Fundamental relations in multialgebras. A survey

Cosmin Pelea

Babeş-Bolyai University of Cluj-Napoca Faculty of Mathematics and Computer Science

Fundamental relations in multialgebras. A survey

高 と く き と く き と

э

Cosmin Pelea

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

(specific) the smallest equivalence relation of a multialgebra for which the factor multialgebra is a universal algebra;

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

(specific) the smallest equivalence relation of a multialgebra for which the factor multialgebra is a universal algebra;

(generic) an equivalence relation of a multialgebra (minimal with respect to some property) for which the factor multialgebra is a universal algebra;

高 と く き と く き と

(specific) the smallest equivalence relation of a multialgebra for which the factor multialgebra is a universal algebra;

(generic) an equivalence relation of a multialgebra (minimal with respect to some property) for which the factor multialgebra is a universal algebra;

commutative \sim of a (semi)hypergroup = the smallest equivalence relation of a (semi)hypergroup for which the factor semihypergroup is a commutative (semi)group;

高 ト イ ヨ ト イ ヨ ト

(specific) the smallest equivalence relation of a multialgebra for which the factor multialgebra is a universal algebra;

(generic) an equivalence relation of a multialgebra (minimal with respect to some property) for which the factor multialgebra is a universal algebra;

commutative \sim of a (semi)hypergroup = the smallest equivalence relation of a (semi)hypergroup for which the factor semihypergroup is a commutative (semi)group;

 $\mathcal{I}-\sim$ of a multialgebra = the smallest equivalence relation of a multialgebra for which the factor multialgebra is a universal algebra satisfying a given set of identities \mathcal{I} .

A (10) A (10)

• The universal algebra $\mathbf{P}^*(\mathbf{A})$ of the nonempty subsets of \mathbf{A} , given by

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,\ldots,A_n) = \bigcup \{f^{\mathbf{A}}(a_1,\ldots,a_n) \mid a_i \in A_i, i = 1,\ldots,n\}.$$

• The universal algebra $\mathbf{P}^*(\mathbf{A})$ of the nonempty subsets of \mathbf{A} , given by

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,\ldots,A_n) = \bigcup \{f^{\mathbf{A}}(a_1,\ldots,a_n) \mid a_i \in A_i, i = 1,\ldots,n\}.$$

 The algebra (Pol_m(P*(A)), F) of the m-ary polynomial functions of the algebra P*(A).

• The universal algebra $\mathbf{P}^*(\mathbf{A})$ of the nonempty subsets of \mathbf{A} , given by

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,\ldots,A_n) = \bigcup \{f^{\mathbf{A}}(a_1,\ldots,a_n) \mid a_i \in A_i, i = 1,\ldots,n\}.$$

- The algebra (Pol_m(P*(A)), F) of the m-ary polynomial functions of the algebra P*(A).
- The subuniverse $\operatorname{Pol}_m^A(\mathbf{P}^*(\mathbf{A}))$ of $\operatorname{Pol}_m(\mathbf{P}^*(\mathbf{A}))$ generated by $\{c_a^m \mid a \in A\} \cup \{e_i^m\}$, where $c_a^m, e_i^m : P^*(A)^m \to P^*(A)$ are given by

$$c_a^m(A_1, ..., A_m) = \{a\}$$
 and $e_i^m(A_1, ..., A_m) = A_i$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• The universal algebra $\mathbf{P}^*(\mathbf{A})$ of the nonempty subsets of \mathbf{A} , given by

$$f^{\mathbf{P}^*(\mathbf{A})}(A_1,\ldots,A_n) = \bigcup \{f^{\mathbf{A}}(a_1,\ldots,a_n) \mid a_i \in A_i, i = 1,\ldots,n\}.$$

- The algebra (Pol_m(P*(A)), F) of the m-ary polynomial functions of the algebra P*(A).
- The subuniverse $\operatorname{Pol}_m^A(\mathbf{P}^*(\mathbf{A}))$ of $\operatorname{Pol}_m(\mathbf{P}^*(\mathbf{A}))$ generated by $\{c_a^m \mid a \in A\} \cup \{e_i^m\}$, where $c_a^m, e_i^m : P^*(A)^m \to P^*(A)$ are given by

$$c^m_a(A_1,\ldots,A_m)=\{a\}$$
 and $e^m_i(A_1,\ldots,A_m)=A_i.$

• The clone $Clo(\mathbf{P}^*(\mathbf{A}))$ of the term functions of $\mathbf{P}^*(\mathbf{A})$.

ヘロン 人間と 人間と 人間と

(P., 2001) The fundamental relation $\alpha^*_{\mathbf{A}}$ of the multialgebra **A** is the transitive closure of the relation $\alpha_{\mathbf{A}}$ defined as follows

$$x \alpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists p \in \operatorname{Pol}_n^A(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A :$$

 $x, y \in p(a_1, \dots, a_n).$

(P., 2001) The fundamental relation $\alpha^*_{\mathbf{A}}$ of the multialgebra **A** is the transitive closure of the relation $\alpha_{\mathbf{A}}$ defined as follows

$$x lpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists p \in \operatorname{Pol}_n^A(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A :$$

 $x, y \in p(a_1, \dots, a_n).$

[or

$$x lpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists t \in \operatorname{Clo}_n(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A :$$

 $x, y \in t^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n).$]

・ 同 ト ・ ヨ ト ・ ヨ ト

(P., 2001) The fundamental relation $\alpha^*_{\bf A}$ of the multialgebra **A** is the transitive closure of the relation $\alpha_{\bf A}$ defined as follows

$$x lpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists p \in \operatorname{Pol}_n^A(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A :$$

 $x, y \in p(a_1, \dots, a_n).$

or

$$x lpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists t \in \operatorname{Clo}_n(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A:$$

 $x, y \in t^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n).$]

(P., Purdea, 2006) The relation $\alpha^*_{\mathbf{A}}$ of the multialgebra **A** is the transitive closure of the relation $\alpha_{\mathbf{A}}$ defined as follows

$$x \alpha_{\mathbf{A}} y \Leftrightarrow \exists p \in \operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A})), \exists a \in A : x, y \in p(a).$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

(P., 2001) The fundamental relation $\alpha^*_{\bf A}$ of the multialgebra **A** is the transitive closure of the relation $\alpha_{\bf A}$ defined as follows

$$x lpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists p \in \operatorname{Pol}_n^A(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A :$$

 $x, y \in p(a_1, \dots, a_n).$

[or

$$x lpha_{\mathbf{A}} y \Leftrightarrow \exists n \in \mathbb{N}, \exists t \in \operatorname{Clo}_n(\mathbf{P}^*(\mathbf{A})), \exists a_1, \dots, a_n \in A:$$

 $x, y \in t^{\mathbf{P}^*(\mathbf{A})}(a_1, \dots, a_n).$]

(P., Purdea, 2006) The relation $\alpha_{\mathbf{A}}^*$ of the multialgebra **A** is the transitive closure of the relation $\alpha_{\mathbf{A}}$ defined as follows

$$x \alpha_{\mathbf{A}} y \Leftrightarrow \exists p \in \operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A})), \exists a \in A : x, y \in p(a).$$

For any $p \in \operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A}))$, there exist $m \in \mathbb{N}$, $m \ge 1$, $b_1, \ldots, b_m \in A$ and $t \in \operatorname{Clo}(\mathbf{P}^*(\mathbf{A}))$ such that

$$p^{\mathbf{P}^{*}(\mathbf{A})}(A_{1}) = t^{\mathbf{P}^{*}(\mathbf{A})}(A_{1}, b_{2}, \dots, b_{m}), \ \forall A_{1} \in P^{*}(A).$$

▲□ → ▲ □ → ▲ □ →

(P., Purdea, 2006) For an equivalence relation ρ of a multialgebra **A**, the following conditions are equivalent:

(a) \mathbf{A}/ρ is a universal algebra ($\rho \in E_{ua}(\mathbf{A})$);

・ 同 ト ・ ヨ ト ・ ヨ ト

(P., Purdea, 2006) For an equivalence relation ρ of a multialgebra **A**, the following conditions are equivalent:

(a) \mathbf{A}/ρ is a universal algebra ($\rho \in E_{ua}(\mathbf{A})$);

(b) if $n \in \mathbb{N}$, $f \in \mathcal{F}_n$, $a, b, x_1, \ldots, x_n \in A$, $a\rho b$, then, for all $i = 1, \ldots, n$,

$$f^{\mathbf{A}}(x_1,\ldots,x_{i-1},a,x_{i+1},\ldots,x_n)\overline{\rho}f^{\mathbf{A}}(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n);$$

イロト イポト イヨト イヨト

(P., Purdea, 2006) For an equivalence relation ρ of a multialgebra **A**, the following conditions are equivalent:

(a) A/ρ is a universal algebra (ρ ∈ E_{ua}(A));
(b) if n ∈ N, f ∈ F_n, a, b, x₁,..., x_n ∈ A, aρb, then, for all i = 1,..., n, f^A(x₁,..., x_{i-1}, a, x_{i+1},..., x_n) p̄f^A(x₁,..., x_{i-1}, b, x_{i+1},..., x_n);
(c) if n ∈ N, f ∈ F_n, x_i, y_i ∈ A and x_iρy_i (i = 1,..., n), then f^A(x₁,..., x_n) p̄f^A(y₁,..., y_n);

・ 同 ト ・ ヨ ト ・ ヨ ト

(P., Purdea, 2006) For an equivalence relation ρ of a multialgebra **A**, the following conditions are equivalent:

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

(P., Purdea, 2006) For an equivalence relation ρ of a multialgebra **A**, the following conditions are equivalent:

$$t^{\mathbf{P}^*(\mathbf{A})}(x_1,\ldots,x_m)\overline{\overline{\rho}} t^{\mathbf{P}^*(\mathbf{A})}(y_1,\ldots,y_m);$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

(P., Purdea, 2006) For an equivalence relation ρ of a multialgebra **A**, the following conditions are equivalent:

(f) if $p \in \operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A}))$, $x, y \in A$ and $x \rho y$ then $p(x)\overline{\rho} p(y)$.

The $\mathcal{I}\text{-}fundamental relation}$

(P., Purdea, 2006) α_{qr}^* = the smallest relation from $E_{ua}(\mathbf{A})$ for which the factor (multi)algebra satisfies the identity q = r

(1) マン・ション・

æ

The \mathcal{I} -fundamental relation

Theorem (P., Purdea, Stanca)

Let $\mathcal{I} = \{q_i = r_i \mid i \in I\}$ $(I \neq \emptyset, q_i, r_i \ m_i$ -ary terms of type $\mathcal{F}, i \in I$) and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra. The smallest equivalence relation on \mathbf{A} for which the factor multialgebra is a universal algebra satisfying all the identities from \mathcal{I} (i.e. the \mathcal{I} -fundamental relation of \mathbf{A}) is the transitive closure $\alpha_{\mathcal{I}}^*$ of the relation $\alpha_{\mathcal{I}} \subseteq A \times A$ defined by:

$$\begin{aligned} &x \alpha_{\mathcal{I}} y \iff \exists i \in I, \ \exists p_i \in \operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A})), \ \exists a_1^i, \dots, a_{m_i}^i \in A: \\ &x \in p_i^{\mathbf{P}^*(\mathbf{A})}(q_i^{\mathbf{P}^*(\mathbf{A})}(a_1^i, \dots, a_{m_i}^i)), \ y \in p_i^{\mathbf{P}^*(\mathbf{A})}(r_i^{\mathbf{P}^*(\mathbf{A})}(a_1^i, \dots, a_{m_i}^i)), \\ &\text{or} \ y \in p_i^{\mathbf{P}^*(\mathbf{A})}(q_i^{\mathbf{P}^*(\mathbf{A})}(a_1^i, \dots, a_{m_i}^i)), \ x \in p_i^{\mathbf{P}^*(\mathbf{A})}(r_i^{\mathbf{P}^*(\mathbf{A})}(a_1^i, \dots, a_{m_i}^i)). \end{aligned}$$

(P., Purdea, 2006) α_{qr}^* = the smallest relation from $E_{ua}(\mathbf{A})$ for which the factor (multi)algebra satisfies the identity q = r

$$\implies \alpha_{\mathcal{I}}^* = \bigvee_{i \in I} \alpha_{q_i r_i}^*.$$

< 同 > < 三 > < 三 >

The general recipe

For an \mathcal{F} -multialgebra $\mathbf{A} = \langle A, F \rangle$, the poset $\langle E_{ua}(\mathbf{A}), \subseteq \rangle$ is an algebraic closure system on $A \times A$.

The general recipe

For an \mathcal{F} -multialgebra $\mathbf{A} = \langle A, F \rangle$, the poset $\langle E_{ua}(\mathbf{A}), \subseteq \rangle$ is an algebraic closure system on $A \times A$. If $\alpha^{\mathbf{A}}$ is the corresponding closure operator then

Theorem (Pelea, 2013)

If $\theta \subseteq A \times A$, the relation $\alpha^{\mathbf{A}}(\theta)$ is defined as follows: $\langle x, y \rangle \in \alpha^{\mathbf{A}}(\theta)$ if and only if there exist $k \in \mathbb{N}^*$, a sequence $x = t_0, t_1, \ldots, t_k = y$ of elements from A, some pairs $\langle b_1, c_1 \rangle, \ldots, \langle b_k, c_k \rangle \in \theta$ and some unary polynomial functions p_1, \ldots, p_k from $\operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A}))$ such that for all $i \in \{1, \ldots, k\}$,

$$\langle t_{i-1}, t_i \rangle \in p_i(b_i) \times p_i(c_i) \text{ or } \langle t_i, t_{i-1} \rangle \in p_i(b_i) \times p_i(c_i).$$

高 ト イ ヨ ト イ ヨ ト

The general recipe

For an \mathcal{F} -multialgebra $\mathbf{A} = \langle A, F \rangle$, the poset $\langle E_{ua}(\mathbf{A}), \subseteq \rangle$ is an algebraic closure system on $A \times A$. If $\alpha^{\mathbf{A}}$ is the corresponding closure operator then the \mathcal{I} -fundamental relation is $\alpha^{\mathbf{A}}(R_{\mathcal{I}})$, where

$$\mathcal{R}_{\mathcal{I}} = \bigcup \{ q_i^{\mathbf{P}^*(\mathbf{A})}(a_1, \ldots, a_{m_i}) \times r_i^{\mathbf{P}^*(\mathbf{A})}(a_1, \ldots, a_{m_i}) \mid a_1, \ldots, a_{m_i} \in \mathcal{A}, i \in I \}$$

thus $\alpha_{\mathcal{I}}^*$ follows from the next result by taking $\theta = R_{\mathcal{I}}$.

Theorem (Pelea, 2013)

If $\theta \subseteq A \times A$, the relation $\alpha^{\mathbf{A}}(\theta)$ is defined as follows: $\langle x, y \rangle \in \alpha^{\mathbf{A}}(\theta)$ if and only if there exist $k \in \mathbb{N}^*$, a sequence $x = t_0, t_1, \ldots, t_k = y$ of elements from A, some pairs $\langle b_1, c_1 \rangle, \ldots, \langle b_k, c_k \rangle \in \theta$ and some unary polynomial functions p_1, \ldots, p_k from $\operatorname{Pol}_1^A(\mathbf{P}^*(\mathbf{A}))$ such that for all $i \in \{1, \ldots, k\}$,

$$\langle t_{i-1}, t_i \rangle \in p_i(b_i) \times p_i(c_i) \text{ or } \langle t_i, t_{i-1} \rangle \in p_i(b_i) \times p_i(c_i).$$

(4 同) (4 回) (4 回)

... to hypergroups

Let $\langle H, \cdot \rangle$ be a hypergroup.

 $E_{ua}(\langle H, \cdot \rangle)$ = the set of the strongly regular equivalence relations The reproducibility condition defines the binary multioperations

$$/, \backslash : H^2 \to P^*(H), \ b/a = \{x \in H \mid b \in x \cdot a\}, \ a \backslash b = \{x \in H \mid b \in a \cdot x\},$$

but

$$E_{ua}(\langle H,\cdot
angle)=E_{ua}(\langle H,\cdot,/, ackslash
angle)$$

and $\langle H/\rho, \cdot \rangle$ is a group for any $\rho \in E_{ua}(\langle H, \cdot \rangle)$.

... to hypergroups

Let $\langle H, \cdot \rangle$ be a hypergroup.

 $E_{ua}(\langle H, \cdot \rangle)$ = the set of the strongly regular equivalence relations The reproducibility condition defines the binary multioperations

$$/, \backslash : H^2 \to P^*(H), \ b/a = \{x \in H \mid b \in x \cdot a\}, \ a \backslash b = \{x \in H \mid b \in a \cdot x\},$$

but

$$E_{ua}(\langle H,\cdot
angle)=E_{ua}(\langle H,\cdot,/,ackslash
angle)$$

and $\langle H/\rho,\cdot\rangle$ is a group for any $\rho\in E_{ua}(\langle H,\cdot\rangle).$

(Koskas, 1970) The fundamental relation of $\langle H, \cdot \rangle$ is (the transitive closure β^* of) the relation β defined by

$$x\beta y \Leftrightarrow \exists n \in \mathbb{N}^*, \ \exists a_1, \ldots, a_n \in H : \ x, y \in a_1 \cdots a_n.$$

... to hypergroups and commutativity

Let $\langle H, \cdot \rangle$ be a hypergroup.

(Freni, 2002) the commutative-fundamental relation of $\langle H, \cdot \rangle$ is (the transitive closure γ^* of) the relation γ defined by

$$x\gamma y \Leftrightarrow \exists n \in \mathbb{N}^*, \exists z_1, \ldots, z_n \in H, \exists \sigma \in S_n : x \in \prod_{i=1}^n z_i, y \in \prod_{i=1}^n z_{\sigma(i)},$$

★@> ★ E> ★ E> = E

... to hypergroups and commutativity

Let $\langle H, \cdot \rangle$ be a hypergroup.

$$\alpha_{\{\mathbf{x}_1\mathbf{x}_2=\mathbf{x}_2\mathbf{x}_1\}} = \bigcup_{n \in \mathbb{N}^*} \gamma_n,$$

where $\gamma_1 = \delta_H$ and for n > 1,

$$x\gamma_n y \Leftrightarrow \exists z_1, \ldots, z_n \in H, \exists i \in \{1, \ldots, n-1\}:$$

$$x \in z_1 \cdots z_{i-1}(z_i z_{i+1}) z_{i+2} \cdots z_n, y \in z_1 \cdots z_{i-1}(z_{i+1} z_i) z_{i+2} \cdots z_n.$$

the commutative-fundamental relation of $\langle H,\cdot\rangle$ is (the transitive closure γ^* of) the relation γ defined by

$$x\gamma y \Leftrightarrow \exists n \in \mathbb{N}^*, \exists z_1, \ldots, z_n \in H, \exists \sigma \in S_n : x \in \prod_{i=1}^n z_i, y \in \prod_{i=1}^n z_{\sigma(i)},$$

- (日) (三) (三) (三) (三)

... to hypergroups and commutativity

Let $\langle H, \cdot \rangle$ be a hypergroup.

$$\alpha_{\{\mathbf{x}_1\mathbf{x}_2=\mathbf{x}_2\mathbf{x}_1\}} = \bigcup_{n \in \mathbb{N}^*} \gamma_n,$$

where $\gamma_1 = \delta_H$ and for n > 1,

$$x\gamma_n y \Leftrightarrow \exists z_1, \ldots, z_n \in H, \ \exists i \in \{1, \ldots, n-1\}:$$

$$x \in z_1 \cdots z_{i-1}(z_i z_{i+1}) z_{i+2} \cdots z_n, \ y \in z_1 \cdots z_{i-1}(z_{i+1} z_i) z_{i+2} \cdots z_n.$$

The transitive closure of $\alpha_{\{x_1x_2=x_2x_1\}}$ is the commutative-fundamental relation of $\langle H, \cdot \rangle$ is (the transitive closure γ^* of) the relation γ defined by

$$x\gamma y \Leftrightarrow \exists n \in \mathbb{N}^*, \exists z_1, \ldots, z_n \in H, \exists \sigma \in S_n : x \in \prod_{i=1}^n z_i, y \in \prod_{i=1}^n z_{\sigma(i)},$$

since the cycles (12),(23),...,(n-1n) generate the symmetric group S_n

... to *n*-(semi)hypergroups

Let $\langle H, f \rangle$ be an *n*-semihypergroup $(n \in \mathbb{N}, n \ge 2)$.

(Davvaz, Fotea, 2008) the form of the fundamental relation of $\langle H, f \rangle$

(Davvaz, Dudek, Mirvakili, 2009) the commutative-fundamental relation of $\langle H,f\rangle$

... to *n*-(semi)hypergroups

Let $\langle H, f \rangle$ be an *n*-semihypergroup $(n \in \mathbb{N}, n \geq 2)$. Using the associativity of *f* one obtains the form of the term functions from $\langle P^*(H), f \rangle$ and from the characterization of the fundamental relation of a (general) multialgebra one can immediately deduce (Davvaz, Fotea, 2008) the form of the fundamental relation of $\langle H, f \rangle$ If we take $\mathcal{I} = \{f(\mathbf{x}_1, \dots, \mathbf{x}_n) = f(\mathbf{x}_{\sigma(1)}, \dots, \mathbf{x}_{\sigma(n)}) \mid \sigma \in S_n\}$, then $\alpha_{\mathcal{I}}^*$ is (Davvaz, Dudek, Mirvakili, 2009) the commutative-fundamental relation of $\langle H, f \rangle$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

... to *n*-(semi)hypergroups

Let $\langle H, f \rangle$ be an *n*-semihypergroup $(n \in \mathbb{N}, n \ge 2)$. Using the associativity of *f* one obtains the form of the term functions from $\langle P^*(H), f \rangle$ and from the characterization of the fundamental relation of a (general) multialgebra one can immediately deduce (Davvaz, Fotea, 2008) the form of the fundamental relation of $\langle H, f \rangle$ If we take $\mathcal{I} = \{f(\mathbf{x}_1, \dots, \mathbf{x}_n) = f(\mathbf{x}_{\sigma(1)}, \dots, \mathbf{x}_{\sigma(n)}) \mid \sigma \in S_n\}$, then $\alpha_{\mathcal{I}}^*$ is (Davvaz, Dudek, Mirvakili, 2009) the commutative-fundamental relation of $\langle H, f \rangle$

• If $\langle H, f \rangle$ is *n*-hypergroup, it hides in its structure the multioperations

$$(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n) \mapsto \{x \mid b \in f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)\}$$

but in the corresponding fundamental algebra the associativity of f and the existence of a solution for (each of) the equation $b = f(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)$ implies its uniqueness, thus

$$E_{ua}(\langle R,f\rangle)=E_{ua}(\langle R,f,f_1,\ldots,f_n\rangle).$$

・ロン ・回 と ・ 回 と ・ 日 と

... to hyperrings

Let $\langle A, +, \cdot \rangle$ be a hyperring.

(Vougiouklis, 1991) the fundamental relation Γ^* of $\langle A, +, \cdot \rangle$ is the transitive closure of the relation consisting of all the pairs $\langle x, y \rangle$ for which there exist $n, k_1, \ldots, k_n \in \mathbb{N}^*, x_{i1}, \ldots, x_{ik_i} \in A$ $(i = 1, \ldots, n)$ such that

$$x, y \in \sum_{i=1}^n \left(\prod_{j=1}^{k_i} x_{ij}\right).$$

向下 イヨト イヨト

... to hyperrings

Let $\langle A, +, \cdot \rangle$ be a hyperring.

Since \cdot is (sub)distributive with respect to +, any image of a term function of $\langle P^*(A), +, \cdot \rangle$ is contained in a sum of products of nonempty subsets of A, thus

the fundamental relation Γ^* of $\langle A, +, \cdot \rangle$ is the transitive closure of the relation consisting of all the pairs $\langle x, y \rangle$ for which there exist $n, k_1, \ldots, k_n \in \mathbb{N}^*, x_{i1}, \ldots, x_{ik_i} \in A$ $(i = 1, \ldots, n)$ such that

$$x, y \in \sum_{i=1}^n \left(\prod_{j=1}^{k_i} x_{ij}\right).$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

... to hyperrings and commutativity

Let $\langle A, +, \cdot \rangle$ be a hyperring and $\mathcal{I} = \{\mathbf{x}_1 + \mathbf{x}_2 = \mathbf{x}_2 + \mathbf{x}_1, \ \mathbf{x}_1 \cdot \mathbf{x}_2 = \mathbf{x}_2 \cdot \mathbf{x}_1\}.$

< □ > < □ > < □ > < □

Applications...

... to hyperrings and commutativity

Let $\langle A, +, \cdot \rangle$ be a hyperring and $\mathcal{I} = \{\mathbf{x}_1 + \mathbf{x}_2 = \mathbf{x}_2 + \mathbf{x}_1, \ \mathbf{x}_1 \cdot \mathbf{x}_2 = \mathbf{x}_2 \cdot \mathbf{x}_1\}.$

(Davvaz, Vougiouklis, 2007) $\alpha_{\mathcal{I}}^*$ is the transitive closure α^* of the relation consisting of all the pairs $\langle x, y \rangle$ for which there exist $n, k_1, \ldots, k_n \in \mathbb{N}^*$, $\tau \in S_n, x_{i1}, \ldots, x_{ik_i} \in A$, and $\sigma_i \in S_{k_i} (i = 1, \ldots, n)$ such that

$$x\in \sum_{i=1}^n \left(\prod_{j=1}^{k_i} x_{ij}
ight) ext{ and } y\in \sum_{i=1}^n \left(\prod_{j=1}^{k_i} x_{ au(i)\sigma_{ au(i)}(j)}
ight).$$

伺 とう ほう く きょう

Applications...

... to hyperrings and commutativity

Let $\langle A, +, \cdot \rangle$ be a hyperring and $\mathcal{I} = \{\mathbf{x}_1 + \mathbf{x}_2 = \mathbf{x}_2 + \mathbf{x}_1, \ \mathbf{x}_1 \cdot \mathbf{x}_2 = \mathbf{x}_2 \cdot \mathbf{x}_1\}.$

(Davvaz, Vougiouklis, 2007) $\alpha_{\mathcal{I}}^*$ is the transitive closure α^* of the relation consisting of all the pairs $\langle x, y \rangle$ for which there exist $n, k_1, \ldots, k_n \in \mathbb{N}^*$, $\tau \in S_n, x_{i1}, \ldots, x_{ik_i} \in A$, and $\sigma_i \in S_{k_i} (i = 1, \ldots, n)$ such that

$$x \in \sum_{i=1}^n \left(\prod_{j=1}^{k_i} x_{ij}
ight)$$
 and $y \in \sum_{i=1}^n \left(\prod_{j=1}^{k_i} x_{ au(i)\sigma_{ au(i)}(j)}
ight)$.

(P., Purdea, Stanca) $\alpha_{\mathcal{I}}^*$ is the transitive closure of the union of all the Cartesian products

$$t(a_1,\ldots,a_m)\times t'(a_1,\ldots,a_m),$$

where $t(a_1, \ldots, a_m)$ is a sum of products of elements of A (we allow the sum to have only one term and the products to have only one factor), and $t'(a_1, \ldots, a_m)$ is obtained from $t(a_1, \ldots, a_m)$ either by permuting two consecutive factors in a product or by permuting two consecutive terms in the sum.

Cosmin Pelea

Theorem (P., Purdea, Stanca)

The variety $M(\mathcal{I})$ of the \mathcal{F} -algebras which satisfy all the identities from \mathcal{I} is a reflective subcategory of the category of \mathcal{F} -multialgebras.

高 と く き と く き と

æ

Theorem (P., Purdea, Stanca)

The variety $M(\mathcal{I})$ of the \mathcal{F} -algebras which satisfy all the identities from \mathcal{I} is a reflective subcategory of the category of \mathcal{F} -multialgebras.

Some corollaries ...

向下 イヨト イヨト

æ

Theorem (P., Purdea, Stanca)

The variety $M(\mathcal{I})$ of the \mathcal{F} -algebras which satisfy all the identities from \mathcal{I} is a reflective subcategory of the category of \mathcal{F} -multialgebras.

Some corollaries ...

• The factorization of \mathcal{F} -multialgebras modulo $\alpha_{\mathcal{I}}^*$ provides a functor $F_{\mathcal{I}}$ which is a reflector for $M(\mathcal{I})$:

高 と く ヨ と く ヨ と

Theorem (P., Purdea, Stanca)

The variety $M(\mathcal{I})$ of the \mathcal{F} -algebras which satisfy all the identities from \mathcal{I} is a reflective subcategory of the category of \mathcal{F} -multialgebras.

Some corollaries ...

• The factorization of \mathcal{F} -multialgebras modulo $\alpha_{\mathcal{I}}^*$ provides a functor $F_{\mathcal{I}}$ which is a reflector for $M(\mathcal{I})$:

▶ $F_{\mathcal{I}}$ is defined by $F_{\mathcal{I}}(\mathbf{A}) = \mathbf{A}/\alpha_{\mathcal{I}}^*$ on objects,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (P., Purdea, Stanca)

The variety $M(\mathcal{I})$ of the \mathcal{F} -algebras which satisfy all the identities from \mathcal{I} is a reflective subcategory of the category of \mathcal{F} -multialgebras.

Some corollaries ...

• The factorization of \mathcal{F} -multialgebras modulo $\alpha_{\mathcal{I}}^*$ provides a functor $F_{\mathcal{I}}$ which is a reflector for $M(\mathcal{I})$:

▶ $F_{\mathcal{I}}$ is defined by $F_{\mathcal{I}}(\mathbf{A}) = \mathbf{A}/\alpha_{\mathcal{I}}^*$ on objects,

▶ $F_{\mathcal{I}}$ assigns to each multialgebra homomorphism $h : A \to B$ the unique universal algebra homomorphism \overline{h} which makes the diagram

commutative (the vertical arrows are the canonical projections).

Let \mathcal{I} be a set of identities and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Let \mathcal{I} be a set of identities and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra.

• $F_{\mathcal{I}}$ preserves the directed colimits.

Let \mathcal{I} be a set of identities and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra.

• $F_{\mathcal{I}}$ preserves the directed colimits.

(One should notice that, as in the case of the "fundamental functor" $F = F_{\{x=x\}}$, in general $F_{\mathcal{I}}$ does not preserve the (finite) products.)

(日本) (日本) (日本)

Let \mathcal{I} be a set of identities and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra.

• $F_{\mathcal{I}}$ preserves the directed colimits.

(One should notice that, as in the case of the "fundamental functor" $F = F_{\{x=x\}}$, in general $F_{\mathcal{I}}$ does not preserve the (finite) products.)

• $\mathbf{A}/\alpha_{\mathcal{I}}^* \cong (\mathbf{A}/\alpha_{\mathbf{A}}^*)/\underline{\alpha}_{\mathcal{I}}^*.$

(日本) (日本) (日本)

Let \mathcal{I} be a set of identities and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra.

• $F_{\mathcal{I}}$ preserves the directed colimits.

(One should notice that, as in the case of the "fundamental functor" $F = F_{\{x=x\}}$, in general $F_{\mathcal{I}}$ does not preserve the (finite) products.)

• $\mathbf{A}/\alpha_{\mathcal{I}}^* \cong (\mathbf{A}/\alpha_{\mathbf{A}}^*)/\underline{\alpha}_{\mathcal{I}}^*.$

• The commutative-fundamental group of a hypergroup is the abelianization of its fundamental group.

Cosmin Pelea

Let \mathcal{I} be a set of identities and let $\mathbf{A} = \langle A, F \rangle$ be an \mathcal{F} -multialgebra.

• $F_{\mathcal{I}}$ preserves the directed colimits.

(One should notice that, as in the case of the "fundamental functor" $F = F_{\{x=x\}}$, in general $F_{\mathcal{I}}$ does not preserve the (finite) products.)

•
$$\mathbf{A}/\alpha_{\mathcal{I}}^* \cong (\mathbf{A}/\alpha_{\mathbf{A}}^*)/\underline{\alpha}_{\mathcal{I}}^*.$$

• The commutative-fundamental group of a hypergroup is the abelianization of its fundamental group.

• For a hyperring $\langle A, +, \cdot \rangle$ with + weak commutative or with a multiplicative identity, its fundamental relation is $\alpha^*_{\{x_1+x_2=x_2+x_1\}}$,

$$\alpha^* = \alpha^*_{\{x_1 x_2 = x_2 x_1\}}$$

and the ring A/α^* is isomorphic to the factor of the fundamental ring of A over its commutator ideal.

(Ameri, Nozari, 2010) the fundamental relation of a fuzzy hyperalgebra

(Ameri, Nozari, 2010) the fundamental relation of a fuzzy hyperalgebra

(P., Purdea, Stanca) The category of \mathcal{F} -multialgebras is isomorphic to a reflective subcategory of the category of \mathcal{F} -fuzzy hyperalgebras (with fuzzy hyperalgebra homomorphisms and mapping composition).

A (20) A (20) A (20) A

(Ameri, Nozari, 2010) the fundamental relation of a fuzzy hyperalgebra

(P., Purdea, Stanca) The category of \mathcal{F} -multialgebras is isomorphic to a reflective subcategory of the category of \mathcal{F} -fuzzy hyperalgebras (with fuzzy hyperalgebra homomorphisms and mapping composition).

 \implies any variety of $\mathcal{F}\text{-algebras}$ is isomorphic to a reflective subcategory of the category of $\mathcal{F}\text{-fuzzy}$ hyperalgebras.

 \implies the composition of the isomorphism resulting from the proof with the corresponding reflector provides a functor *G* from the category of \mathcal{F} -fuzzy hyperalgebras into the category of \mathcal{F} -multialgebras.

(Ameri, Nozari, 2010) the fundamental relation of a fuzzy hyperalgebra

(P., Purdea, Stanca) The category of \mathcal{F} -multialgebras is isomorphic to a reflective subcategory of the category of \mathcal{F} -fuzzy hyperalgebras (with fuzzy hyperalgebra homomorphisms and mapping composition).

 \implies any variety of $\mathcal{F}\text{-algebras}$ is isomorphic to a reflective subcategory of the category of $\mathcal{F}\text{-fuzzy}$ hyperalgebras.

 \implies the composition of the isomorphism resulting from the proof with the corresponding reflector provides a functor *G* from the category of \mathcal{F} -fuzzy hyperalgebras into the category of \mathcal{F} -multialgebras.

 \implies the fundamental algebra of a fuzzy hyperalgebra **A** is the algebra $(F \circ G)(\mathbf{A})$ $(F = F_{\{\mathbf{x}=\mathbf{x}\}})$

(Ameri, Nozari, 2010) the fundamental relation of a fuzzy hyperalgebra

(P., Purdea, Stanca) The category of \mathcal{F} -multialgebras is isomorphic to a reflective subcategory of the category of \mathcal{F} -fuzzy hyperalgebras (with fuzzy hyperalgebra homomorphisms and mapping composition).

 \implies any variety of $\mathcal{F}\text{-algebras}$ is isomorphic to a reflective subcategory of the category of $\mathcal{F}\text{-fuzzy}$ hyperalgebras.

 \implies the composition of the isomorphism resulting from the proof with the corresponding reflector provides a functor *G* from the category of \mathcal{F} -fuzzy hyperalgebras into the category of \mathcal{F} -multialgebras.

 \implies the fundamental algebra of a fuzzy hyperalgebra **A** is the algebra $(F \circ G)(\mathbf{A})$ $(F = F_{\{\mathbf{x}=\mathbf{x}\}})$

• Replacing F by $F_{\mathcal{I}}$ in the above statement opens up the possibility to define the \mathcal{I} -fundamental algebra of a fuzzy multialgebra for any set \mathcal{I} of identities.

..... and other applications

(P., Purdea, Stanca) If **A** is a multialgebra, $\mu : A \rightarrow [0, 1]$ is a fuzzy submultialgebra of **A** and $\rho \in E_{ua}(\mathbf{A})$, then μ_{ρ} defined by

$$\mu_{\rho}(\mathbf{y}/\rho) = \bigvee \{\mu(\mathbf{x}) \mid \langle \mathbf{x}, \mathbf{y} \rangle \in \rho \}$$

is a fuzzy subalgebra of \mathbf{A}/ρ .

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

..... and other applications

(P., Purdea, Stanca) If **A** is a multialgebra, $\mu : A \rightarrow [0, 1]$ is a fuzzy submultialgebra of **A** and $\rho \in E_{ua}(\mathbf{A})$, then μ_{ρ} defined by

$$\mu_{\rho}(y/\rho) = \bigvee \{\mu(x) \mid \langle x, y \rangle \in \rho\}$$

is a fuzzy subalgebra of \mathbf{A}/ρ .

 $\implies \mu_{\alpha_{\mathcal{I}}^*}$ is a fuzzy subalgebra of $\mathbf{A}/\alpha_{\mathcal{I}}^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト

..... and other applications

(P., Purdea, Stanca) If **A** is a multialgebra, $\mu : A \rightarrow [0, 1]$ is a fuzzy submultialgebra of **A** and $\rho \in E_{ua}(\mathbf{A})$, then μ_{ρ} defined by

$$\mu_{\rho}(\mathbf{y}/\rho) = \bigvee \{\mu(\mathbf{x}) \mid \langle \mathbf{x}, \mathbf{y} \rangle \in \rho\}$$

is a fuzzy subalgebra of \mathbf{A}/ρ .

$$\implies \mu_{\alpha_{\tau}^*}$$
 is a fuzzy subalgebra of $\mathbf{A}/\alpha_{\tau}^*$.

 $\implies \mu_{\alpha^*_{\mathbf{A}}}$ is a fuzzy subalgebra of the fundamental algebra of \mathbf{A} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

For details, see ...

Pelea, C.: *On the fundamental relation of a multialgebra*, Ital. J. Pure Appl. Math. 10 (2001), 141–146

Pelea, C.: Hyperrings and α^* -relations. A general approach, J. Algebra 383 (2013), 104–128

Pelea, C., Purdea, I.: *Multialgebras, universal algebras and identities*, J. Aust. Math. Soc. 81 (2006), 121–139

Pelea, C., Purdea, I., Stanca, L.: *Fundamental relations in multialgebras. Applications*, European J. Combin., to appear

Pelea, C., Purdea, I., Stanca, L.: *Factor multialgebras, universal algebras and fuzzy sets*, Carpathian J. Math., to appear

(4 同) (4 回) (4 回)

The participation to the conference was supported by the CNCS-UEFISCDI grant PN-II-RU-TE-2011-3-0065.

向下 イヨト イヨト

æ