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The genesis:

(F. Marty, 8th Congress of the Scandinavian Mathematicians,
Stockholm, 1934)

Let (G , ·) be a group, H ≤ G and G/H = {xH | x ∈ G}. The
equality

(1) (xH)(yH) = {zH | z = x ′y ′, x ′ ∈ xH, y ′ ∈ yH}.

defines an operation on G/H if and only if H E G .

In general, (1) defines a function

G/H × G/H → P∗(G/H)

called binary multioperation (on G/H) (and (G/H, ·) is a
hypergroup).
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Multialgebra. Factor multialgebra

I An n-ary multioperation f on a set A is a mapping

f : An → P∗(A).

(P∗(A) denotes the set of the nonempty subsets of A).

I Let F be a type of (multi)algebras. A multialgebra
A = (A,F ) of type F consists of a set A and a family of
multioperations F obtained by associating a multioperation
f A (or, simply, f ) on A to each symbol f from F .

I (Grätzer, 1962) Any multialgebra A results from a universal
algebra B and an appropriate equivalence ρ of B as before,
i.e. by taking

f (a1/ρ, . . . , an/ρ) = {b/ρ | b = f (b1, . . . , bn), aiρbi , i = 1, . . . , n}.
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A possible start:

M. Dresher, O. Ore, ‘Theory of multigroups’, Amer. J. Math., 60
1938, 705–733.

M. Koskas, ‘Groupöıdes, demi-hypergroupes et hypergroupes’, J.
Math. Pures et Appl., 49, 1970, 155–192.

D. Freni, ‘A new characterization of the derived hypergroup via
strongly regular equivalences’, Comm. Algebra, 30 2002,
3977–3989.

I the equivalence relations of (semi)hypergroups for which the
factor hypergroup(oid) is a group (strongly regular
equivalences)

I the smallest strongly regular equivalence of a
(semi)hypergroup

for which the factor (hyper)group is
commutative
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The problems:

1. Characterize the equivalence relations ρ of a (general)
multialgebra A for which the factor multialgebra is a universal
algebra.

2. Determine the smallest equivalence relation of a (general)
multialgebra A for which the factor multialgebra is in a certain
variety of universal algebras.

3. Find universal algebra isomorphisms in order to obtain easier
ways to construct the corresponding factor multialgebras.
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The path:

I a characterization of the equivalence relations of A for which
the factor multialgebra is a universal algebra (2006)

I a characterization of the smallest equivalence relation of A for
which the factor multialgebra is a universal algebra (the
fundamental relation of A) (2001)

I a characterization of the smallest equivalence relation of A for
which the factor multialgebra is a universal algebra which
satisfies a certain identity (2006)

I a characterization of the smallest equivalence relation of A for
which the factor multialgebra is a universal algebra which
satisfies a certain set of identities (preprint)

I a characterization of the smallest equivalence relation of A
containing a given relation which provides a factor
multialgebra which is universal algebra (2013)

I some isomorphism theorems (2006,

2013)
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The tools:

• The universal algebra P∗(A) of the nonempty subsets of A, given by

f P∗(A)(A1, . . . ,An) =
⋃
{f A(a1, . . . , an) | ai ∈ Ai , i = 1, . . . , n}.

• The algebra 〈Pol1(P∗(A)),F 〉 of the unary polynomial functions of
the algebra P∗(A).

• The subuniverse PolA1 (P∗(A)) of Pol1(P∗(A)) generated by
{c1

a | a ∈ A} ∪ {e1
1}, where c1

a , e
1
1 : P∗(A)→ P∗(A) are given by

c1
a (X ) = {a} and e1

1 (X ) = X .

• The clone Clo(P∗(A)) of the term functions of P∗(A).

For any p ∈ PolA1 (P∗(A)), there exist m ∈ N, m ≥ 1, b1, . . . , bm ∈ A and
t ∈ Clo(P∗(A)) such that

pP∗(A)(A1) = tP
∗(A)(A1, b2, . . . , bm), ∀A1 ∈ P∗(A).
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The results:

Proposition (Pelea, Purdea, 2006)
For an equivalence ρ of a multialgebra A, the following conditions are
equivalent:
(a) A/ρ is a universal algebra (ρ ∈ Eua(A));

(b) if n ∈ N, f ∈ Fn, a, b, x1, . . . , xn ∈ A, aρb, then, for all i = 1, . . . , n,

f A(x1, . . . , xi−1, a, xi+1, . . . , xn)ρf A(x1, . . . , xi−1, b, xi+1, . . . , xn);

(c) if n ∈ N, f ∈ Fn, xi , yi ∈ A and xiρyi (i = 1, . . . , n), then

f A(x1, . . . , xn)ρf A(y1, . . . , yn);

(d) if m ∈ N, t is an m-ary term, xi , yi ∈ A, xiρyi (i = 1, . . . ,m), then

tP
∗(A)(x1, . . . , xm) ρ tP

∗(A)(y1, . . . , ym);

(e) if p ∈ PolA1 (P∗(A)), x , y ∈ A and xρy then p(x)ρ p(y).
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The results:

The poset 〈Eua(A),⊆〉 is an algebraic closure system on A× A.
Let αA be the corresponding closure operator.

Theorem (Pelea, Purdea, Stanca)
If I = {qi = ri | i ∈ I} (I 6= ∅, qi , ri mi -ary terms of type F , i ∈ I )
and A = 〈A,F 〉 is an F-multialgebra, the smallest equivalence
relation on A for which the factor multialgebra is a universal
algebra satisfying all the identities from I is the transitive closure
α∗I of the relation αI ⊆ A× A defined by:

xαIy ⇔ ∃i ∈ I , ∃ni ∈ N∗, ∃pi ∈ PolA1 (P∗(A)), ∃ai1, . . . , a
i
mi
∈ A :

x ∈ p
P∗(A)
i (q

P∗(A)
i (ai1, . . . , a

i
mi

)), y ∈ p
P∗(A)
i (r

P∗(A)
i (ai1, . . . , a

i
mi

)),

or y ∈ p
P∗(A)
i (q

P∗(A)
i (ai1, . . . , a

i
mi

)), x ∈ p
P∗(A)
i (r

P∗(A)
i (ai1, . . . , a

i
mi
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The results:

The previous result follows from the next one by taking

θ =
⋃
{qP∗(A)

i (a1, . . . , ami )× r
P∗(A)
i (a1, . . . , ami ) | a1, . . . , ami ∈ A, i ∈ I}.

Theorem (Pelea, 2013)

Let A = 〈A,F 〉 be a multialgebra of type F and θ ⊆ A× A. The
relation αA(θ) is defined as follows: 〈x , y〉 ∈ αA(θ) if and only if
there exist k ∈ N∗, a sequence x = t0, t1, . . . , tk = y of elements
from A, some pairs 〈b1, c1〉, . . . , 〈bk , ck〉 ∈ θ and some unary
polynomial functions p1, . . . , pk from PolA1 (P∗(A)) such that for all
i ∈ {1, . . . , k},

〈ti−1, ti 〉 ∈ pi (bi )× pi (ci ) or 〈ti , ti−1〉 ∈ pi (bi )× pi (ci ).
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The results:

Let I be a set of identities.

Theorem (Pelea, Purdea, Stanca)

The variety M(I) of the F-algebras which satisfy all the identities
from I is a reflective subcategory of the category of
F-multialgebras.

Corollary

The factorization of F-multialgebras modulo α∗I provides a functor
which is a reflector for M(I).
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The results:

Let I , J be two disjoint nonempty sets, qi , ri mi -ary terms
(i ∈ I ∪ J), I = {qi = ri | i ∈ I} and J = {qi = ri | i ∈ J}.

Theorem (Pelea, 2013)

If A = 〈A,F 〉 is a multialgebra of type F then

A/α∗I∪J
∼= (A/α∗J )/α∗I

(α∗I is the smallest congruence of A/α∗J for which the factor
algebra satisfies the identities from I).

For J = {x = x}, α∗J = α∗A is the fundamental relation of A, thus

Corollary

If A = 〈A,F 〉 is a F-multialgebra, then A/α∗I
∼= (A/α∗A)/α∗I .
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Examples: Hypergroups:

A multialgebra 〈H, ·〉 with one binary associative multioperation is
called semihypergroup. A hypergroup is a nonempty
semihypergroup 〈H, ·〉 which satisfies the condition

(2) a · H = H · a = H, ∀a ∈ H.

The relations from Eua(〈H, ·〉) are called strongly regular
equivalence relations.

In a hypergroup 〈H, ·〉, the condition (2) defines two binary
multioperations /, \ : H × H → P∗(H) as follows

b/a = {x ∈ H | b ∈ x · a}, a\b = {x ∈ H | b ∈ a · x},

but
Eua(〈H, ·〉) = Eua(〈H, ·, /, \〉)

and 〈H/ρ, ·〉 is a group for any ρ ∈ Eua(〈H, ·〉).
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Hypergroups:

Let 〈H, ·〉 be a hypergroup.

α{x1x2=x2x1} =
⋃

n∈N∗

γn,

where γ1 = δH and for n > 1,

xγny ⇔ ∃z1, . . . , zn ∈ H, ∃i ∈ {1, . . . , n − 1} :

x ∈ z1 · · · zi−1(zizi+1)zi+2 · · · zn,
y ∈ z1 · · · zi−1(zi+1zi )zi+2 · · · zn.

The transitive closure of α{x1x2=x2x1} coincides with

(Freni, 2002) the smallest equivalence of H for which the factor of 〈H, ·〉
is a commutative group is (the transitive closure γ∗ of)

xγy ⇔ ∃n ∈ N∗,∃z1, . . . , zn ∈ H,∃σ ∈ Sn : x ∈
n∏

i=1

zi , y ∈
n∏

i=1

zσ(i),

since the cycles (1, 2), (2, 3), . . . , (n − 1, n) generate the symmetric group

(Sn, ◦).
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Hypergroups:

Let 〈H, ·〉 be a (semi)hypergroup.

(Koskas, 1970) The smallest strongly regular equivalence of 〈H, ·〉
(the fundamental relation of 〈H, ·〉) is the transitive closure β∗ of

xβy ⇔ ∃n ∈ N∗, ∃a1, . . . , an ∈ H : x , y ∈ a1 · · · an.

(Freni, 1991) If 〈H, ·〉 is a hypergroup, β is already transitive, hence

β∗ = β.

For any hypergroup 〈H, ·〉,

H/γ ∼= (H/β)/(H/β)′.
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Hyperrings:

The multialgebra 〈A,+, ·〉 is a hyperring if 〈A,+〉 is a hypergroup,
〈A, ·〉 is a semihypergroup and · is distributive with respect to + .

If A is a hyperring 〈A,+, ·〉 and

I = {x1 + x2 = x2 + x1, x1 · x2 = x2 · x1},

then α∗I is the smallest equivalence relation on A for which the
factor multialgebra is a commutative ring.
α∗I is the transitive closure α∗ of the relation consisting of all the
pairs 〈x , y〉 for which there exist n, k1, . . . , kn ∈ N∗, a permutation
τ ∈ Sn, xi1, . . . , xiki ∈ A, and σi ∈ Ski (i = 1, . . . , n) such that

x ∈
n∑

i=1

 ki∏
j=1

xij

 and y ∈
n∑

i=1

 ki∏
j=1

xτ(i)στ(i)(j)


(Davvaz, Vougiouklis, 2007).
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〈A, ·〉 is a semihypergroup and · is distributive with respect to + .
If A is a hyperring 〈A,+, ·〉 and

I = {x1 + x2 = x2 + x1, x1 · x2 = x2 · x1},

then α∗I is the smallest equivalence relation on A for which the
factor multialgebra is a commutative ring.
α∗I is the transitive closure of the union of all the Cartesian
products

t(a1, . . . , am)× t ′(a1, . . . , am),

where t(a1, . . . , am) is a sum of products of elements of A (we
allow the sum to have only one term and the products to have only
one factor), and t ′(a1, . . . , am) is obtained from t(a1, . . . , am)
either by permuting two consecutive factors in a product or by
permuting two consecutive terms in the sum.
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Hyperrings:

The fundamental algebra 〈A,+, ·〉 of a hyperring 〈A,+, ·〉 is a distributive
nearring, hence

A/α∗ ∼= A/α∗I .

If 〈A,+, ·〉 is a ring, then α∗ is the congruence determined by its
commutator ideal.

(Davvaz, Vougiouklis, 2007) For a hyperring 〈A,+, ·〉, with · commutative
operation, α∗ is equal to the relation γ of the hypergroup 〈A,+〉.

For a hyperring 〈A,+, ·〉 with + weak commutative or with a
multiplicative identity, the fundamental relation of 〈A,+, ·〉 and
α∗{x1+x2=x2+x1} coincide,

α∗ = α∗{x1x2=x2x1}

and the ring 〈A/α∗,+, ·〉 is isomorphic to the factor of the fundamental

ring of 〈A,+, ·〉 over its commutator ideal.

Cosmin Pelea On some particular equivalence relations of multialgebras



ICAM 9, September 25-28, 2013, Baia Mare, Romania

Hyperrings:

The fundamental algebra 〈A,+, ·〉 of a hyperring 〈A,+, ·〉 is a distributive
nearring, hence

A/α∗ ∼= A/α∗I .

If 〈A,+, ·〉 is a ring, then α∗ is the congruence determined by its
commutator ideal.

(Davvaz, Vougiouklis, 2007) For a hyperring 〈A,+, ·〉, with · commutative
operation, α∗ is equal to the relation γ of the hypergroup 〈A,+〉.

For a hyperring 〈A,+, ·〉 with + weak commutative or with a
multiplicative identity, the fundamental relation of 〈A,+, ·〉 and
α∗{x1+x2=x2+x1} coincide,

α∗ = α∗{x1x2=x2x1}

and the ring 〈A/α∗,+, ·〉 is isomorphic to the factor of the fundamental

ring of 〈A,+, ·〉 over its commutator ideal.

Cosmin Pelea On some particular equivalence relations of multialgebras



ICAM 9, September 25-28, 2013, Baia Mare, Romania

Hyperrings:

The fundamental algebra 〈A,+, ·〉 of a hyperring 〈A,+, ·〉 is a distributive
nearring, hence

A/α∗ ∼= A/α∗I .

If 〈A,+, ·〉 is a ring, then α∗ is the congruence determined by its
commutator ideal.

(Davvaz, Vougiouklis, 2007) For a hyperring 〈A,+, ·〉, with · commutative
operation, α∗ is equal to the relation γ of the hypergroup 〈A,+〉.

For a hyperring 〈A,+, ·〉 with + weak commutative or with a
multiplicative identity, the fundamental relation of 〈A,+, ·〉 and
α∗{x1+x2=x2+x1} coincide,

α∗ = α∗{x1x2=x2x1}

and the ring 〈A/α∗,+, ·〉 is isomorphic to the factor of the fundamental

ring of 〈A,+, ·〉 over its commutator ideal.

Cosmin Pelea On some particular equivalence relations of multialgebras



ICAM 9, September 25-28, 2013, Baia Mare, Romania

Hyperrings:

The fundamental algebra 〈A,+, ·〉 of a hyperring 〈A,+, ·〉 is a distributive
nearring, hence

A/α∗ ∼= A/α∗I .

If 〈A,+, ·〉 is a ring, then α∗ is the congruence determined by its
commutator ideal.

(Davvaz, Vougiouklis, 2007) For a hyperring 〈A,+, ·〉, with · commutative
operation, α∗ is equal to the relation γ of the hypergroup 〈A,+〉.

For a hyperring 〈A,+, ·〉 with + weak commutative or with a
multiplicative identity, the fundamental relation of 〈A,+, ·〉 and
α∗{x1+x2=x2+x1} coincide,

α∗ = α∗{x1x2=x2x1}

and the ring 〈A/α∗,+, ·〉 is isomorphic to the factor of the fundamental

ring of 〈A,+, ·〉 over its commutator ideal.

Cosmin Pelea On some particular equivalence relations of multialgebras



ICAM 9, September 25-28, 2013, Baia Mare, Romania

Hyperrings:

For a hyperring 〈A,+, ·〉 with · operation,

α∗{x1+x2=x2+x1} = γ

or, equivalently, 〈A/γ,+, ·〉 is a ring.

For a distributive nearring 〈R,+, ·〉, the derived subgroup R ′ of
〈R,+〉 is an ideal.

For any hyperring 〈A,+, ·〉,

A/α∗{x1+x2=x2+x1}
∼= A/A

′
.
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