
IDENTITIES AND MULTIALGEBRAS

COSMIN PELEA

Abstract. This paper deals with multialgebras. An important instrument
in this paper is the fundamental relation of a multialgebra, which can bring
us into the class of the universal algebras. In the first part of the article we
will see that the fundamental structure of a multialgebra verifies the identities
of the given multialgebra. When trying to obtain multistructures that verify
(even in a weak manner) the identities of their fundamental structure we get
a new class of multialgebras. In the particular case of the semihypergroups
these multialgebras are the complete semihypergroups.

Let τ = (nγ)γ<o(τ) be a sequence over N = {0, 1, . . .}, where o(τ) is an ordinal
and for any γ < o(τ), let fγ be a symbol of an nγ-ary (multi)operation and let us
consider the algebra of the n-ary terms (of type τ) P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ)).

Let q, r ∈ P(n)(τ). According to [4], the n-ary identity q = r is said to be
satisfied in a class K of universal algebras of type τ if

q(a0, . . . , an−1) = r(a0, . . . , an−1),

for all a0, . . . , an−1 ∈ A and for all A ∈ K, (q and r are the term functions induced
by q and r respectively on A.)

Let A be a nonvoid set and P ∗(A) the set of the nonempty subsets of A. Let A =
(A, (fγ)γ<o(τ)) be a multialgebra, where fγ : Anγ → P ∗(A) is the multioperation of
arity nγ ∈ N that corresponds to the symbol fγ , for any γ < o(τ). The multialgebra
A induces a universal algebra (P ∗(A), (fγ)γ<o(τ)) with the operations:

fγ(A0, . . . , Anγ−1) =
⋃
{fγ(a0, . . . , anγ−1) | ai ∈ Ai, i ∈ {0, . . . , nγ − 1}},

for any γ<o(τ) and A0, . . . , Anγ−1 ∈ P ∗(A) (see [7]). We denote this algebra by
P∗(A).

In [4], Grätzer presents the algebra of the term functions of a universal algebra
B = (B, (fγ)γ<o(τ)). For any n ∈ N, we can construct the algebra P(n)(P∗(A)) of
n-ary term functions on P∗(A).

Consider the set P
(n)
A (P∗(A)) (n ∈ N) of those and only those functions from

(P ∗(A))n into P ∗(A) which can be obtained from (i), (ii) and (iii) from bellow in
a finite number of steps:

(i) for every a ∈ A, the function

cn
a : (P ∗(A))n → (P ∗(A)), cn

a(X0, . . . , Xn−1) = a

(X0, . . . , Xn−1 ∈ P ∗(A)) is an element of P
(n)
A (P∗(A));

(ii) for any i = 0, . . . , n− 1, the function

en
i : (P ∗(A))n → P ∗(A), en

i (X0, . . . , Xn−1) = Xi

(X0, . . . , Xn−1 ∈ P ∗(A)) is an element of P
(n)
A (P∗(A));
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(iii) if p0, . . . , pnγ−1 are elements of P
(n)
A (P∗(A)) and γ < o(τ) then the function

p = fγ(p0, . . . , pnγ−1) : (P ∗(A))n → P ∗(A) defined by

p(X0, . . . , Xn−1) = fγ(p0(X0, . . . , Xn−1), . . . , pnγ−1(X0, . . . , Xn−1))

is also an element of P
(n)
A (P∗(A)).

In [5], one defines the fundamental relation of the multialgebra A as the transitive
closure α∗ of the relation α given on A as follows: for x, y ∈ A, xαy if and only if

(1) x, y ∈ p(a0, . . . , an) for some n ∈ N, p ∈ P
(n)
A (P∗(A)) and a0, . . . , an ∈ A.

It is easy to observe that, in this definition, we can consider P (n)(P∗(A)) instead
of P

(n)
A (P∗(A)) and the relation α remains the same. The relation α∗ is the smallest

equivalence relation on A with the property that the factor multialgebra A/α∗ is
a universal algebra. For the sake of brevity let us denote the algebra A/α∗ by A

(and A/α∗ by A) and let us call it fundamental algebra of the multialgebra A.
We can remember that the definition of the multioperations in the factor multi-

algebra A/ρ (ρ is an equivalence on A) is the same as in [3]:

(2) fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = {ρ〈b〉 | b ∈ fγ(b0, . . . , bnγ−1), bi ∈ ρ〈ai〉,
i ∈ {0, . . . , nγ − 1}}, γ < o(τ)

(where ρ〈x〉 denotes the class of x modulo ρ). The definition of the multioperations
of A/ρ allows us to see the canonical map from A to A/ρ as an ideal homomorphism
of multialgebras whenever ρ is an ideal equivalence on A (see [7]). We will drop the
adjective ‘ideal’ because all our homomorphisms will be ideal.

The factorization with the fundamental relation of a multialgebra have a func-
torial character as we can deduce from the following:

Theorem 1. If A, B are multialgebras and A, B respectively are their funda-
mental algebras and if f : A → B is a homomorphism then there exists only one
homomorphism f : A → B so that the following diagram is commutative:

A
f //

ϕA

²²

B

ϕB

²²
A

f // B

where ϕA and ϕB are the canonical projections.

Proof. If we consider that such an f exists, it is defined by

(3) f(α∗〈a〉) = β∗〈f(a)〉,
for any a ∈ A, where α∗ and β∗ denote the fundamental relations of A and B
respectively. Thus the uniqueness of f is proved.

Let us show that f exists. We consider f : A → B given by (2). The application
f is well defined. Indeed, let x, y ∈ A be such that xα∗y, i.e. there exist m ∈ N,
and x = x0, x1, . . . , xm = y ∈ A with xiαxi+1 for all i ∈ {1, . . . , m − 1}, thus for
all i ∈ {1, . . . , m− 1}, there exist ki ∈ N, pi ∈ P (ki)(P∗(A)) and ai

0, . . . , a
i
ki−1 ∈ A

such that xi, xi+1 ∈ pi(ai
0, . . . , a

i
ki−1). Then we have

f(xi), f(xi+1) ∈ pi(f(ai
0), . . . , f(ai

ki−1))
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(see [1]) and, consequently, f(xi)βf(xi+1), for all i ∈ {1, . . . , m−1}. It follows that
f(x) = f(x0)β∗f(xm) = f(y).

Now we will verify that f is an homomorphism. If γ < o(τ) and a0, . . . , anγ−1 ∈
A we have:

f(fγ(α∗〈a0〉, . . . , α∗〈anγ−1〉)) = f(α∗〈a〉) = β∗〈f(a)〉,
where a ∈ fγ(a0, . . . , anγ−1).

Since f is an homomorphism, f(a) ∈ fγ(f(a0), . . . , f(anγ−1)) and

β∗〈f(a)〉 = fγ(β∗〈f(a0)〉, . . . , β∗〈f(anγ−1)〉) = fγ(f(α∗〈a0〉), . . . , f(α∗〈anγ−1〉))
and the theorem is proved. ¤

Corollary 1. If A is a multialgebra then 1A = 1A.

Corollary 2. If A, B, C are multialgebras of the same type τ and if f : A →
B, g : B → C are homomorphisms, then g ◦ f = g ◦ f.

For a given multialgebra A = (A, (fγ)γ<o(τ)) we will use the following notations:
A for the fundamental algebra, α∗ (or α∗A when it is necessary) for the fundamental
relation on A (∗ means that we take the transitive closure of the relation α defined
by (1)) and ϕA for the canonical projection of A onto A. We will also denote by a
the class α∗〈a〉 = ϕA(a), for any a ∈ A.

Looking at the definitions of the hyperstructures from [2] and also at the gener-
alizations presented in [8], named Hv-structures, we can consider in a similar way
that the n-ary identity

q = r

is said to be satisfied in a class K of multialgebras of type τ if

q(a0, . . . , an−1) = r(a0, . . . , an−1),

for all a0, . . . , an−1 ∈ A and for all A ∈ K (q and r are the term functions induced
by q and r respectively on P∗(A)). We can also consider that a weak identity (the
notation is intended to be as suggestive as possible)

q ∩ r 6= ∅
is said to be satisfied in a class K of multialgebras of type τ if

q(a0, . . . , an−1) ∩ r(a0, . . . , an−1) 6= ∅,
for all a0, . . . , an−1 ∈ A and for all A ∈ K (q and r have the same signification as
before).

From [1] it results that

(4) ϕA(p(a0, . . . , an−1)) = p(a0, . . . , an−1),

for any n ∈ N, any p ∈ P (n)(τ) and any a0, . . . , an−1 ∈ A (p denotes the term
function induced by p on P∗(A)).

Considering n ∈ N, q, r ∈ P (n)(τ) such that q ∩ r 6= ∅ on A, i.e.

q(a0, . . . , an) ∩ r(a0, . . . , an) 6= ∅, ∀a0, . . . , an ∈ A,

it results that there exists an element

a ∈ q(a0, . . . , an) ∩ r(a0, . . . , an)
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and, according to (4), we have

a = q(a0, . . . , an−1) = r(a0, . . . , an−1).

Thus we have proved the following:

Proposition 1. If A is a multialgebra and n ∈ N, q, r ∈ P (n)(τ) such that q∩r 6= ∅
is satisfied on A then q = r is satisfied on A.

Corollary 3. Let K be a class of multialgebras, and let K be the class of the
fundamental algebras of the multialgebras from K. If q ∩ r 6= ∅ is satisfied in K
then q = r is satisfied in K.

Remark 1. Considering a family {Ai}i∈I of multialgebras or type τ , we can organize
the Cartesian product

∏
i∈I Ai as a multialgebra of type τ with the multioperations

defined as it follows:

(5) fγ((a0
i )i∈I , . . . , (a

nγ−1
i )i∈I) =

∏

i∈I

fγ(a0
i , . . . , a

nγ−1
i ),

for any γ < o(τ). We observe that the canonical projections of the product are
homomorphisms of multialgebras. Let us call variety of multialgebras a class of
multialgebras closed under the formation of submultialgebras, homomorphic images
and direct products. It is obvious that if K is a variety of multialgebras then K
includes the class K because each fundamental algebra is a homomorphic image
of the multialgebra that determines it, thus the class K is a variety of universal
algebras.

Remark 2. If K is a variety of multialgebras, Σ is a set of weak or/and strong
identities and KΣ is the subclass of K with elements multialgebras that verify the
identities from Σ, then KΣ is also a variety of multialgebras. This way, many of the
hyperstructures can be seen as varieties. For instance, we can see the class of the
canonical hypergroups as a subclass in the class of the hypergroups characterized
by some identities and it will result that the canonical hypergroups form a variety.

We start by identifying a hypergroup (H, ◦) with a multialgebra (H, ◦, /, \) with
three binary multioperations, with H 6= ∅, with ◦ associative and

a/b = {x ∈ H | a ∈ x ◦ b}, b\a = {x ∈ H | a ∈ b ◦ x}, ∀a, b ∈ H.

The subalgebras of the multialgebra (H, ◦, /, \) are the closed subhypergroups of
the hypergroup H. The (ideal) homomorphisms in our case are the very good
homomorphisms. It results that the homomorphic image of such a multialgebra has
the same properties, hence it is a hypergroup. The direct product of hypergroups
is a hypergroup. Moreover, the multioperations / and \ defined on the Cartesian
product by (5) are the same as those obtained from ◦ by using the above equalities.
So, the hypergroups form a variety.

Let us notice that a semihypergroup (H, ◦) (with H 6= ∅) is a hypergroup if and
only if there exist two binary multioperations /, \ on H such that

b ∈ a ◦ (a\b), b ∈ (b/a) ◦ a, b ∈ a\(a ◦ b), b ∈ (b ◦ a)/a, ∀a, b ∈ H.

The existence of / and \ need not mean that x ∈ a/b (x ∈ b\a) if and only if
a ∈ x ◦ b (a ∈ b ◦ a). However, the above considerations allows us to see the class
of hypergroups as a subclass (strictly included) in the class of the multialgebras of
type (2, 2, 2) which verify the associativity and the above identities. An immediate
consequence is the fact that the fundamental algebra of a hypergroup is a group.
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The canonical hypergroups form a variety because we can see them as multial-
gebras (H, ◦, /, \, e,′ ) with (H, ◦, /, \) hypergroup, e nullary (multi)operation and ′

unary (multi)operation, which verify the following identities:
(a) a ◦ b = b ◦ a, ∀a, b ∈ H;
(b) e ◦ a = a(= a ◦ e), ∀a ∈ A;
(c) a/b = (b/a)′ (a\b = (b\a)′), ∀a, b ∈ H.

In general, Proposition 1 does not work with equivalence. A good example
is when the fundamental algebra has only one element, but this is not the only
situation. Yet, starting from a universal algebra with more than one element, we
can construct multialgebras with a given fundamental algebra which verify the
identities of the fundamental algebra, some of them in a weak manner, some of
them in a strong manner.

Proposition 2. Let A be a multialgebra and let A be its fundamental algebra. If
|A| > 1, n ∈ N, q, r ∈ P (n)(τ) and q = r is satisfied on A then there exists a mul-
tistructure of multialgebra of type τ, A′, on A, with the multioperations (f ′γ)γ<o(τ)

such that A′ = A and q ∩ r 6= ∅ is satisfied on A′.

Proof. Let us define

(6) f ′γ(a0, . . . , anγ−1) = {a ∈ A | a = fγ(a0, . . . , anγ−1)},
for any γ < o(τ) and for any a0, . . . , anγ−1 ∈ A, and let us take A′ = (A, (f ′γ)γ<o(τ)).

We start by proving that for any n ∈ N, p ∈ P (n)(τ) \ {xi | i ∈ {0, . . . , n− 1}}
and for any a0, . . . , an−1 ∈ A we have

(7) p′(a0, . . . , an−1) = {a ∈ A | a = p(a0, . . . , an−1)},
where p′ denotes the term function induced on A′ by p.

Let us observe that for any γ < o(τ), ∀a0, . . . , anγ−1 ∈ A

fγ(a0, . . . , anγ−1) ⊆ f ′γ(a0, . . . , anγ−1).

This allows us to verify that for each n ∈ N and p ∈ P (n)(τ) we have:

(8) p(a0, . . . , an−1) ⊆ p′(a0, . . . , an−1), ∀a0, . . . , an−1 ∈ A.

From the definition (6) of the multioperations f ′γ , γ < o(τ), it follows that
p′(a0, . . . , an−1) is a class from A whenever p ∈ P (n)(τ) \ {xi | i ∈ {0, . . . , n − 1}}
(we identified a with ϕ−1

A (a)). Using (8) one obtains (7).
Let us consider the fundamental relation α∗A′ on the multialgebra A′. We can

write xαA′y iff there exist m ∈ N, p ∈ P (m)(τ), a0, . . . , am−1 ∈ A so that x, y ∈
p′(a0, . . . , am−1). If p = xi for some i ∈ {0, . . . ,m−1} then x = y hence xαAy and if
p 6= xi, ∀i ∈ {0, . . . ,m−1} then x, y ∈ p′(a0, . . . , am−1) ∈ A implies xα∗Ay, because
x and y are in the same class from A. It is clear now that α∗A′ ⊆ α∗A. The following
implications justify the inverse inclusion: xαAy implies the existence of m ∈ N, p ∈
P (m)(τ) and a0, . . . , am−1 ∈ A with x, y ∈ p(a0, . . . , am−1); according to (8) we have
x, y ∈ p′(a0, . . . , am−1) and so xαA′y. We get that α∗A′ = α∗A. We also have ∀γ <
o(τ), ∀a0, . . . , anγ−1 ∈ A, f ′γ(a0, . . . , anγ−1) = a with a ∈ f ′γ(a0, . . . , anγ−1), but
fγ(a0, . . . , anγ−1) ⊆ f ′γ(a0, . . . , anγ−1) thus f ′γ(a0, . . . , anγ−1) = fγ(a0, . . . , anγ−1).
It is now proved that A′ = A.

Let us consider now n ∈ N, q, r ∈ P (n)(τ) with

q(a0, . . . , an−1) = r(a0, . . . , an−1),
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for all a0, . . . , an−1 ∈ A. From |A| 6= 1 it results that x, y ∈ A exist so that
x 6= y and so q = xi, r = xj implies i = j and in this case the property holds
in a trivial manner. If q = xi and r ∈ P (n)(τ) \ {xi | i ∈ {0, . . . , n − 1}}
then ai = r(a0, . . . , an−1) leads us, according to (7), to ai ∈ r′(a0, . . . , an−1) and
the property in the statement holds. If both q and r are in P (n)(τ) \ {xi | i ∈
{0, . . . , n− 1}} then, using (7), from q(a0, . . . , an−1) = r(a0, . . . , an−1) we get that
q′(a0, . . . , an−1) = r′(a0, . . . , an−1) and the proof is accomplished. ¤

Remark 3. Using the notations above, if n ∈ N, q, r ∈ P (n)(τ)\{xi | i ∈ {0, . . . , n−
1}} and q = r on A then q = r on A′.

Remark 4. The multialgebra A′ could be defined even if |A| = 1, but there will
appear some problems about the identities satisfied on A′ = A which are also
satisfied on A′ (on A, the identities xi = xj with i 6= j are satisfied, but they are
not necessarily satisfied on A′). Yet, if q or r are in P (n)(τ)\{xi | i ∈ {0, . . . , n−1}}
and q = r on A then q = r on A′.

Remark 5. If we generalize ≤, presented for hyperproducts in [8], to multioperations
then, for any multialgebra A′′ = (A, (f ′′γ )γ<o(τ)) with A′′ = A, we have f ′′γ ≤
f ′γ , ∀γ < o(τ).

Remark 6. The classes from A are of the form {a} or f ′γ(a0, . . . , anγ−1).

Remark 7. The fundamental relation of the multialgebra A′ has the following
property: ∀γ < o(τ), ∀a0, . . . , anγ−1 ∈ A, a ∈ f ′γ(a0, . . . , anγ−1) ⇒ a =
f ′γ(a0, . . . , anγ−1), thus α∗A′ verifies a generalization of the property which defines,
in [2], the notion of congruence (for semihypergroups).

The properties of the multialgebra A′ suggests the construction of a new class
of multialgebras.

Proposition 3. The following conditions are equivalent for a multialgebra A =
(A, (fγ)γ<o(τ)) of type τ :

(i) for all γ < o(τ), for all a0, . . . , anγ−1 ∈ A,

a ∈ fγ(a0, . . . , anγ−1) ⇒ a = fγ(a0, . . . , anγ−1),

(we identify a with ϕ−1(a) whenever this identification does not create confusion).
(ii) for all m ∈ N, for all q, r ∈ P (m)(τ) \ {xi | i ∈ {0, . . . ,m − 1}}, for all

a0, . . . , am−1, b0, . . . , bm−1 ∈ A,

q(a0, . . . , am−1) ∩ r(b0, . . . , bm−1) 6= ∅ ⇒ q(a0, . . . , am−1) = r(b0, . . . , bm−1).

Proof. (i) ⇒ (ii). If (i) holds for A then ∀m ∈ N, ∀p ∈ P (m)(τ) \ {xi | i ∈
{0, . . . , m− 1}}, ∀a0, . . . , am−1 ∈ A, we have

a ∈ p(a0, . . . , am−1) ⇔ a ∈ p(a0, . . . , am−1),

which justify (ii).
(ii) ⇒ (i). Let us consider γ < o(τ), a0, . . . , anγ−1 ∈ A, a ∈ fγ(a0, . . . , anγ−1)

and b ∈ A with b ∈ a (i.e. aα∗b). It follows that n ∈ N, x0, . . . , xn ∈ A exist
so that a = x0αx1α . . . αxn−1αxn = b hence for any i ∈ {0, . . . , n − 1}, there ex-
ist mi ∈ N, pi ∈ P (mi)(τ), ai

0, . . . , a
i
mi−1 ∈ A with xi, xi+1 ∈ pi(ai

0, . . . , a
i
mi−1).

We can consider that every two consequent elements from x0, . . . , xn are distin-
guished, thus no pi is equal to an xi

j , (j < mi), ∀i ∈ {0, . . . , n − 1}. Hence
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∀i ∈ {0, . . . , n − 1}, pi(ai
0, . . . , a

i
mi−1) ∩ pi+1(ai+1

0 , . . . , ai+1
mi−1) 6= 6= ∅ (because

this intersection contains xi) and so ∀i ∈ {0, . . . , n − 1}, pi(ai
0, . . . , a

i
mi−1) =

pi+1(ai+1
0 , . . . , ai+1

mi−1) which leads us to b ∈ p0(a0
0, . . . , a

0
mi−1). But

a ∈ p0(a0
0, . . . , a

0
mi−1) ∩ fγ(a0, . . . , anγ−1)

thus p0(a0
0, . . . , a

0
mi−1) = fγ(a0, . . . , anγ−1) hence b ∈ fγ(a0, . . . , anγ−1) and the

proof is finished. ¤

Remark 8. A multialgebra A which verifies one of the equivalent conditions (i) and
(ii) from above is a generalization of the notion of complete semihypergroup from
[2] (fact that suggests a name like complete multialgebra).

Remark 9. For a multialgebra A which verifies (i) the classes from A have the form
{a} or fγ(a0, . . . , anγ−1), with γ < o(τ).

Remark 10. The multialgebra A′ from the proof of Proposition 2 verifies (i).

Remark 11. The equality αA = α∗A holds, for any multialgebra A which verifies (i).

Proposition 4. Let A be a multialgebra of type τ. The multialgebra A verifies (i)
if and only if A is a disjoint union of nonvoid sets Ab, b ∈ B, where B is the
supporting set of a universal algebra B of type τ and for each γ < o(τ), for any
a0, . . . , anγ−1 ∈ A, with ai ∈ Abi (i ∈ {0, . . . , nγ −1}), we have fγ(a0, . . . , anγ−1) =
Afγ(b0,...,bnγ−1).

Proof. Let us take B = A and Ab = ϕ−1
A (b), for any b ∈ B. For any γ <

o(τ), a0, . . . , anγ−1 ∈ A, there exist b0, . . . , bnγ−1 ∈ B uniquely determined, with
ai ∈ Abi , for all i ∈ {0, . . . , nγ − 1} and we have that fγ(a0, . . . , anγ−1) = ϕ−1

A (a),
for each a ∈ fγ(a0, . . . , anγ−1) hence

a = ϕA(a) = ϕA(fγ(a0, . . . , anγ−1)) = fγ(ϕA(a0), . . . , ϕA(anγ−1))

= fγ(b0, . . . , bnγ−1),

and so fγ(a0, . . . , anγ−1) = ϕ−1
A (fγ(b0, . . . , bnγ−1)) = Afγ(b0,...,bnγ−1).

Conversely, let us notice that for any n ∈ N, p ∈ P (n)(τ) \ {xi | i ∈ {0, . . . , n−
1}}, a0, . . . , an−1 ∈ A if b0, . . . , bn−1 ∈ B so that ai ∈ Abi , ∀i ∈ {0, . . . , n −
1} we have that p(a0, . . . , an−1) = Ap(b0,...,bn−1). Using (ii) we obtain the wanted
result. ¤

Remark 12. This proposition gives us a method to obtain multialgebras that verify
(i). The fundamental algebra of such a multialgebra contains B as a subalgebra.

Remark 13. We can construct multialgebras A with the fundamental algebra B
considering that, in the family {Ab}b∈B , |Ab| = 1 holds for each b ∈ B which can
not be expressed as b = fγ(b0, . . . , bnγ−1) with γ < o(τ) and b0, . . . , bnγ−1 ∈ B.
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