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Abstract. This paper deals with multialgebras. An important instrument in
this paper is the fundamental relation of a multialgebra, which can bring us
into the class of the universal algebras. In this paper we will try to establish
in what conditions the fundamental algebra of a product of multialgebras is
the product of their fundamental algebras.

1. Introduction

Multialgebras (also called hyperstructures) have been studied for more than sixty
years and they are used in different areas of mathematics as well as in some applied
sciences (see [3]). The class of all the multialgebras of a given type can be seen as a
category for which the morphisms are the multialgebra homomorphisms. In [8] we
presented some properties of the direct product of multialgebras and we saw that
the direct product is the product in this category.

As it results from [13] and [14], an important tool in the hyperstructure theory is
the fundamental relation of a multialgebra. From [7] it follows that the factorization
of a multialgebra by the fundamental relation furnishes a functor. The question
that leads to the results presented in this paper is whether this functor commutes
with the products, or, in other words, if the fundamental algebra of a product of
multialgebras is the product of their fundamental algebras. As we will see in this
paper, the answer is negative, but we can find classes of multialgebras for which
this property holds. The semihypergroups from [2, Proposition 346] form a class
for which this property holds.

Since the main instruments we are using in our approach are the term functions
of the universal algebra of the nonvoid subsets of a multialgebra, we will consider
two particular classes of multialgebras for which we know the form of these term
functions: the class of hypergroups, and the class of the complete multialgebras
(see [7]). As an immediate example of a class which satisfies our property we will
obtain the class of the complete hypergroups.

2. Preliminaries

Let τ = (nγ)γ<o(τ) be a sequence over N = {0, 1, . . .}, where o(τ) is an ordinal
and for any γ < o(τ), let fγ be a symbol of an nγ-ary (multi)operation and let us
consider the algebra of the n-ary terms (of type τ) P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ)).

Let A be a nonempty set and P ∗(A) the set of nonempty subsets of A. Let
A = (A, (fγ)γ<o(τ)) be a multialgebra, where, for any γ < o(τ), fγ : Anγ → P ∗(A)

1991 Mathematics Subject Classification. 08A05, 20N20.
Key words and phrases. multialgebra, hypergroup, complete multialgebra, fundamental alge-

bra, direct product.

1



2 COSMIN PELEA

is the multioperation of arity nγ that corresponds to the symbol fγ . One can
admit that the support set A of the multialgebra A is empty if there are no nullary
multioperations among the multioperations fγ , γ < o(τ). Of course, the universal
algebras are particular cases of multialgebras.

If, for any γ < o(τ) and for any A0, . . . , Anγ−1 ∈ P ∗(A), we define

fγ(A0, . . . , Anγ−1) =
⋃
{fγ(a0, . . . , anγ−1) | ai ∈ Ai, i ∈ {0, . . . , nγ − 1}},

we obtain a universal algebra on P ∗(A) (see [10]). We denote this algebra by P∗(A).
As in [5], we can construct, for any n ∈ N, the algebra P(n)(P∗(A)) of the n-ary
term functions on P∗(A).

Let A be a multialgebra and ρ be an equivalence relation on its support set A.
We obtain, as in [4], a multialgebra on A/ρ by defining the multioperations in the
factor multialgebra A/ρ as follows: for any γ < o(τ),

fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = {ρ〈b〉 | b ∈ fγ(b0, . . . , bnγ−1), aiρbi, i ∈ {0, . . . , nγ − 1}}
(ρ〈x〉 denotes the class of x modulo ρ).

A mapping h : A → B between the multialgebras A and B of the same type τ
is called homomorphism if for any γ < o(τ) and for all a0, . . . , anγ−1 ∈ A we have

(1) h(fγ(a0, . . . , anγ−1)) ⊆ fγ(h(a0), . . . , h(anγ−1)).

As in [12] we can see the multialgebra A as a relational system (A, (rγ)γ<o(τ)) if
we consider that, for any γ < o(τ), rγ is the nγ + 1-ary relation defined by

(2) (a0, . . . , anγ−1, anγ ) ∈ rγ ⇔ anγ ∈ fγ(a0, . . . , anγ−1).

Thus, the definition of the multialgebra homomorphism follows from the definition
of the homomorphism among relational systems.

A bijective mapping h is a multialgebra isomorphism if both h and h−1 are mul-
tialgebra homomorphisms. As it results from [10], the multialgebra isomorphisms
can be characterized as being those bijective homomorphisms h for which we have
equality in (1).

Remark 1. From the steps of construction of a term (function) it follows that for a
homomorphism h : A → B, if n ∈ N, p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A then

h(p(a0, . . . , an−1)) ⊆ p(h(a0), . . . , h(an−1)).

The definition of the multioperations of A/ρ allows us to see the canonical map-
ping from A to A/ρ as a homomorphism of multialgebras.

The fundamental relation of the multialgebra A is the transitive closure α∗ = α∗A
of the relation α = αA given on A as follows: for x, y ∈ A, xαy if and only if

(3) x, y ∈ p(a0, . . . , an−1) for some n ∈ N, p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A,

where p ∈ P (n)(P∗(A)) is the term function induced by p on P∗(A). The relation
α∗ is the smallest equivalence relation on A with the property that the factor
multialgebra A/α∗ is a universal algebra (see [6] and [7]). The universal algebra
A = A/α∗ is called the fundamental algebra of A. We denote by ϕA the canonical
projection of A onto A and by a the class α∗〈a〉 = ϕA(a) of an element a ∈ A.

The next theorem is proved in [7] for those homomorphisms for which in (1) we
have equality, but this additional request is not used in the proof, so we have:
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Theorem 1. If A, B are multialgebras and A, B respectively, are their funda-
mental algebras and if f : A → B is a homomorphism then there exists only one
homomorphism of universal algebras f : A → B such that the following diagram is
commutative:

(4)

A
f //

ϕA

²²

B

ϕB

²²
A

f // B

(ϕA and ϕB denote the canonical projections).

Corollary 1. a) If A is a multialgebra then 1A = 1A.
b) If A, B, C are multialgebras of the same type τ and if f : A → B, g : B → C

are homomorphisms, then g ◦ f = g ◦ f.

We can easily construct the category of the multialgebras of the same type τ
where the morphisms are considered to be the homomorphisms and the composition
of two morphisms is the usual mapping composition. It is known that the universal
algebras of the same type τ together with the homomorphisms between them form a
category which is, obviously, a full subcategory in the category of the multialgebras
introduced above. We will denote by Malg(τ) the category of the multialgebras of
type τ and by Alg(τ) the category of the universal algebras of type τ mentioned
before.

Remark 2. From Corollary 1 it results that we can define a functor F : Malg(τ) −→
Alg(τ) as follows: F (A) = A, for any multialgebra A of type τ, and F (f) = f
which makes the diagram (4) commutative, for any homomorphism f between the
multialgebras A and B of type τ .

Let q, r ∈ P(n)(τ). Using the model offered by [5] and the definitions of the
hyperstructures from [2] and of the generalizations presented in [14], named Hv-
structures, we can consider that the n-ary (strong) identity

q = r

is said to be satisfied in multialgebra A of type τ if

q(a0, . . . , an−1) = r(a0, . . . , an−1)

for all a0, . . . , an−1 ∈ A, where q and r are the term functions induced by q and r
respectively on P∗(A). We can also consider that a weak identity (the notation is
intended to be as suggestive as possible)

q ∩ r 6= ∅
is said to be satisfied in a multialgebra A of type τ if

q(a0, . . . , an−1) ∩ r(a0, . . . , an−1) 6= ∅
for all a0, . . . , an−1 ∈ A, where q and r have the same signification as before.

Remark 3. Many important particular multialgebras can be defined by using iden-
tities.

A hypergroupoid (H, ◦) is a semihypergroup if the identity

(5) (x0 ◦ x1) ◦ x2 = x0 ◦ (x1 ◦ x2)
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is satisfied on (H, ◦).
Let H be a nonempty set. A hypergroup (H, ◦) is a semihypergroup which

satisfies the reproductive law: a ◦H = H ◦ a = H, for all a ∈ H. It results that the
mappings /, \ : H ×H → P ∗(H) defined by

a/b = {x ∈ H | a ∈ x ◦ b}, b\a = {x ∈ H | a ∈ b ◦ x}
are two binary multioperations on H. Thus, as we have seen in [7], the hypergroups
can be identified with those multialgebras (H, ◦, /, \) for which H 6= ∅, ◦ is asso-
ciative and the multioperations /, \ are obtained from ◦ using the above equalities.
It results that a semihypergroup (H, ◦) (with H 6= ∅) is a hypergroup if and only
if there exist two binary multioperations /, \ on H such that the following weak
identities:

x1 ∩ x0 ◦ (x0\x1) 6= ∅, x1 ∩ (x1/x0) ◦ x0 6= ∅,
x1 ∩ x0\(x0 ◦ x1) 6= ∅, x1 ∩ (x1 ◦ x0)/x0 6= ∅

are satisfied on (H, ◦, /, \) (see again [7]).
If we replace above (5) by

(5′) (x0 ◦ x1) ◦ x2 ∩ x0 ◦ (x1 ◦ x2) 6= ∅,
we obtain the class of the Hv-groups (see [13]).

A mapping h : H → H ′ between two hypergroups is called hypergroup homo-
morphism if

h(a ◦ b) ⊆ h(a) ◦ h(b), for all a, b ∈ H.

Clearly, this request makes h a homomorphism between (H, ◦, /, \) and (H ′, ◦, /, \)
since

h(a/b) ⊆ h(a)/h(b), h(a\b) ⊆ h(a)\h(b), for all a, b ∈ H.

Remark 4. Any (weak or strong) identity satisfied on a multialgebra A is satisfied
(in a strong manner) in A (see [7]). So, the fundamental algebra of a hypergroup
or of a Hv-group is a group.

Remark 5. Since the hypergroups together with the hypergroup homomorphisms
form a category it follows immediately that the mappings from Remark 2 define a
functor F from the category HG of hypergroups into the category of groups Grp.

In [7] we introduced a new class of multialgebras which generalize the notion of
complete hypergroup that appears in [2] and that is why we suggested we should
name them complete multialgebras. In [7] we proved the following:

Proposition 1. For a multialgebra A = (A, (fγ)γ<o(τ)) of type τ, the following
conditions are equivalent:

(i) For all γ < o(τ), for any a0, . . . , anγ−1 ∈ A if a ∈ fγ(a0, . . . , anγ−1) then
a = fγ(a0, . . . , anγ−1), (we identify a with ϕ−1(a) whenever this identification does
not create confusion);

(ii) For all m ∈ N, for any q, r ∈ P (m)(τ) \ {xi | i ∈ {0, . . . , m − 1}} and for
any a0, . . . , am−1, b0, . . . , bm−1 ∈ A, if q(a0, . . . , am−1) ∩ r(b0, . . . , bm−1) 6= ∅ then
q(a0, . . . , am−1) = r(b0, . . . , bm−1).

Definition 1. A multialgebra A = (A, (fγ)γ<o(τ)) of type τ is complete if it satisfies
one of the two equivalent conditions from Proposition 1.
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Remark 6. Among all the multialgebras of type τ that can be defined on A, which
have the fundamental algebra A, a complete multialgebra is the multialgebra that
has the ”greatest” multioperations (see [7] and [14]).

Remark 7. We notice that if A is a complete multialgebra, then the relation αA

given by (3) is transitive (so α∗A = αA).

Remark 8. The complete multialgebras of type τ form a subcategory CMalg(τ) of
Malg(τ). So, if we compose F from Remark 2 with the inclusion functor we get a
functor (which we will denote by F , too) from CMalg(τ) into Alg(τ).

3. Direct products of multialgebras

If we have a family of relational systems of the same type τ = (nγ + 1)γ<o(τ),
(Ai = (Ai, (rγ)γ<o(τ)) | i ∈ I), in [5] is defined the direct product of this family as
being the relational system obtained on the Cartesian product

∏
i∈I Ai considering

that for (a0
i )i∈I , . . . , (a

nγ

i )i∈I ∈
∏

i∈I Ai,

((a0
i )i∈I , . . . , (a

nγ

i )i∈I) ∈ rγ ⇔ (a0
i , . . . , a

nγ

i ) ∈ rγ , ∀i ∈ I.

If we consider a family (Ai | i ∈ I) of multialgebras of type τ and the relational
systems defined by (2), the relational system that results on the Cartesian prod-
uct

∏
i∈I Ai from the above considerations is a multialgebra of type τ with the

multioperations:

fγ((a0
i )i∈I , . . . , (a

nγ−1
i )i∈I) =

∏

i∈I

fγ(a0
i , . . . , a

nγ−1
i ),

for any γ < o(τ). This multialgebra is called the direct product of the multialgebras
(Ai | i ∈ I). We observe that the canonical projections of the product, eI

i , i ∈ I,
are multialgebra homomorphisms.

Proposition 2. [8] The multialgebra
∏

i∈I Ai constructed this way, together with
the canonical projections, is the product of the multialgebras (Ai | i ∈ I) in the
category Malg(τ).

Lemma 1. [8] For every n ∈ N, p ∈ P(n)(τ) and (a0
i )i∈I , . . . , (an−1

i )i∈I ∈
∏

i∈I Ai,
we have

(6) p((a0
i )i∈I , . . . , (an−1

i )i∈I) =
∏

i∈I

p(a0
i , . . . , a

n−1
i ).

Proposition 3. [8] If (Ai | i ∈ I) is a family of multialgebras such that q∩r 6= ∅ is
satisfied on each multialgebra Ai then q∩ r 6= ∅ is also satisfied on the multialgebra∏

i∈I Ai.

Proposition 4. [8] If (Ai | i ∈ I) is a family of multialgebras such that q = r is
satisfied on each multialgebra Ai then q = r is also satisfied on the multialgebra∏

i∈I Ai.

From Example 3, Proposition 3 and Proposition 4 we have the following:

Corollary 2. The subcategory HG of Malg((2, 2, 2)) is closed under products.

Corollary 3. The direct product of complete multialgebras is a complete multial-
gebra.
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Indeed, let us consider m ∈ N, q, r ∈ P (m)(τ) \ {xi | i ∈ {0, . . . , m − 1}} and
(a0

i )i∈I , . . . , (am−1
i )i∈I , (b0

i )i∈I , . . . , (bm−1
i )i∈I ∈

∏
i∈I Ai such that

q((a0
i )i∈I , . . . , (am−1

i )i∈I) ∩ r((b0
i )i∈I , . . . , (bm−1

i )i∈I) 6= ∅.
This means, according to Lemma 1, that for any i ∈ I we have

q(a0
i , . . . , a

m−1
i ) ∩ r(b0

i , . . . , b
m−1
i ) 6= ∅.

But all the multialgebras Ai are complete, thus

q(a0
i , . . . , a

m−1
i ) = r(b0

i , . . . , b
m−1
i )

for all i ∈ I, hence

q((a0
i )i∈I , . . . , (am−1

i )i∈I) = r((b0
i )i∈I , . . . , (bm−1

i )i∈I).

Corollary 4. The subcategory CMalg(τ) of Malg(τ) is closed under products.

4. On the fundamental algebras of a direct product of
multialgebras

Let us consider the universal algebra
∏

i∈I Ai and its canonical projections pi :∏
i∈I Ai → Ai (i ∈ I). There exists a unique homomorphism ϕ of universal algebras

such that the following diagram is commutative:

∏
i∈I Ai

pj // Aj

∏
i∈I Ai

ϕ

OO

eI
j

<<xxxxxxxxx
.

This homomorphism is given by ϕ((ai)i∈I) = (ai)i∈I for any (ai)i∈I ∈
∏

i∈I Ai. It is
clear that ϕ is surjective, so the universal algebra

∏
i∈I Ai, with the homomorphisms

(eI
i | i ∈ I) is the product of the family (Ai | i ∈ I) if and only if ϕ is also injective.
But this does not always happen, as it results from the following example.

Example 1. Let us consider the hypergroupoids (H1, ◦) and (H2, ◦) on the three
elements sets H1 and H2 given by the following tables:

H1 a b c
a a a a
b a a a
c a a a

H2 x y z
x x y, z y, z
y y, z y, z y, z
z y, z y, z y, z

then in H1 ×H2, (b, y) = (b, z) but in H1 ×H2 the supposition that (b, y) = (b, z)
leads us to the fact that y = z, which is false.

We will use the above notations and we will search for necessary and sufficient
conditions expressed with the aid of term functions for ϕ to be injective. We will
deal only with the cases when I is finite or αAi

= α∗Ai
for all i ∈ I (even if I is not

finite).
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Lemma 2. If I is finite or αAi
is transitive for any i ∈ I, then the homomorphism

ϕ is injective if and only if for any ni ∈ N, qi ∈ P(ni)(τ), a0
i , . . . , a

ni−1
i ∈ Ai (i ∈ I)

and for any

(xi)i∈I , (yi)i∈I ∈
∏

i∈I

qi(a0
i , . . . , a

ni−1
i )

there exist m, kj ∈ N, qj ∈ P(kj)(τ) and (b0
i )

j
i∈I , . . . , (b

kj−1
i )j

i∈I ∈
∏

i∈I Ai, j ∈
{0, . . . , m− 1} such that

(xi)i∈I ∈ q0((b0
i )

0
i∈I , . . . , (b

k0−1
i )0i∈I), (yi)i∈I ∈ qm−1((b0

i )
m−1
i∈I , . . . , (bkm−1−1

i )m−1
i∈I )

and

(7) qj−1((b0
i )

j−1
i∈I , . . . , (bkj−1−1

i )j−1
i∈I ) ∩ qj((b0

i )
j
i∈I , . . . , (b

kj−1
i )j

i∈I) 6= ∅,
for all j ∈ {1, . . . ,m− 1}.
Proof. Let us consider that ϕ is injective. It is clear that if we take ni ∈ N,
qi ∈ P(ni)(τ), a0

i , . . . , a
ni−1
i ∈ Ai (i ∈ I) such that

(xi)i∈I , (yi)i∈I ∈
∏

i∈I

qi(a0
i , . . . , a

ni−1
i )

then we have (xi)i∈I = (yi)i∈I , hence (xi)i∈I = (yi)i∈I and from the definition of the
fundamental relation of the multialgebra

∏
i∈I Ai we get the expected conclusion.

Let us remark that this implication does not use the fact that I is finite or αAi
is

transitive for any i ∈ I.
Conversely, if αAi

is transitive for any i ∈ I then (xi)i∈I = (yi)i∈I if and only
if for any i ∈ I there exists ni ∈ N, qi ∈ P(ni)(τ), a0

i , . . . , a
ni−1
i ∈ Ai such that

(xi)i∈I , (yi)i∈I ∈
∏

i∈I qi(a0
i , . . . , a

ni−1
i ), but the condition from the statement is

satisfied and, consequently, (xi)i∈I = (yi)i∈I . If I is finite then from (xi)i∈I =
(yi)i∈I we will obtain in each Ai a chain of li term functions (on P∗(Ai)) such
that xi is in the first term function, yi is in the last one and every two consecutive
members of this chain have a nonempty intersection (we identified here the term
functions from our chain as those of their images which interest us). If we consider
l = max{li | i ∈ I}, we can repeat in each chain the last term function as many
times as necessary for all our chains to have l members. If we take the Cartesian
products of the first members in these chains of term functions, then for the second
members and so on, we will obtain l such Cartesian products such that every two
consecutive products have a nonempty intersection. For each of them we can apply
the condition from the statement of the lemma and we will obtain a chain of term
functions in

∏
i∈I Ai such that (xi)i∈I is in the first member, (yi)i∈I is in the last one

and any two consecutive members has a nonempty intersection, so (xi)i∈I = (yi)i∈I .
Thus ϕ is injective. ¤

It seems to be a little uncomfortable to work with the condition from the above
statement. But we can immediately deduce from this one a sufficient condition
which will prove to be useful in the next part of our paper. Of course, we use the
same notations and the same hypothesis as before.
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Corollary 5. The condition from the previous lemma is verified if there exist n ∈
N, q ∈ P(n)(τ) and b0

i , . . . , b
n−1
i ∈ Ai (i ∈ I) such that

(8)
∏

i∈I

qi(a0
i , . . . , a

ni−1
i ) ⊆ q((b0

i )i∈I , . . . , (bn−1
i )i∈I).

Let us take a subcategory C of Malg(τ) and the functor F ◦ U obtained as the
composition of the functor F introduced in Remark 2 with the inclusion functor
U : C −→ MAlg(τ). Since we know how U is defined, we can refer to F ◦ U as F.

It follows immediately the following statements:

Proposition 5. Let us consider a subcategory C of Malg(τ) closed under finite
products. Let us also consider that for any finite set I, for any family (Ai | i ∈ I) of
multialgebras from C and for any ni ∈ N, qi ∈ P(ni)(τ), a0

i , . . . , ani−1
i ∈ Ai (i ∈ I)

there exist n ∈ N, q ∈ P(n)(τ) and b0
i , . . . , b

n−1
i ∈ Ai (i ∈ I) such that (8) holds.

Then the functor F : C −→ Alg(τ) commutes with the finite products.

Proposition 6. Let us consider a subcategory C of Malg(τ) closed under products
and let us also consider that αA is transitive for each A ∈ C. Assume that for
any set I, for any family (Ai | i ∈ I) of multialgebras from C and for any ni ∈
N, qi ∈ P(ni)(τ), a0

i , . . . , ani−1
i ∈ Ai (i ∈ I) there exist n ∈ N, q ∈ P(n)(τ) and

b0
i , . . . , b

n−1
i ∈ Ai (i ∈ I) such that (8) holds. Then the functor F : C −→ Alg(τ)

commutes with the products.

In the next part of the paper we will study two particular classes of multialgebras
for which the relation α defined by (3) is transitive: the class of hypergroups and
the class of complete multialgebras. In Subsection 4.1. we will see that the class C
from Proposition 5 can be considered the class of hypergroups. We will also find
classes C of hypergroups as those from Proposition 6 if for an n ∈ N we take the
class of the hypergroups for which β = βn (for notations see [2]). The class of
the complete hypergroups is an example in this respect. From Subsection 4.2. we
can deduce how we can obtain classes of complete multialgebras which satisfy the
conditions from Proposition 6.

4.1. The case of hypergroups.
First, let us see what happens for finite products of hypergroups. We remind

that the fundamental relation on a hypergroup (H, ◦, /, \) is the transitive closure
of the relation β =

⋃
n∈N∗ βn where for any x, y ∈ H,

xβny if and only if there exist a0, . . . , an−1 ∈ H, with x, y ∈ a0 ◦ · · · ◦ an−1.

The relation β is transitive, so β∗ = β (see [2]). As we can easily see, the term
functions qi which interest us are only those which are involved in the definition
of the fundamental relations of the multialgebras Ai. As it results immediately, in
the case of hypergroups, these term functions can be obtained from the canonical
projections using only the hyperproduct ◦. Any hyperproduct with n factors is
a subset of a hyperproduct with n + 1 factors. This follows from the property
of reproducibility of a hypergroup. Indeed, given a hypergroup (H, ◦, /, \), and
a1, . . . , an ∈ H, since H = H ◦ a1, there exists an a0 ∈ H such that a1 ∈ a0 ◦ a1,
hence a1◦· · ·◦an ⊆ a0◦a1◦· · ·◦an. So βn ⊆ βn+1, for any n ∈ N∗. It means that for
any two hypergroups (H0, ◦), (H1, ◦) we can apply Corollary 5 and it follows that
H0 ×H1, together with the homomorphisms e2

0, e2
1, is the product of the groups

H0 and H1. Thus we have proved the following:
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Proposition 7. The functor F : HG −→ Grp commutes with the finite products
of hypergroups.

Yet, F does not commute with the arbitrary products of hypergroups, as it
follows from the next:

Example 2. Let us consider the hypergroupoid (Z, ◦), where Z is the set of the
integers and for any x, y ∈ Z, x ◦ y = {x + y, x + y + 1}. It results immediately
that (Z, ◦) is a hypergroup with the fundamental relation β = Z × Z. It means
that the fundamental group of (Z, ◦) is a one-element group. Now let us consider
the product (ZN, ◦). The fundamental group of this hypergroup has more than one
element. Indeed, f, g : N→ Z, f(n) = 0, g(n) = n + 1 (n ∈ N) are not in the same
equivalence class of the fundamental relation of the hypergroup (ZN, ◦).

As for arbitrary products (not necessarily finite) of hypergroups we have:

Theorem 2. For a given set I and the hypergroups Hi, i ∈ I, with the fundamental
relations βHi , the group

∏
i∈I Hi, together with the homomorphisms (eI

i | i ∈ I), is
the product of the family of groups (Hi | i ∈ I) if and only if there exists an n ∈ N∗
such that βHi ⊆ βHi

n , for all the elements i from I, except for a finite number of
i’s.

Proof. Let us consider In = {i ∈ I | βHi * βHi
n }. It is clear that In+1 ⊆ In, for any

n ∈ N∗. For a given hypergroup H, the fact that βH * βH
n for an n ∈ N∗ means

that there exist two elements in H which belong to the same hyperproduct with
more than n factors but they are not both contained in an hyperproduct with n
factors.

Assume there exists n ∈ N∗ such that In is finite. Let us consider an arbitrary
family of hyperproducts from the hypergroups Hi (i ∈ I). Each hyperproduct of
elements from Hi, with i ∈ I \ In, is included in a hyperproduct with n factors.
Let k be the greatest positive integer which represent the number of factors in the
hyperproducts of the given family corresponding to i ∈ In. Clearly k ≥ n, and any
hyperproduct of the given family is included in a hyperproduct with k factors, and
thus (8) holds.

Conversely, let us consider that for every n ∈ N the set In is infinite. In order
to finish the proof of the theorem, we will construct two families (ai)i∈I , (bi)i∈I

from
∏

i∈I Hi such that aiβ
Hibi, for any i ∈ I, but ((ai)i∈I , (bi)i∈I) /∈ β

Q
i∈I Hi .

The construction goes as follows: we choose i1 ∈ I1, and we consider ai1 , bi1 ∈ Hi1

such that ai1 6= bi1 belong to a hyperproduct with more than two factors from
Hi1 ; now, we take i2 ∈ I2 \ {i1} and we consider ai2 , bi2 ∈ Hi2 such that ai2 , bi2

are in a hyperproduct with more than three factors from Hi2 but they are in no
hyperproduct with two factors from Hi2 ; supposing that we have all the elements
aik

, bik
for k ∈ N∗, k ≤ n, we consider the elements ain+1 , bin+1 ∈ Hin+1 , in+1 ∈

In \ {i1, . . . , in} such that ain+1 , bin+1 are in a hyperproduct with more than n + 1
factors from Hin+1 but they are in no hyperproduct with n factors from Hin+1 ; for
any i ∈ I \ {in | n ∈ N∗} we consider ai = bi. ¤

Corollary 6. Let us consider n ∈ N. If Cn is the class of the hypergroups for
which β = βn then Cn is closed under the formation of the direct products and
the functor F : Cn −→ Grp obtained through factorization with the fundamental
relation commutes with the products.
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Since for the complete hypergroups we have β = β2, we have:

Corollary 7. The functor F commutes with the products of complete hypergroups.

4.2. The case of complete multialgebras.
It is known that for a complete multialgebra A the classes from A have the form

{a} or fγ(a0, . . . , anγ−1), with γ < o(τ), a, a0, . . . , anγ−1 ∈ A (situations which not
exclude each other). We will use this to prove the following:

Theorem 3. For a family (Ai | i ∈ I) of complete multialgebras of the same type
τ, the following statements are equivalent:

i)
∏

i∈I Ai (together with the homomorphisms eI
i (i ∈ I)) is the product of the

family of the universal algebras (Ai | i ∈ I);
ii) For any ni ∈ N, qi ∈ P(ni)(τ), a0

i , . . . , a
ni−1
i ∈ Ai, (i ∈ I) there exist

n ∈ N, q ∈ P(n)(τ) and b0
i , . . . , b

n−1
i ∈ Ai (i ∈ I) such that (8) holds with equality;

iii) For any ni ∈ N, qi ∈ P(ni)(τ), a0
i , . . . , a

ni−1
i ∈ Ai (i ∈ I) either

∣∣∣∣∣
∏

i∈I

qi(a0
i , . . . , a

ni−1
i )

∣∣∣∣∣ = 1

or there exist γ < o(τ), b0
i , . . . , b

nγ−1
i ∈ Ai (i ∈ I) such that

(9)
∏

i∈I

qi(a0
i , . . . , a

ni−1
i ) = fγ((b0

i )i∈I , . . . , (b
nγ−1
i )i∈I).

Proof. ii) ⇔ i) and iii) ⇒ ii) are immediate.
i) ⇒ iii) Let us take ni ∈ N, qi ∈ P(ni)(τ), a0

i , . . . , a
ni−1
i ∈ Ai (i ∈ I) such that

∣∣∣∣∣
∏

i∈I

qi(a0
i , . . . , a

ni−1
i )

∣∣∣∣∣ 6= 1

and let us consider a family (xi)i∈I ∈ ∏
i∈I qi(a0

i , . . . , a
ni−1
i ). Then there exists

another family (yi)i∈I ∈
∏

i∈I qi(a0
i , . . . , a

ni−1
i ) such that (xi)i∈I 6= (yi)i∈I . It is

clear that (xi)i∈I = (yi)i∈I and from i) it follows that (xi)i∈I = (yi)i∈I . It follows
that there exists a q ∈ P(n)(τ) \ {xi | i ∈ {0, . . . , n− 1}} such that

(xi)i∈I , (yi)i∈I ∈ q((c0
i )i∈I , . . . , (cn−1

i )i∈I)

for some (c0
i )i∈I , . . . , (cn−1

i )i∈I ∈
∏

i∈I Ai. Since
∏

i∈I Ai is a complete multialgebra,
there exists a γ < o(τ), and (b0

i )i∈I , . . . , (b
nγ−1
i )i∈I ∈

∏
i∈I Ai such that

q((c0
i )i∈I , . . . , (cn−1

i )i∈I) = fγ((b0
i )i∈I , . . . , (b

nγ−1
i )i∈I).

Hence (xi)i∈I ∈ fγ((b0
i )i∈I , . . . , (b

nγ−1
i )i∈I), which leads us to

∏

i∈I

qi(a0
i , . . . , a

ni−1
i ) ∩ fγ((b0

i )i∈I , . . . , (b
nγ−1
i )i∈I) 6= ∅.

But fγ((b0
i )i∈I , . . . , (b

nγ−1
i )i∈I) =

∏
i∈I fγ(b0

i , . . . , b
nγ−1
i ) hence

qi(a0
i , . . . , a

ni−1
i ) ∩ fγ(b0

i , . . . , b
nγ−1
i ) 6= ∅.

Using the completeness of the multialgebras Ai we have

qi(a0
i , . . . , a

ni−1
i ) = fγ(b0

i , . . . , b
nγ−1
i )
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therefore
∏

i∈I qi(a0
i , . . . , a

ni−1
i ) =

∏
i∈I fγ(b0

i , . . . , b
nγ−1
i ) and the equality (9) is

satisfied. ¤

Remark 9. If all Ai are universal algebras then iii) is trivially satisfied.

Remark 10. For a family of complete multialgebras (Ai | i ∈ I) the following
conditions are equivalent:

a) there exist n ∈ N and p ∈ P(n)(τ) \ {xi | i ∈ {0, .., n− 1}} such that for each
i ∈ I and for any ai ∈ Ai we have ai ∈ p(a0

i , . . . , a
n−1
i ) for some a0

i , . . . , a
n−1
i ∈ Ai;

b) there exists a γ < o(τ) such that for each i ∈ I and for any ai ∈ Ai we have
ai ∈ fγ(a0

i , . . . , a
nγ−1
i ) for some a0

i , . . . , a
nγ−1
i ∈ Ai.

Corollary 8. If for a family of complete multialgebras one of the equivalent con-
ditions a) or b) is satisfied, then the condition i) from the previous theorem holds.

Indeed, let us consider ni ∈ N, qi ∈ P(ni)(τ), a0
i , . . . , a

ni−1
i ∈ Ai (i ∈ I). For any

i ∈ I we have that qi(a0
i , . . . , a

ni−1
i ) 6= ∅, so there exists an ai ∈ qi(a0

i , . . . , a
ni−1
i ).

But we also have ai ∈ fγ(b0
i , . . . , b

nγ−1
i ) for some b0

i , . . . , b
nγ−1
i ∈ Ai, hence

qi(a0
i , . . . , a

ni−1
i ) ∩ fγ(b0

i , . . . , b
nγ−1
i ) 6= ∅,

thus we have that for any i ∈ I,

qi(a0
i , . . . , a

ni−1
i ) = fγ(b0

i , . . . , b
nγ−1
i ).

It follows that
∏

i∈I

qi(a0
i , . . . , a

ni−1
i ) =

∏

i∈I

fγ(b0
i , . . . , b

nγ−1
i ) = fγ((b0

i )i∈I , . . . , (b
nγ−1
i )i∈I),

and (9) is satisfied, thus i) holds.

Remark 11. The condition a), respectively b) from above are not necessary for i) to
be satisfied, and the exception is not covered by the case when all Ai are universal
algebras.

Example 3. Let us consider the multialgebras A0 and A1, of the same type (2,3,4)
obtained on the sets A0 = {1, 2, 3}, respectively A1 = {1, 2, 3, 4} as follows: A0 =
(A, f0

0 , f0
1 , f0

2 ), A1 = (A, f1
0 , f1

1 , f1
2 ), where f i

j : Aj+2
i → P ∗(Ai), i = 0, 1, j = 0, 1, 2,

f0
0 (x, y) = {1}, f0

1 (x, y, z) = {2, 3}, f0
2 (x, y, z, t) = {2, 3},

f1
0 (x, y) = {1, 2, 3}, f1

1 (x, y, z) = {4}, f1
2 (x, y, z, t) = {1, 2, 3}.

These complete multialgebras satisfy condition iii) and, consequently, the condition
i), but they do not verify condition b).

Remark 12. From Corollary 7 it follows that the complete hypergroups are examples
of complete multialgebras for which the required property holds. Of course this also
results from Corollary 8.

Remark 13. The complete semihypergroups from [2, Proposition 346] satisfy the
condition b) from Remark 10.
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