_1,\ldots,a_n))=t^{\mathbf{P}^*(\mathbf{B})}(h(a_1),\ldots,h(a_n)).$$

(Madarasz) If h : A → B is a multialgebra homomorphism, t is an n-ary term of type F and a₁,..., a_n ∈ A then

$$h(t^{\mathbf{P}^*(\mathbf{A})}(a_1,\ldots,a_n)) \subseteq t^{\mathbf{P}^*(\mathbf{B})}(h(a_1),\ldots,h(a_n)).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A = (A, F) be a multialgebra of type F and let ρ be an equivalence relation on A. Defining for each n ∈ N and each f ∈ F_n,

$$f(\mathbf{a}_1/\rho,\ldots,\mathbf{a}_n/\rho) = \{b/\rho \mid b \in f(b_1,\ldots,b_n), \ \mathbf{a}_i\rho b_i, \ i = 1,\ldots,n\}$$

one obtains a multialgebra \mathbf{A}/ρ on A/ρ called *the factor* multialgebra of \mathbf{A} modulo ρ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Let A = (A, F) be a multialgebra of type F and let ρ be an equivalence relation on A. Defining for each n ∈ N and each f ∈ F_n,

$$f(a_1/\rho,...,a_n/\rho) = \{b/\rho \mid b \in f(b_1,...,b_n), a_i\rho b_i, i = 1,...,n\}$$

one obtains a multialgebra \mathbf{A}/ρ on A/ρ called *the factor* multialgebra of \mathbf{A} modulo ρ .

 \blacktriangleright If ${\bf A}$ is a universal algebra the multioperations from ${\bf A}/\rho$ are defined by the equalities

$$f(a_1/\rho,...,a_n/\rho) = \{b/\rho \mid b = f(b_1,...,b_n), a_i\rho b_i, i = 1,...,n\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let A = (A, F) be a multialgebra of type F and let ρ be an equivalence relation on A. Defining for each n ∈ N and each f ∈ F_n,

$$f(\mathbf{a}_1/\rho,\ldots,\mathbf{a}_n/\rho) = \{b/\rho \mid b \in f(b_1,\ldots,b_n), a_i\rho b_i, i = 1,\ldots,n\}$$

one obtains a multialgebra \mathbf{A}/ρ on A/ρ called *the factor* multialgebra of \mathbf{A} modulo ρ .

 \blacktriangleright If ${\bf A}$ is a universal algebra the multioperations from ${\bf A}/\rho$ are defined by the equalities

$$f(a_1/\rho,...,a_n/\rho) = \{b/\rho \mid b = f(b_1,...,b_n), a_i\rho b_i, i = 1,...,n\}.$$

Representation Theorem (Grätzer)

Any multialgebra is a factor of a universal algebra modulo an appropriate equivalence relation.

▶ If **A** is a multialgebra and *t* is an *n*-ary term of type \mathcal{F} then $\{b/\rho|b \in t^{\mathbf{P}^*(\mathbf{A})}(b_1,...,b_n), a_i\rho b_i, i = \overline{1,n}\} \subseteq t^{\mathbf{P}^*(\mathbf{A}/\rho)}(a_1/\rho,...,a_n/\rho).$

- ▶ If **A** is a multialgebra and *t* is an *n*-ary term of type \mathcal{F} then $\{b/\rho|b \in t^{\mathbf{P}^*(\mathbf{A})}(b_1,...,b_n), a_i\rho b_i, i = \overline{1,n}\} \subseteq t^{\mathbf{P}^*(\mathbf{A}/\rho)}(a_1/\rho,...,a_n/\rho).$
- $\Rightarrow\,$ any (weak or strong) identity of ${\bf A}$ is 'weakly' satisfied on ${\bf A}/\rho$

イロト イポト イヨト

- ▶ If **A** is a multialgebra and *t* is an *n*-ary term of type \mathcal{F} then $\{b/\rho|b \in t^{\mathbf{P}^*(\mathbf{A})}(b_1,...,b_n), a_i\rho b_i, i = \overline{1,n}\} \subseteq t^{\mathbf{P}^*(\mathbf{A}/\rho)}(a_1/\rho,...,a_n/\rho).$
- $\Rightarrow\,$ any (weak or strong) identity of ${\bf A}$ is 'weakly' satisfied on ${\bf A}/\rho$
 - Even if A is a universal algebra, the above inclusion is not, in general, an equality, therefore the identities of A become, in general, only weak identities of A/ρ.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

If $(\mathbb{Z}_5,+)$ is the cyclic group of order 5 and we take the equivalence

$$\rho = \{0,1\} \times \{0,1\} \cup \{2\} \times \{2\} \cup \{3,4\} \times \{3,4\},$$

 $\left(\mathbb{Z}_5/\rho,+\right)$ is a multialgebra with a binary multioperation + given by

+	$\{0,1\}$	{2}	{3,4}
$\{0, 1\}$	$\{0,1\},\{2\}$	$\{2\}, \{3, 4\}$	$\{0,1\},\{3,4\}$
{2}	$\{2\}, \{3, 4\}$	{3,4}	$\{0,1\}$
{3,4}	$\{0,1\},\{3,4\}$	$\{0,1\}$	$\{0,1\},\{2\},\{3,4\}$

 $\{ c/\rho \mid c = (b_0 + b_1) + b_2, b_0 = b_1 = 2, b_2 \in \{3,4\} \} = \{ 2/\rho, 3/\rho \}$ $(2/\rho + 2/\rho) + 3/\rho = 3/\rho + 3/\rho = \{ 0/\rho, 2/\rho, 3/\rho \},$

and the associativity is only weakly satisfied on $(\mathbb{Z}_5/
ho,+)$ since

$$2/\rho + (2/\rho + 3/\rho) = 2/\rho + 0/\rho = \{2/\rho, 3/\rho\}.$$

(日本) (日本) (日本)

Term functions in multialgebra theory

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Yet ...

there are identities, like those which characterize the commutativity of an *n*-ary operation of an algebra, which always hold in a strong manner in the factor multialgebra

→ ∃ →

Yet ...

- there are identities, like those which characterize the commutativity of an *n*-ary operation of an algebra, which always hold in a strong manner in the factor multialgebra
- there are equivalence relations on some algebras which preserve certain sets of identities

Yet ...

- there are identities, like those which characterize the commutativity of an *n*-ary operation of an algebra, which always hold in a strong manner in the factor multialgebra
- there are equivalence relations on some algebras which preserve certain sets of identities

Example (Roth)

Let (G, \cdot) be a finite group and ρ the conjugacy relation on G. Then $(G/\rho, \cdot, 1/\rho)$ is a multialgebra with a binary multioperation and a nullary operation, and both multialgebras $(G, \cdot, 1)$ and $(G/\rho, \cdot, 1/\rho)$ satisfy the (strong) identities:

$$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), \ x_1 \cdot 1 = 1 \cdot x_1 = x_1.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ideal equivalences

Let $\mathbf{A} = (A, F)$ be a multialgebra. An equivalence relation ρ on A determines on $P^*(A)$ the relations $\overline{\rho}$ and $\overline{\overline{\rho}}$ defined by:

$$X\overline{
ho}Y \Leftrightarrow \forall x \in X, \ \exists y \in Y : \ x
ho y \text{ and } \forall y \in Y, \ \exists x \in X : \ x
ho y;$$

$$X\overline{\overline{\rho}}Y \Leftrightarrow x\rho y, \ \forall x \in X, \ \forall y \in Y \Leftrightarrow X \times Y \subseteq \rho.$$

The relation ρ is an *ideal equivalence* on **A** if for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$ and any $x_i, y_i \in A$ for which $x_i \rho y_i$ ($i \in \{1, ..., n\}$) we have

$$a \in f^{\mathbf{A}}(x_1, \ldots, x_n) \Rightarrow \exists b \in f^{\mathbf{A}}(y_1, \ldots, y_n) : a \rho b$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Ideal equivalences

Theorem (Pickett)

If ρ is an ideal equivalence on **A** then the canonical projection

$$\pi_{
ho}: \mathcal{A}
ightarrow \mathcal{A} /
ho, \ \pi_{
ho}(\mathbf{a}) = \mathbf{a} /
ho$$

is an ideal homomorphism. Conversely, if $h : A \to B$ is an ideal homomorphism from **A** into **B**, its kernel is an ideal equivalence on **A**. Moreover, the mapping $h(a) \mapsto \pi_{\ker h}(a)$ is an multialgebra isomorphism between $h(\mathbf{A})$ and $\mathbf{A}/\ker h$.

 \Rightarrow the equivalence relations ρ for which the factor multialgebra \mathbf{A}/ρ is a universal algebra are particular ideal equivalence relations

Ideal equivalences

Theorem (Pickett)

If ρ is an ideal equivalence on **A** then the canonical projection

$$\pi_{
ho}: \mathcal{A}
ightarrow \mathcal{A} /
ho, \ \pi_{
ho}(\mathbf{a}) = \mathbf{a} /
ho$$

is an ideal homomorphism. Conversely, if $h : A \to B$ is an ideal homomorphism from **A** into **B**, its kernel is an ideal equivalence on **A**. Moreover, the mapping $h(a) \mapsto \pi_{\ker h}(a)$ is an multialgebra isomorphism between $h(\mathbf{A})$ and $\mathbf{A}/\ker h$.

- \Rightarrow the equivalence relations ρ for which the factor multialgebra \mathbf{A}/ρ is a universal algebra are particular ideal equivalence relations
 - (Breaz, Pelea) An equivalence relation ρ of the multialgebra A is ideal if and only if ρ is a congruence relation on P*(A).

Let $\mathbf{A} = (A, F)$ be a multialgebra and let ρ be an equivalence relation on A. The following conditions are equivalent:

(a) ρ is an ideal equivalence on **A**;

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let $\mathbf{A} = (A, F)$ be a multialgebra and let ρ be an equivalence relation on A. The following conditions are equivalent:

(a) ρ is an ideal equivalence on **A**;

(b) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, and any $x_i, y_i \in A$ for which $x_i \rho y_i$ ($i \in \{1, ..., n\}$) we have

$$f^{\mathbf{A}}(x_1,\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(y_1,\ldots,y_n);$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Let $\mathbf{A} = (A, F)$ be a multialgebra and let ρ be an equivalence relation on A. The following conditions are equivalent:

(a) ρ is an ideal equivalence on **A**;

 (b) for any n ∈ N, any f ∈ F_n, and any x_i, y_i ∈ A for which x_iρy_i (i ∈ {1,..., n}) we have

$$f^{\mathbf{A}}(x_1,\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(y_1,\ldots,y_n);$$

(c) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, any $a, b, x_1, \ldots, x_n \in A$ such that $a\rho b$, and any $i \in \{1, \ldots, n\}$, we have

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\mathbf{A} = (A, F)$ be a multialgebra and let ρ be an equivalence relation on A. The following conditions are equivalent:

(a) ρ is an ideal equivalence on **A**;

 (b) for any n ∈ N, any f ∈ F_n, and any x_i, y_i ∈ A for which x_iρy_i (i ∈ {1,..., n}) we have

$$f^{\mathbf{A}}(x_1,\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(y_1,\ldots,y_n);$$

(c) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, any $a, b, x_1, \ldots, x_n \in A$ such that $a\rho b$, and any $i \in \{1, \ldots, n\}$, we have

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

(d) for any n-ary term t of type \mathcal{F} , and any $x_i, y_i \in A$ with $x_i \rho y_i$ $(i \in \{1, ..., n\})$ we have

$$t^{\mathbf{P}^*(\mathbf{A})}(x_1,\ldots,x_n)\overline{\rho} t^{\mathbf{P}^*(\mathbf{A})}(y_1,\ldots,y_n).$$

イロト イポト イヨト イヨト

Direct products of multialgebras

If $(\mathbf{A}_i \mid i \in I)$ is a family of multialgebras of type \mathcal{F} , the Cartesian product $\prod_{i \in I} A_i$ with the multioperations defined by

$$f^{\prod_{i\in I}\mathbf{A}_i}(a_1,\ldots,a_n)=\prod_{i\in I}f^{\mathbf{A}_i}(a_1(i),\ldots,a_n(i))$$

is a multialgebra called the direct product of the multialgebras $(\mathbf{A}_i \mid i \in I)$.

▶ If t is an *n*-ary term of type \mathcal{F} and $a_1, \ldots, a_n \in \prod_{i \in I} A_i$ then

$$t^{\mathbf{P}^*(\prod_{i\in I}\mathbf{A}_i)}(a_1,\ldots,a_n)=\prod_{i\in I}t^{\mathbf{P}^*(\mathbf{A}_i)}(a_1(i),\ldots,a_n(i)).$$

The direct product of a family of multialgebras which satisfy a certain identity (weak or strong) satisfies the same identity.

- 曰 > (同 > (王 >) (王 >)

Direct limits of direct systems of multialgebras

Let $\mathcal{A} = ((\mathbf{A}_i \mid i \in I), (\varphi_{ij} \mid i, j \in I, i \leq j))$ be a direct system of multialgebras and let $A_{\infty} = \{\hat{x} \mid x \in A\}$ be the direct limit of the direct system of their underlying sets (A is the disjoint union of the sets A_i). Let $n \in \mathbb{N}$ and $f \in \mathcal{F}_n$. If $\hat{x}_1, \ldots, \hat{x}_n \in A_{\infty}$ and for any $j \in \{1, \ldots, n\}$ we consider that $x_j \in A_{i_j}$ ($i_j \in I$) then

$$f^{\mathbf{A}_{\infty}}(\widehat{a_{1}},\ldots,\widehat{a_{n}}) = \{\widehat{a} \in A_{\infty} \mid \exists m \in I, i_{1} \leq m, \ldots, i_{n} \leq m, \\ a \in f^{\mathbf{A}_{m}}(\varphi_{i_{1}m}(a_{1}),\ldots,\varphi_{i_{n}m}(a_{n}))\}.$$

 $\mathbf{A}_{\infty} = (A_{\infty}, F)$ is a multialgebra, called *the direct limit of* \mathcal{A} .

If t is an n-ary term of type F, a₁,..., a_n ∈ A and i₁,..., i_n ∈ I are such that a₁ ∈ A_{i1},..., a_n ∈ A_{in} then

$$t^{\mathbf{P}^*(\mathbf{A}_{\infty})}(\widehat{a_1},\ldots,\widehat{a_n}) = \{\widehat{a} \in A_{\infty} \mid \exists m \in I, i_1 \leq m, \ldots, i_n \leq m, \\ a \in t^{\mathbf{P}^*(\mathbf{A}_m)}(\varphi_{i_1m}(a_0),\ldots,\varphi_{i_nm}(a_n))\}.$$

The direct limit of a direct system of multialgebras which satisfy a certain identity (weak or strong) satisfies the same identity.

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Proposition (Pelea, Purdea)

The following conditions are equivalent:

a) \mathbf{A}/ρ is a universal algebra;

・ 回 ト ・ ヨ ト ・ ヨ ト …

æ

Proposition (Pelea, Purdea)

The following conditions are equivalent:

a) \mathbf{A}/ρ is a universal algebra;

b) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, any $a, b, x_1, \ldots, x_n \in A$ such that $a\rho b$, and any $i \in \{1, \ldots, n\}$, we have

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\overline{\rho}}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Pelea, Purdea)

The following conditions are equivalent:

a) \mathbf{A}/ρ is a universal algebra;

b) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, any $a, b, x_1, \ldots, x_n \in A$ such that $a\rho b$, and any $i \in \{1, \ldots, n\}$, we have

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

c) for any
$$n \in \mathbb{N}$$
, any $f \in \mathcal{F}_n$, and any $x_i, y_i \in A$ for which $x_i \rho y_i$
 $(i \in \{1, ..., n\})$ we have
 $f^{\mathbf{A}}(x_1, ..., x_n)\overline{\rho}f^{\mathbf{A}}(y_1, ..., y_n);$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Pelea, Purdea)

The following conditions are equivalent:

a) \mathbf{A}/ρ is a universal algebra;

b) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, any $a, b, x_1, \ldots, x_n \in A$ such that $a\rho b$, and any $i \in \{1, \ldots, n\}$, we have

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\overline{\rho}}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

c) for any
$$n \in \mathbb{N}$$
, any $f \in \mathcal{F}_n$, and any $x_i, y_i \in A$ for which $x_i \rho y_i$
 $(i \in \{1, ..., n\})$ we have
 $f^{\mathbf{A}}(x_1, ..., x_n)\overline{\rho}f^{\mathbf{A}}(y_1, ..., y_n);$

d) for any n-ary term t of type \mathcal{F} , and any $x_i, y_i \in A$ with $x_i \rho y_i$ $(i \in \{1, \dots, n\})$ $t^{\mathbf{P}^*(\mathbf{A})}(x_1, \dots, x_n) \overline{\rho} t^{\mathbf{P}^*(\mathbf{A})}(y_1, \dots, y_n).$

(日) (同) (日) (日)

Proposition (Pelea, Purdea)

The following conditions are equivalent:

a) \mathbf{A}/ρ is a universal algebra;

b) for any $n \in \mathbb{N}$, any $f \in \mathcal{F}_n$, any $a, b, x_1, \ldots, x_n \in A$ such that $a\rho b$, and any $i \in \{1, \ldots, n\}$, we have

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

c) for any
$$n \in \mathbb{N}$$
, any $f \in \mathcal{F}_n$, and any $x_i, y_i \in A$ for which $x_i \rho y_i$
($i \in \{1, ..., n\}$) we have
 $f^{\mathbf{A}}(x_1, ..., x_n)\overline{\rho}f^{\mathbf{A}}(y_1, ..., y_n)$;

d) for any n-ary term t of type \mathcal{F} , and any $x_i, y_i \in A$ with $x_i \rho y_i$ $(i \in \{1, \dots, n\})$ $t^{\mathbf{P}^*(\mathbf{A})}(x_1, \dots, x_n) \overline{\rho} t^{\mathbf{P}^*(\mathbf{A})}(y_1, \dots, y_n).$

We denote by $E_{ua}(\mathbf{A})$ the set of the relations characterized above.

・ 同 ト ・ 三 ト ・ 三 ト

• $E_{ua}(\mathbf{A})$ is an algebraic closure system on $A \times A$.

ヘロン 人間と 人間と 人間と

Э

- $E_{ua}(\mathbf{A})$ is an algebraic closure system on $A \times A$.
- ⇒ the smallest element $\alpha_{\mathbf{A}}^*$ of $E_{ua}(\mathbf{A})$ is called the fundamental relation of \mathbf{A} and $\overline{\mathbf{A}} = \mathbf{A}/\alpha_{\mathbf{A}}^*$ is called the fundamental algebra of \mathbf{A} .

A (20) A (20) A (20) A

- $E_{ua}(\mathbf{A})$ is an algebraic closure system on $A \times A$.
- ⇒ the smallest element $\alpha_{\mathbf{A}}^*$ of $E_{ua}(\mathbf{A})$ is called the fundamental relation of \mathbf{A} and $\overline{\mathbf{A}} = \mathbf{A}/\alpha_{\mathbf{A}}^*$ is called the fundamental algebra of \mathbf{A} .
 - If ρ ∈ E_{ua}(A) then every identity which holds in A also holds in the algebra A/ρ. In particular, any (weak or strong) identity which holds on A is also satisfied in A.

A (20) A (20) A (20) A

- $E_{ua}(\mathbf{A})$ is an algebraic closure system on $A \times A$.
- ⇒ the smallest element $\alpha_{\mathbf{A}}^*$ of $E_{ua}(\mathbf{A})$ is called *the fundamental* relation of \mathbf{A} and $\overline{\mathbf{A}} = \mathbf{A}/\alpha_{\mathbf{A}}^*$ is called *the fundamental algebra* of \mathbf{A} .
 - If ρ ∈ E_{ua}(A) then every identity which holds in A also holds in the algebra A/ρ. In particular, any (weak or strong) identity which holds on A is also satisfied in A.

• (Pelea) $\alpha^*_{\mathbf{A}}$ is the transitive closure of the relation α defined by

$$x\alpha_{\mathbf{A}}y \Leftrightarrow x, y \in t^{\mathbf{P}^*(\mathbf{A})}(a_1,\ldots,a_n)$$

for some *n*-ary term *t* of type \mathcal{F} and some $a_1, \ldots, a_n \in A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $E_{ua}(\mathbf{A})$ is an algebraic closure system on $A \times A$.
- ⇒ the smallest element $\alpha_{\mathbf{A}}^*$ of $E_{ua}(\mathbf{A})$ is called the fundamental relation of \mathbf{A} and $\overline{\mathbf{A}} = \mathbf{A}/\alpha_{\mathbf{A}}^*$ is called the fundamental algebra of \mathbf{A} .
 - If ρ ∈ E_{ua}(A) then every identity which holds in A also holds in the algebra A/ρ. In particular, any (weak or strong) identity which holds on A is also satisfied in A.
 - (Pelea) $\alpha^*_{\mathbf{A}}$ is the transitive closure of the relation α defined by

$$x \alpha_{\mathbf{A}} y \Leftrightarrow x, y \in t^{\mathbf{P}^*(\mathbf{A})}(a_1, \ldots, a_n)$$

for some *n*-ary term *t* of type \mathcal{F} and some $a_1, \ldots, a_n \in A$.

Pelea, Purdea) If B is a universal algebra of type F, ρ is an equivalence relation on B, θ(ρ) is the congruence of B generated by ρ, t is an *n*-ary term of type F, and x, y, z₁,..., z_n ∈ B then

$$x/\rho, y/\rho \in t^{\mathbf{P}^*(\mathbf{B}/\rho)}(z_1/\rho, \ldots, z_n/\rho) \Rightarrow x\theta(\rho)y.$$

・ロト ・回ト ・ヨト ・ヨト

- $E_{ua}(\mathbf{A})$ is an algebraic closure system on $A \times A$.
- ⇒ the smallest element $\alpha_{\mathbf{A}}^*$ of $E_{ua}(\mathbf{A})$ is called the fundamental relation of \mathbf{A} and $\overline{\mathbf{A}} = \mathbf{A}/\alpha_{\mathbf{A}}^*$ is called the fundamental algebra of \mathbf{A} .
 - If ρ ∈ E_{ua}(A) then every identity which holds in A also holds in the algebra A/ρ. In particular, any (weak or strong) identity which holds on A is also satisfied in A.
 - (Pelea) $\alpha^*_{\mathbf{A}}$ is the transitive closure of the relation α defined by

$$x \alpha_{\mathbf{A}} y \Leftrightarrow x, y \in t^{\mathbf{P}^*(\mathbf{A})}(a_1, \ldots, a_n)$$

for some *n*-ary term *t* of type \mathcal{F} and some $a_1, \ldots, a_n \in A$.

Pelea, Purdea) If B is a universal algebra of type F, ρ is an equivalence relation on B, θ(ρ) is the congruence of B generated by ρ, t is an *n*-ary term of type F, and x, y, z₁,..., z_n ∈ B then

$$x/\rho, y/\rho \in t^{\mathbf{P}^*(\mathbf{B}/\rho)}(z_1/\rho, \ldots, z_n/\rho) \Rightarrow x\theta(\rho)y.$$

 \Rightarrow (Pelea, Purdea) $\overline{\mathbf{B}/\rho} \cong \mathbf{B}/\theta(\rho)$.

The fundamental relation of a hypergroup

A multialgebra (H, \cdot) with one binary associative multioperation satisfying the condition

$$aH = Ha = H, \forall a \in H$$

is called hypergroup.

・ 回 と ・ ヨ と ・ モ と …

æ

The fundamental relation of a hypergroup

A multialgebra (H, \cdot) with one binary associative multioperation satisfying the condition

$$aH = Ha = H, \forall a \in H$$

is called *hypergroup*.

• The fundamental relation of the hypergroup (H, \cdot) is

$$\beta^{H} = \bigcup_{n \in \mathbb{N}^{*}} \beta^{H}_{n},$$

where

$$x\beta_n^H y \Leftrightarrow \exists a_1, \ldots, a_n \in H : x, y \in a_1 \cdots a_n.$$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

The fundamental relation of a hypergroup

A multialgebra (H, \cdot) with one binary associative multioperation satisfying the condition

$$aH = Ha = H, \forall a \in H$$

is called *hypergroup*.

• The fundamental relation of the hypergroup (H, \cdot) is

$$\beta^{H} = \bigcup_{n \in \mathbb{N}^{*}} \beta^{H}_{n},$$

where

$$x\beta_n^H y \Leftrightarrow \exists a_1, \ldots, a_n \in H : x, y \in a_1 \cdots a_n.$$

The fundamental algebra of a hypergroup is a group.

▲御▶ ★ 国▶ ★ 国▶ …

Example

Let (G, \cdot) be a group, $H \leq G$, $G/H = \{xH \mid x \in G\}$ and

$$(xH)(yH) = \{zH \mid z = x'y', x' \in xH, y' \in yH\}.$$

The hypergroupoid $(G/H, \cdot)$ is a hypergroup (Marty).

If $\overline{G/H}$ is the fundamental group of the hypergroup G/H and \overline{H} is the smallest normal subgroup of G which contains H then

$$\overline{G/H} \cong G/\overline{H}.$$

A (20) A (20) A (20) A

The fundamental algebra of the direct limit

▶ (Pelea) Let **A**, **B** be multialgebras, $\overline{\mathbf{A}}$, $\overline{\mathbf{B}}$ their fundamental algebras and φ_A , φ_B the canonical projections. For any homomorphism $f: A \rightarrow B$ there exists only one universal algebra homomorphism $\overline{f}: \overline{A} \rightarrow \overline{B}$ such that the following diagram is commutative:

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

The fundamental algebra of the direct limit

▶ (Pelea) Let **A**, **B** be multialgebras, $\overline{\mathbf{A}}$, $\overline{\mathbf{B}}$ their fundamental algebras and φ_A , φ_B the canonical projections. For any homomorphism $f: A \rightarrow B$ there exists only one universal algebra homomorphism $\overline{f}: \overline{A} \rightarrow \overline{B}$ such that the following diagram is commutative:

 $\Rightarrow (Pelea) The factorization modulo the fundamental relation defines a functor G from the category of <math>Malg(\mathcal{F})$ of the multialgebras of type \mathcal{F} into the category $Alg(\mathcal{F})$ of the universal algebras of the same type which is a left adjoint for the inclusion functor $U: Alg(\mathcal{F}) \longrightarrow Malg(\mathcal{F}).$

▲圖▶ ▲屋▶ ▲屋▶

The fundamental algebra of the direct limit

• (Pelea) Let **A**, **B** be multialgebras, $\overline{\mathbf{A}}$, $\overline{\mathbf{B}}$ their fundamental algebras and φ_A , φ_B the canonical projections. For any homomorphism $f: A \to B$ there exists only one universal algebra homomorphism $\overline{f}: \overline{A} \to \overline{B}$ such that the following diagram is commutative:

- $\Rightarrow (Pelea) The factorization modulo the fundamental relation defines a functor G from the category of <math>Malg(\mathcal{F})$ of the multialgebras of type \mathcal{F} into the category $Alg(\mathcal{F})$ of the universal algebras of the same type which is a left adjoint for the inclusion functor $U: Alg(\mathcal{F}) \longrightarrow Malg(\mathcal{F}).$
- ⇒ (Pelea) The fundamental algebra of the direct limit of a direct system of multialgebras is (isomorphic to) the direct limit of their fundamental algebras.

► The functor G : Malg(F) → Alg(F) does not preserve the products.

► The functor G : Malg(F) → Alg(F) does not preserve the products.

Example

Take the hypergroupoids (H_1, \circ) and (H_2, \circ) given by the following tables:

				H_2	x	y y	z
а	а	а	а			<i>y</i> , <i>z</i>	
b	а	а	а	y	y, z	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>
С	а	а	а	Ζ	y, z	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>

 $\overline{H_1 \times H_2}$ has 8 elements, while $\overline{H_1} \times \overline{H_2}$ has only 6 elements.

(4月) (1日) (日)

► The functor G : Malg(F) → Alg(F) does not preserve the products.

Example

Take the hypergroupoids (H_1, \circ) and (H_2, \circ) given by the following tables:

H_1	а	b	С	H_2	x	y y	Z
а				X	x	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>
		а		y	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>
С	а	а	а	Ζ	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>	<i>y</i> , <i>z</i>

 $\overline{H_1 \times H_2}$ has 8 elements, while $\overline{H_1} \times \overline{H_2}$ has only 6 elements. > Yet ...

A (10) A (10)

 in some particular cases we identified some (complicated) necessary and sufficient conditions for this

・日・・ モー・ ・ モー・

æ

- in some particular cases we identified some (complicated) necessary and sufficient conditions for this
- \Rightarrow a sufficient condition which can be easily applied to some multialgebras, e.g. hypergroups

高 と く き と く き と

- in some particular cases we identified some (complicated) necessary and sufficient conditions for this
- \Rightarrow a sufficient condition which can be easily applied to some multialgebras, e.g. hypergroups
 - (Pelea) The functor G : HG → Grp preserves the finite products.

・ 同 ト ・ ヨ ト ・ ヨ ト

- in some particular cases we identified some (complicated) necessary and sufficient conditions for this
- $\Rightarrow\,$ a sufficient condition which can be easily applied to some multialgebras, e.g. hypergroups
 - (Pelea) The functor G : HG → Grp preserves the finite products.
 - Pelea) The fundamental group of the direct product of the hypergroups ((H_i, ·) | i ∈ I) is (isomorphic to) the direct product of the fundamental groups ((H_i, ·) | i ∈ I) if and only if there exists n ∈ N* such that β^{H_i} = β^{H_i}_n for all i's, with the exception of a finite number.

イロト イポト イヨト