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A recipe:

(F. Marty, 8th Congress of the Scandinavian Mathematicians,
Stockholm, 1934)

I Let (G , ·) be a group, H ≤ G and G/H = {xH | x ∈ G}. The
equality

(1) (xH)(yH) = {zH | z = x ′y ′, x ′ ∈ xH, y ′ ∈ yH}.

defines an operation on G/H if and only if H E G .

I In general, (1) defines a function

G/H × G/H → P∗(G/H)

called binary multioperation (on G/H) (and (G/H, ·) is a
hypergroup).
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Multialgebra

An n-ary multioperation f on a set A is a mapping

f : An → P∗(A).

(P∗(A) denotes the set of the nonempty subsets of A).

Let F be a type of (multi)algebras.

A multialgebra A = (A,F ) of type F consists of a set A and a
family of multioperations F obtained by associating a
multioperation f A (or, simply, f ) on A to each symbol f from F .
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The recipe:

Later, in ‘A representation theorem for multi-algebras’, Arch.
Math., 3 1962, 452–456, G. Grätzer proved that:

Any multialgebra A results from a universal algebra B and an
appropriate equivalence on B as before, i.e. by taking

f (a1/ρ, . . . , an/ρ) = {b/ρ | b = f (b1, . . . , bn), aiρbi , i ∈ {1, . . . , n}}.

⇒ the importance of the factor multialgebras in multialgebra
theory.
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The start:

M. Dresher, O. Ore, ‘Theory of multigroups’, Amer. J. Math., 60
1938, 705–733.

M. Koskas, ‘Groupöıdes, demi-hypergroupes et hypergroupes’, J.
Math. Pures et Appl., 49, 1970, 155–192.

D. Freni, ‘A new characterization of the derived hypergroup via
strongly regular equivalences’, Comm. Algebra, 30 2002,
3977–3989.

⇒ the importance of the equivalence relations of
(semi)hypergroups for which the factor hypergroup(oid) is a group
(strongly regular equivalences)
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The start:

Let (H, ·) be a (semi)hypergroup.

• the smallest strongly regular equivalence of (H, ·) = the
fundamental relation of (H, ·) = the transitive closure β∗ of

xβy ⇔ ∃n ∈ N∗, ∃a1, . . . , an ∈ H : x , y ∈ a1 · · · an

(if (H, ·) is a hypergroup, then β∗ = β)

• the smallest strongly regular equivalence of (H, ·) for which the
factor hypergroup is a commutative group = the transitive closure
γ∗ of the relation

xγy ⇔ ∃n ∈ N∗,∃z1, . . . , zn ∈ H, ∃σ ∈ Sn : x ∈
n∏

i=1

zi , y ∈
n∏

i=1

zσ(i)

(if (H, ·) is a hypergroup, then γ∗ = γ)
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The problems:

1. Characterize the fundamental relation α∗ for a (general)
multialgebra and prove that

(B/ρ)/α∗ ∼= B/θ(ρ),

(B is a universal algebra, ρ is an equivalence relation on B, and
θ(ρ) is the smallest congruence relation on B which contains ρ)
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The problems:

2. Let q, r be n-ary terms of type F . Determine the smallest
equivalence relation α∗qr of a (general) multialgebra for which the
factor multialgebra is a universal algebra satisfying the identity

q = r .

If B is a universal algebra, ρ is an equivalence on B, and θ(ρqr ) is
the congruence of B generated by

ρ ∪ {(q(b1, . . . , bn), r(b1, . . . , bn)), b1, . . . , bn ∈ B}),

prove that
(B/ρ)/α∗qr

∼= B/θ(ρqr ),
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The tools:
For a multialgebra A = (A,F ) we consider:

• the universal algebra P∗(A) of the nonempty subsets of A, defined
by

f P
∗(A)(A1, . . . ,An) =

⋃
{f A(a1, . . . , an) | ai ∈ Ai , i = 1, . . . , n}

• the algebra P
(n)
P∗(A)(P

∗(A)) of the n-ary polynomial functions of the

algebra P∗(A)

• the subalgebra P
(n)
A (P∗(A)) of P

(n)
P∗(A)(P

∗(A)) generated by

{cna | a ∈ A} ∪ {eni | i ∈ {1, . . . , n}},

where cna , e
n
i : P∗(A)n → P∗(A) are given by

cna (A1, . . . ,An) = {a} and eni (A1, . . . ,An) = Ai ;

• the algebra P(n)(P∗(A)) of the n-ary term functions of P∗(A);

• the set Eua(A) of the equivalence relations ρ on A for which A/ρ is
a universal algebra (which is an algebraic closure system on A× A).
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The results:

• the smallest equivalence relation α∗qr from Eua(A) for which
the factor multialgebra is a universal algebra satisfying the
identity q = r is the transitive closure of the relation

xαqry ⇔ ∃p ∈ P
(1)
A (P∗(A)), ∃ a1, . . . , an ∈ A :

x ∈ p(q(a1, . . . , an)), y ∈ p(r(a1, . . . , an)) or

y ∈ p(q(a1, . . . , an)), x ∈ p(r(a1, . . . , an));

• the correspondence

(B/ρ)/α∗qr → B/θ(ρqr ), (a/ρ)/α∗qr 7→ a/θ(ρqr )

is a universal algebra isomorphism.
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The results:

Taking q and r to be the same variable, we have:

• the fundamental relation α∗ of the multialgebra A (i.e. the
smallest element from Eua(A)) is the transitive closure of the
relation

xαy ⇔ ∃p ∈ P
(1)
A (P∗(A)),∃a ∈ A : x , y ∈ p(a);

⇒ the fundamental relation α∗ of the multialgebra A the
transitive closure of the relation α defined by

xαy ⇔ x , y ∈ p(a1, . . . , an)

for some n ∈ N, p ∈ P(n)(P∗(A)) and a1, . . . , an ∈ A;

• the correspondence (a/ρ)/α∗ 7→ a/θ(ρ) provides the universal
algebra isomorphism

(B/ρ)/α∗ → B/θ(ρ).
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A return to hypergroups:
Let (H, ·) be a hypergroup.

αx1x2,x2x1 =
⋃

n∈N∗

γn,

where γ1 = δH and for n > 1,

xγny ⇔ ∃z1, . . . , zn ∈ H, ∃i ∈ {1, . . . , n − 1} :

x ∈ z1 · · · zi−1(zizi+1)zi+2 · · · zn,
y ∈ z1 · · · zi−1(zi+1zi )zi+2 · · · zn,

The strongly regular relation γ∗ is the transitive closure of
αx1x2,x2x1 which is, clearly, (the transitive closure of) the relation

xγy ⇔ ∃n ∈ N∗, ∃z1, . . . , zn ∈ H,∃σ ∈ Sn : x ∈
n∏

i=1

zi , y ∈
n∏

i=1

zσ(i),

since the cycles (1, 2), (2, 3), . . . , (n − 1, n) generate the symmetric
group (Sn, ◦).
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A return to hypergroups:

The derived subhypergroup of a hypergroup (K , ·) is

D(K ) = ϕ−1K (1K/γ),

where ϕK : K → K/γ is the canonical projection and 1K/γ is the
identity of the group (K/γ, ·).

Let (G , ·) be a group, G ′ its derived subgroup, H ≤ G and (G/H, ·)
the hypergroup defined by

(1) (xH)(yH) = {zH | z = x ′y ′, x ′ ∈ xH, y ′ ∈ yH}.

Let πH : G → G/H and ϕG/H : G/H → (G/H)/γ be the canonical
projections. The group isomorphism

h : (G/H)/γ → G/(G ′H), h((xH)/γ) = x(G ′H)

helps us provide the following connection between the derived
subhypergroup of G/H and the derived subgroup of G

D(G/H) = (h ◦ ϕG/H)−1(G ′H) = (G ′H)/H = πH(G ′).
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For details, see...

Pelea, C.; Purdea, I.: Multialgebras, universal algebras and
identities, J. Aust. Math. Soc, 81, 2006, 121–139.

Pelea, C.; Purdea, I.: Identities in multialgebra theory, Algebraic
Hyperstructures and Applications. Proceedings of the 10th
International Congress, Brno, 2008, 2009, 251–266.
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