
ON THE FUNDAMENTAL RELATION OF A MULTIALGEBRA

Cosmin Pelea
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Abstract. The object of this paper are multialgebras. The purpose of this paper is to give
the form of the fundamental relation of a multialgebra, i.e. the smallest equivalence relation
for which the quotient set, considered as a multialgebra, is a universal algebra.

Let τ = (nγ)γ<o(τ) be a sequence over N = {0, 1, ...} , where o(τ) is an ordinal. Let A

be a nonvoid set and P ∗(A) the family of nonempty subsets of A . Let A = (A, (fγ)γ<o(τ))
be a multialgebra, where fγ : Anγ → P ∗(A) is a multioperation of arity nγ ∈ N , for any
γ < o(τ) . A induces a universal algebra (P ∗(A), (fγ)γ<o(τ)) with the operations:

fγ(A0, ..., Anγ−1) =
⋃
{fγ(a0, ..., anγ−1) | ai ∈ Ai, ∀i ∈ {0, ..., nγ − 1}},

for any γ <o(τ ) and A0, ..., Anγ−1 ∈ P ∗(A) . We denote this algebra by P∗(A) .
In [3] Grätzer presents the algebra of the term functions of a universal algebra B =

= (B, (fγ)γ<o(τ)). If we add to the set of the operations of B the nullary operations
corresponding to the elements of B (i.e. the functions {∅} → B, ∅ 7→ b , for all b ∈ B ),
the n -ary term functions of this new algebra are called the n -ary polynomial functions
of B . The n-ary polynomial functions P (n)(B) of B form a universal algebra with the
operations (fγ)γ<o(τ) , denoted by P(n)(B).

For any n ∈ N , we can construct the algebra P(n)(P∗(A)) of n-ary polynomial functions
on P∗(A). Consider the subalgebra P

(n)
A (P∗(A)) of P(n)(P∗(A)) obtained by adding to

the operations (fγ)γ<o(τ) of P∗(A) only the nullary operations associated to the elements
of A (we identify {a} with a).

Thus the elements of P
(n)
A (P∗(A)) (n ∈ N) are those and only those functions from

(P ∗(A))n into P ∗(A) which can be obtained by applying (i), (ii) and (iii) from bellow for
finitely many times:

(i) the functions cn
a : (P ∗(A))n → (P ∗(A)) defined by setting cn

a(X0, ..., Xn−1) = a, for

all X0, ..., Xn−1 ∈ P ∗(A) are elements of P
(n)
A (P∗(A)), for every a ∈ A ;

(ii) the functions en
i : (P ∗(A))n → P ∗(A), en

i (X0, ..., Xn−1) = Xi , for all X0, ..., Xn−1 ∈
∈ P ∗(A), i = 0, ..., n− 1 are elements of P

(n)
A (P∗(A));
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(iii) if p0, ..., pnγ−1 are elements of P
(n)
A (P∗(A)) and γ < o(τ) then fγ(p0, ..., pnγ−1) :

(P ∗(A))n → P ∗(A) defined by setting for all X0, ..., Xn−1 ∈ P ∗(A),

(fγ(p0, ..., pnγ−1))(X0, ..., Xn−1) = fγ(p0(X0, ..., Xn−1), ..., pnγ−1(X0, ..., Xn−1))

is also an element of P
(n)
A (P∗(A)).

In this paper we will use only polynomial functions from P
(n)
A (P∗(A)) thus we will drop

the subscript A with no danger of confusion.

1. Definition. Let α be the relation defined on A as follows: for x, y ∈ A set xαy if
x, y ∈ p(a0, ..., an) for some n ∈ N, p ∈ P (n)(P∗(A)), and a0, ..., an ∈ A .

It is clear that α is symmetric. Because any a ∈ A is an element of e1
0(a), the relation

α is also reflexive. We take α∗ to be the transitive closure of α . Then α∗ is an equivalence
relation on A .

Recall that for a given equivalence relation ρ on A , for X, Y ⊆ A , we write X ρ Y if
and only if xρy holds for all x ∈ X, y ∈ Y.

2. Lemma. If f ∈ P (1)(P∗(A)) and a, b ∈ A satisfy a α∗ b then f(a) α∗ f(b) .

Proof. By the definition of α∗ ,

a = y0 α y1 α ... α ym−1 = b

for some m ∈ N and y1, ..., ym−2 ∈ A. Let ui ∈ f(yi) be arbitrary (i = 0, ...,m − 1).
Consider 0 ≤ j < m−1. Clearly, yj α yj+1 means that yj , yj+1 ∈ pj(a0, ..., an−1) for some
nj ∈ N, pj ∈ P (nj)(P∗(A)) and a0, ..., anj−1 ∈ A . Define the nj -ary multioperation q on
A by setting

qj(x0, ..., xnj−1) = f(pj(x0, ..., xnj−1))

for all x0, ..., xnj−1 ∈ A . Clearly, qj ∈ P (nj)(P∗(A)) and

qj(a0, ..., anj−1) =
⋃
{f(z)| z ∈ pj(a0, ..., anj−1)}.

In particular, from yj , yj+1 ∈ pj(a0, ..., an−1) we get

uj ∈ f(yj) ⊆ qj(a0, ..., an−1) ⊇ f(yj+1) 3 uj+1,

proving uj α uj+1 . Thus u0 α∗ um−1 . Since u0 ∈ f(a) and um−1 ∈ f(b) were arbitrary,

we obtain f(a) α∗ f(b). ¤

Recall that, for a given multialgebra A and an equivalence relation ρ on A , the set A/ρ

can be seen as a multialgebra A/ρ with the multioperations:

fγ(ρ〈a0〉, ..., ρ〈anγ−1〉) = {ρ〈b〉| b ∈ fγ(b0, ..., bnγ−1), bi ∈ ρ〈ai〉,(1)

∀i ∈ {0, ..., nγ − 1}}, γ < o(τ)

(where ρ〈x〉 denotes the class of x modulo ρ).
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3. Lemma. If ρ is an equivalence relation on A such that A/ρ is a universal algebra then
for any n ∈ N , p ∈ P (n)(P∗(A)) and a0, ..., an−1 ∈ A , we have that x, y ∈ p(a0, ..., an−1)
implies xρy .

Proof. We will prove this statement by induction over the steps of construction of an n-ary
polynomial function (n ∈ N arbitrary).

If p = cn
a , from x, y ∈ cn

a(a0, ..., an−1) we deduce that x = y = a thus xρy .
If p = en

i , with i ∈ {0, ..., n−1} , from x, y ∈ en
i (a0, ..., an−1) we deduce that x = y = ai

thus xρy .
We suppose that the statement holds for the n-ary polynomial functions p0, ..., pnγ−1

and we will prove it for the n -ary polynomial function fγ(p0, ..., pnγ−1) (where γ < o(τ)).
If

x, y ∈ fγ(p0, ..., pnγ−1)(a0, ..., an−1) = fγ(p0(a0, ..., an−1), ..., pnγ−1(a0, ..., an−1))

then there exist xi, yi ∈ pi(a0, ..., an−1), i ∈ {0, ..., nγ − 1} such that x ∈ fγ(x0, ..., xnγ−1)
and y ∈ fγ(y0, ..., ynγ−1). Obviously xiρyi , for all i ∈ {0, ..., nγ − 1} and according to (1)
and to the hypothesis of the lemma we have that ρ〈x〉 = ρ〈y〉 , i.e. xρy . ¤

Now we can prove the following:

4. Theorem. The relation α∗ is the smallest equivalence relation on A such that A/α∗

is a universal algebra.

Proof. To start we show that A/α∗ is a universal algebra. For this we take any x, y ∈ A

such that α∗〈x〉, α∗〈y〉 ∈ fγ(α∗〈a0〉, ..., α∗〈anγ−1〉), with a0, ..., anγ−1 ∈ A, γ < o(τ); this
means that there exist x0, ..., xnγ−1, y0, ..., ynγ−1 ∈ A such that x ∈ fγ(x0, ..., xnγ−1), y ∈
∈ fγ(y0, ..., ynγ−1) and xi α∗ ai α∗ yi for all i ∈ {0, ..., nγ − 1} . Applying Lemma 2 to the
unary polynomial functions

fγ(z, cn
x1

, ..., cn
xnγ−1

), fγ(cn
y0

, z, cn
y2

..., cn
xnγ−1

), ..., fγ(cn
y0

, ..., cn
ynγ−2

, z)

we have the following relations:

fγ(x0, x1, ..., xnγ−1) α∗ fγ(y0, x1, ..., xnγ−1),

fγ(y0, x1, x2, ..., xnγ−1) α∗ fγ(y0, y1, x2, ..., xnγ−1),

...

fγ(y0, ..., ynγ−2, xnγ−1) α∗ fγ(y0, ..., ynγ−2, ynγ−1),

which leads us (from the definition of α∗ ) to xα∗y , i.e. α∗〈x〉 = α∗〈y〉 . This means that fγ

given in (1) is an operation on A/α∗ , for any γ < o(τ), and A/α∗ is a universal algebra.
Let us show now that any equivalence ρ on A with the property that A/ρ is a universal

algebra verifies α∗ ⊆ ρ . Indeed, if xαy then there exist n ∈ N, p ∈ P (n)(P∗(A)) and
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a0, ..., anγ−1 ∈ A for which x, y ∈ p(a0, ..., anγ−1); Lemma 3 tells us that xρy , hence
α ⊆ ρ , which implies α∗ ⊆ ρ . ¤

5. Remarks. a) The equivalence relations ρ on A for which A/ρ is a universal algebra are
those equivalence relations on A which satisfy the following property: if a, b ∈ A such that
aρb then for every γ < o(τ) and x0, ..., xnγ−1 ∈ A we have

fγ(x0, ..., xi−1, a, xi+1, ..., xnγ−1) ρ fγ(x0, ..., xi−1, b, xi+1, ..., xnγ−1),

for all i ∈ {0, ..., nγ − 1} .
Indeed, if aρb , knowing that xjρxj for all j ∈ {0, ..., nγ − 1} , because any fγ defined

on A/ρ by (1) is an operation it results that

fγ(x0, ..., xi−1, a, xi+1, ..., xnγ−1) ρ fγ(x0, ..., xi−1, b, xi+1, ..., xnγ−1),

for all i ∈ {0, ..., nγ − 1} . The converse implication can be proved like in the first part of
the theorem 4.

b) If we are in the case of the remark a) we can define the operations of the universal
algebra A/ρ as follows:

(2) fγ(ρ〈a0〉, ..., ρ〈anγ−1〉) = {ρ〈b〉| b ∈ fγ(a0, ..., anγ−1)}.

Moreover, we can write

(3) fγ(ρ〈a0〉, ..., ρ〈anγ−1〉) = ρ〈b〉, b ∈ fγ(a0, ..., anγ−1).

6. Examples. 1) If (H, ◦) is a hypergroupoid (i.e. a multialgebra with one binary multi-
operation) then the equivalence relations ρ satisfying the property that H/ρ with the hyper-
operation

ρ〈x〉 ◦ ρ〈y〉 = {ρ〈z〉| z ∈ x′ ◦ y′, x′ ∈ ρ〈x〉, y′ ∈ ρ〈y〉}
is a groupoid, are the strongly regular equivalence relations on H (see [1], 8, 31), and the
operation of H/ρ is

ρ〈x〉 ◦ ρ〈y〉 = ρ〈z〉, z ∈ x ◦ y.

Thus α∗ becomes in this case the smallest strongly regular equivalence on H , i.e. β∗

defined in [1], 11.
The same equality of relations can be established by considering the groupoid of poly-

nomial functions of the groupoid of the nonvoid parts of H , (P ∗(H), ◦) and writing the
definition of α∗ in the terms of the polynomial functions of (P ∗(H), ◦).

It is useful to observe that if (H, ◦) is a semihypergroup or a hypergroup and ρ is a
strongly regular equivalence relation on H (in particular β∗ ), then (H/ρ, ◦) is a semigroup
or a group, respectively (see [1]).

2) Let us consider a hyperring in the general sense (R, +, ·). This means that (R, +) is
a hypergroup, (R, ·) is a semihypergroup and any x, y, z ∈ R satisfy x · (y +z) ⊆ x ·y +x ·z
and (y + z) · x ⊆ y · x + z · x .

4



Let (P ∗(R), +, ·) be the universal algebra with two binary operations defined as follows:

A + B =
⋃
{a + b| a ∈ A, b ∈ B},

A ·B =
⋃
{a · b| a ∈ A, b ∈ B}.

Obviously, the two operations defined above are associative; moreover,

A · (B + C) =
⋃
{a · (b + c)| a ∈ A, b ∈ B, c ∈ C} ⊆

⊆
⋃
{a · b + a · c)| a ∈ A, b ∈ B, c ∈ C} ⊆

⊆ A ·B + A · C

and analogously
(B + C) ·A ⊆ B ·A + C ·A.

We can construct the universal algebra (with two binary operations) of the polynomial
functions of (P ∗(R), +, ·) for any n ∈ N∗ . The images of the elements of this algebra are
the sums of products of nonvoid subsets of R or they are included in the images of some
polynomial functions of this form. Thus we can define α on R in the following way:

aαb ⇔ ∃xij ∈ R, i ∈ {0, ..., kj − 1}, j ∈ {0, ..., l − 1} (kj , l ∈ N∗)

such that

(4) a, b ∈
l−1∑

j=0

(
kj−1∏

i=0

xij).

(The left-right implication results from the definition of α and from the remarks from
above, and the other implication is trivial.)

If we consider the quotient set R/α∗ with the hyperoperations:

α∗〈a〉+ α∗〈b〉 = {α∗〈c〉| c ∈ a′ + b′, a′α∗a, b′α∗b},

α∗〈a〉 · α∗〈b〉 = {α∗〈c〉| c ∈ a′ · b′, a′α∗a, b′α∗b},
which are operations because α∗ is a strongly regular equivalence both on (R, +) and
(R, ·) (see Lemma 2). We have to remark that (R/α∗, +) is a group (abelian, if (R, +) is a
commutative hypergroup) and (R/α∗, ·) is a semigroup. Let us verify if the distributivity
of · with respect to + holds for the universal algebra (R/α∗,+, ·). We can rewrite the
operations of R/α∗ :

α∗〈a〉+ α∗〈b〉 = α∗〈c〉, c ∈ a + b,

α∗〈a〉 · α∗〈b〉 = α∗〈c〉, c ∈ a · b,
thus

α∗〈a〉 · (α∗〈b〉+ α∗〈c〉) = α∗〈a〉 · α∗〈d〉 = α∗〈e〉,
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where e ∈ a · d ⊆ a · (b + c) ⊆ a · b + a · c , therefore

α∗〈e〉 = α∗〈x〉+ α∗〈y〉,

where x ∈ a · b, y ∈ a · c , which leads us to

α∗〈e〉 = α∗〈a〉 · α∗〈b〉+ α∗〈a〉 · α∗〈c〉.

We have proved that

α∗〈a〉 · (α∗〈b〉+ α∗〈c〉) = α∗〈a〉 · α∗〈b〉+ α∗〈a〉 · α∗〈c〉.

Analogously we can prove

(α∗〈b〉+ α∗〈c〉) · α∗〈a〉 = α∗〈b〉 · α∗〈a〉+ α∗〈c〉 · α∗〈a〉.

We can conclude that, if the hypergroup (R, +) is commutative then (R/α∗, +, ·) is a
ring.

In the particular case of hyperrings with a zero 0 and a unit 1 the images of the polyno-
mial functions that appear in the definition of the fundamental relation can be completed
with zero terms and unit factors such that the definition (4) becomes similar to the defini-
tion of n from [6].
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