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Abstract. Using some previous results on hypergroupoids associated to bi-
nary relations, we will point out some isomorphisms between categories of re-
lational structures with one binary relation and categories of hypergroupoids
(or semihypergroups, or hypergroups). This will lead us to some interesting re-
sults on direct limits of hypergroupoids (or semihypergroups, or hypergroups)
associated to binary relation.

1. Introduction

In [8], Rosenberg associates to each binary homogeneous relation with full do-
main R on a set H a hypergroupoid HR. In the same paper, Rosenberg establishes
necessary and sufficient conditions for R such that HR is a semihypergroup (or a
hypergroup) and necessary and sufficient conditions for a (semi)hypergroup to be
the (semi)hypergroup determined by a binary relation. Later, in [1], Corsini studies
when some constructions in the class of relational structures above provides a hy-
pergroup through the association rule introduced by Rosenberg. An extended view
on this topic is found in [2]. Yet, a categorical translation for some results from
[8] and [1] seems to enlarge the existing frame. The categorical tools are not very
difficult and they can be found in [4] or [6]. We begin with a categorical survey of
the subject, and then, using the results obtained in [5], we will be able to strengthen
some of the results presented by Corsini in [1] on direct limits of direct systems.

2. Preliminaries

Let H be a set and let R be a binary relation on H. Denote the inverse of the

relation R by
−1

R . As in [8], we call the set

D(R) = {x ∈ H | ∃y ∈ H : xRy}
the domain of the relation R. For x ∈ H, X ⊆ H we denote

R〈x〉 = {y ∈ H | xRy} and R(X) = {y ∈ H | ∃x ∈ X : xRy}.
If x1, . . . , xn ∈ H, we will write R(x1, . . . , xn) instead of R({x1, . . . , xn}). Clearly,

D(R) =
−1

R (H) and R(X) =
⋃

x∈X

R〈x〉.

1991 Mathematics Subject Classification. 20N99, 20N20.
Key words and phrases. hypergroupoid associated to a binary relation, hypergroupoid associ-

ated to a monounary multialgebra, direct limit of a direct system.

1



2 COSMIN PELEA AND IOAN PURDEA

As in [8], one can associate to the binary relation R ⊆ H × H the partial hyper-
groupoid HR = (H, ◦) defined by

(1) x ◦ y = R(x, y).

It is obvious that

x2 = x ◦ x = R〈x〉 = {y ∈ H | xRy} and x ◦ y = x2 ∪ y2.

Lemma 1. [8, Lemma 1] Let H be a set and let R be a binary relation on H. The
partial hypergroupoid HR = (H, ◦) is a hypergroupoid if and only if R has a full
domain (i.e. the domain of R is H).

An element x ∈ H is an outer element of (the relation) R if there exists h ∈ H
such that (h, x) /∈ R2.

Proposition 1. [8, Proposition 2] Let R be a binary relation on H with full domain.
The hypergroupoid HR is a semihypergroup if and only if R ⊆ R2 and

(a, x) ∈ R2 ⇒ (a, x) ∈ R

whenever x is an outer element of R.

Proposition 2. [8] Let H 6= ∅ and let R be a binary relation on H. The hyper-
groupoid HR is a hypergroup if and only if the following conditions hold:

1)
−1

R (H) = H;
2) R(H) = H;
3) R ⊆ R2;
4) whenever x is an outer element of R we have

(a, x) ∈ R2 ⇒ (a, x) ∈ R.

Remark 1. For any reflexive relation R on H the partial hypergroupoid HR = (H, ◦)
is a hypergroupoid. If, in addition, R is transitive and H 6= ∅ the conditions 2), 3)
and 4) from the above theorem are also satisfied, so HR = (H, ◦) is a hypergroup.

Let (H, R), (H ′, R′) be relational systems with binary relations and h : H → H ′.
One says that h is an homomorphism of relational systems if

xRy ⇒ h(x)R′h(y).

Let (H, ◦), (H ′, ◦′) be hypergroupoids. A mapping h : H → H ′ is called homo-
morphism (of hypergroupoids) if

h(x ◦ y) ⊆ h(x) ◦′ h(y), ∀x, y ∈ H.

Remark 2. If H is a set and R is a binary relation on H with full domain, we
can identify (H, R) with the multialgebra (H, f) with one unary multioperation
f : H → P ∗(H) defined by

(2) xRy ⇔ y ∈ f(x).

If (H ′, R′) is also a relational system for which
−1

R′(H ′) = H ′, (H ′, f ′) is the corre-
sponding monounary multialgebra and h : H → H ′ is a relational homomorphisms
between (H, R) and (H ′, R′) then:

[xRy ⇒ h(x)R′h(y)] ⇔ [y ∈ f(x) ⇒ h(y) ∈ f ′(h(x))] ⇔ h(f(x)) ⊆ f ′(h(x)).

This means that h is a relational homomorphism between (H, R) and (H ′, R′) if
and only if h is a homomorphism between the multialgebras (H, f) and (H ′, f ′).
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Let R2 be the category of the relational systems with one binary relation – the
morphisms are the homomorphisms of relational systems and the product of two
morphisms is the usual composition of homomorphisms – and let us denote by R′2
the full subcategory of R2 whose objects are the relational systems (H,R) for which
−1

R (H) = H. From the above remark it follows that the category R′2 is isomorphic
to the category Malg(1) of the monounary multialgebras (here the morphisms are
the multialgebra homomorphisms and the product of two morphisms is the usual
composition of homomorphisms).

The hypergroupoids (or semihypergroups, or hypergroups) associated to binary
relations can be seen as hypergroupoids (or semihypergroups, or hypergroups) asso-
ciated to monounary multialgebras (H, f) using the translation of (1) in the terms
of the unary multioperation f . Remember that

f(X) =
⋃

x∈X

f(x), ∀X ⊆ H, X 6= ∅,

and (1) becomes

x ◦ y = f({x, y}) = f(x) ∪ f(y)(= x2 ∪ y2).

Lema 1 can be rewritten as below:

Lemma 2. For any multialgebra (H, f) with one unary multioperation, the equality

x ◦ y = f({x, y})
defines a hypergroupoid Hf = (H, ◦).

Let f and R be as in (2). An x ∈ H is an outer element (of (H, f)) if there
exists h ∈ H such that x /∈ f(f(h)). Now, Propositions 1 and 2 can be restated as
follows:

Proposition 3. Let (H, f) be a multialgebra with one unary multioperation. The
hypergroupoid Hf is a semihypergroup if and only if

f(x) ⊆ f(f(x)), ∀x ∈ H

and for any outer element x ∈ H,

x ∈ f(f(a)) ⇒ x ∈ f(a).

Proposition 4. Let H 6= ∅ and let (H, f) be a multialgebra with one unary mul-
tioperation. The hypergroupoid Hf is a hypergroup if and only if the following
conditions hold:

i) f(H) = H;
ii) f(x) ⊆ f(f(x)), ∀x ∈ H;
iii) whenever x is an outer element we have

x ∈ f(f(a)) ⇒ x ∈ f(a).

3. A categorical survey of the subject

In [8], Rosenberg determines the semihypergroups which can be obtained from
a binary relations using (1):

Proposition 5. [8, Proposition 3] Let (H, ∗) be a semihypergroup. There exists a
binary relation R on H such that (H, ∗) = HR if and only if the following conditions
are satisfied for any x, y ∈ H:
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a) x ∗ y = x2 ∪ y2;
b) x2 ⊆ (x2)2;
c) (x2)2 ∩ (H \ (y2)2) ⊆ x2.

The binary relation R ⊆ H ×H from Rosenberg’s proof is defined by

xRy ⇔ y ∈ x ∗ x

and
−1

R (H) = H. It follows easily that Proposition 5 can be restated as bellow.

Proposition 6. Let (H, ∗) be a hypergroupoid. There exists a binary relation R on
H such that (H, ∗) = HR if and only if

(3) x ∗ y = x2 ∪ y2, ∀x, y ∈ H.

A hypergroupoid (H, ∗) which satisfies the condition (3) is a semihypergroup if and
only if it verifies the conditions b) and c) from Proposition 5.

Remark 3. A hypergroupoid (H, ∗) which satisfies the condition (3) is a hypergroup
if and only if it verifies the conditions b), c) from Proposition 5, and

⋃
x∈H x2 = H.

Remark 4. In the terms of our discussion, a hypergroupoid (or semihypergroup, or
hypergroup) (H, ∗) is determined by a unary multioperation f on H if and only if
(H, ∗) satisfies the condition (3).

Besides R2, R′2 and Malg(1), the following categories drew our attention:
• the category Malg(2) of hypergroupoids: the morphisms are the hypergroupoid
homomorphisms and the product of two morphisms is the usual composition of
homomorphisms;
• the full subcategory of Malg(2) whose object are the hypergroupoids which satisfy
(3), denoted by Malg′(2);
• the full subcategory of Malg(2) whose object are the semihypergroups, denoted
by SHG;
• the full subcategory of SHG whose object are the semihypergroups which satisfy
(3), denoted by SHG′;
• the category HG of hypergroups with hypergroup homomorphisms and the usual
composition;
• the full subcategory of HG whose object are the hypergroups which satisfy (3),
denoted by HG′;
• the full subcategory Malg′(1) of Malg(1) whose objects are the monounary mul-
tialgebras (H, f) which satisfy the conditions from Proposition 3 (i.e. the conditions
ii),iii) from Proposition 4);
• the full subcategory Malg′′(1) of Malg(1) whose objects are the monounary
multialgebras (H, f), with H 6= ∅, which satisfy the conditions i), ii), iii) from
Proposition 4.

The correspondence (H, f) 7→ Hf = (H, ◦) defines, in a natural way, a functor
from Malg(1) into Malg(2).

Lemma 3. Let (H, f), (H ′, f ′) be two multialgebras from Malg(1), let Hf =
(H, ◦), H ′

f ′ = (H ′, ◦′) be the hypergroupoids associated to the multioperations f and
f ′, respectively. The mapping h : H → H ′ is a homomorphism from (H, f) into
(H ′, f ′) if and only if h is a homomorphism from Hf into H ′

f ′ .
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Proof. If h is a homomorphism from (H, f) into (H ′, f ′) then, for any x, y ∈ H,

h(x ◦ y) = h(f(x)∪ f(y)) = h(f(x))∪ h(f(y)) ⊆ f ′(h(x))∪ f ′(h(y)) = h(x) ◦′ h(y),

hence h is a homomorphism from Hf into H ′
f ′ . Conversely, if h is a homomorphism

from Hf into H ′
f ′ and x ∈ H then

h(f(x)) = h(x ◦ x) ⊆ h(x) ◦ h(x) = f ′(h(x)),

thus h is a multialgebra homomorphism from (H, f) into (H ′, f ′). ¤

Corollary 1. Let us consider the correspondences

(H, f) 7→ Hf

for any object (H, f) from Malg(1) and

h 7→ h

for any morphism h ∈ HMalg(1)((H, f), (H ′, f ′)). We obtain a covariant functor

F : Malg(1) → Malg′(2).

Remark 5. If in Lemma 3 we consider two multialgebras (H, f) and (H ′, f ′) from
Malg′(1) then h is a morphism in SHG′ between Hf and H ′

f ′ . Hence, we can
define as in Corollary 1 a covariant functor

F ′ : Malg′(1) → SHG′.

Also, if in Lemma 3 we consider two multialgebras (H, f) and (H ′, f ′) from Malg′′(1)
then h is a morphism in HG′ between Hf and H ′

f ′ . Hence, we can define as in
Corollary 1 a covariant functor

F ′′ : Malg′′(1) → HG′.

Remark 6. Let (H, ∗) be a hypergroupoid and consider the multioperation

f∗ : H → P ∗(H), f∗(x) = x ∗ x.

Then (H, f∗) is in Malg(1), and, as in the ”only if” part of Lemma 3, we deduce that
if h ∈ HMalg(2)((H, ∗), (H ′, ∗′)) is a morphism in Malg(2) then h is a multialgebra
homomorphism from (H, f∗) into (H ′, f∗′), i.e. h ∈ HMalg(1)((H, f∗), (H ′, f∗′)). It
follows immediately that the correspondences

(H, ∗) 7→ (H, f∗), h 7→ h

define a covariant functor Malg(2) → Malg(1). We compose this functor with the
inclusion functor Malg′(2) → Malg(2) and we obtain a covariant functor

G : Malg′(2) → Malg(1).

Lemma 4. The covariant functor F is an isomorphism between the categories
Malg(1) and Malg′(2), and G is the inverse of F .

Proof. Let 1Malg(1) and 1Malg′(2) denote the identity functors of Malg(1) and
Malg′(2), respectively. We show that

GF = 1Malg(1) and FG = 1Malg′(2).

Let (H, f) ∈ Malg(1) and Hf = (H, ◦). We have

G(F (H, f)) = G(H, ◦) = (H, f◦)
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and (H, f) = (H, f◦) since for any x ∈ H,

f◦(x) = x ◦ x = f(x) ∪ f(x) = f(x).

If h ∈ HMalg(1)((H, f), (H ′, f ′)) is a multialgebra homomorphism then

G(F (h)) = G(h) = h.

Let (H, ∗) ∈ Malg′(2). We have

F (G(H, ∗)) = F (H, f∗) = Hf∗ = (H, ◦),
and for any x, y ∈ H,

x ◦ y = f∗(x) ∪ f∗(y) = (x ∗ x) ∪ (y ∗ y) = x ∗ y,

thus (H, ◦) = (H, ∗) and if h ∈ HMalg′(2)((H, ∗), (H ′, ∗′)) then

G(F (h)) = G(h) = h

which ends the proof of the lemma. ¤

Corollary 2. The functors F and G provide an isomorphism between the categories
R′2 and Malg′(2).

Corollary 3. The functor F ′ is an isomorphism between the categories Malg′(1)
and SHG′, and the inverse of F ′ is the functor G′ : SHG′ → Malg′(1) given by

G′(H, ∗) = (H, f∗), G′(h) = h.

Corollary 4. The functor F ′′ is an isomorphism between the categories Malg′′(1)
and HG′, and the inverse of F ′′ is the functor G′′ : HG′ → Malg′′(1) given by

G′′(H, ∗) = (H, f∗), G′′(h) = h.

4. Direct limits of direct systems of hypergroupoids associated to
binary relations

Let H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of mul-
tialgebras from Malg(1) and for each i ∈ I let F (Hi, fi) = (Hi, ◦i). Clearly,
((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct system of hypergroupoids. We
denote it by F (H).

Remember that (I,≤) is a directed preordered set and the homomorphisms
ϕij (i, j ∈ I, i ≤ j) are such that

ϕii = 1Ai , ∀i ∈ I and ϕjk ◦ ϕij = ϕik, ∀i, j, k ∈ I, i ≤ j ≤ k.

The relation ≡ defined on the disjoint union H of the sets Hi as follows: for any
x, y ∈ A there exist i, j ∈ I such that x ∈ Hi, y ∈ Hj , and

x ≡ y ⇔ ∃k ∈ I, i ≤ k, j ≤ k : ϕik(x) = ϕjk(y)

is an equivalence relation on H and the factor set H∞ = H/≡ = {x̂ | x ∈ H} is the
direct limit of the direct system of sets ((Hi | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) (see [3]).

The direct limit lim−→H of the direct system of multialgebras multialgebras H is
the monounary multialgebra (H∞, f) with f defined as follows: if x̂ ∈ A∞ and
i ∈ I such that x ∈ Hi then

(2) f(x̂) = {ŷ | ∃m ∈ I, i ≤ m, y ∈ fm(ϕim(x))}.
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The direct limit of the direct system of hypergroupoids ((Hi, ◦i) | i ∈ I) (in
Malg(2)) is the hypergroupoid (H∞, ◦) with ◦ defined as follows: if x̂1, x̂2 ∈ A∞
and i1, i2 ∈ I such that x1 ∈ Hi1 , x2 ∈ Hi2 then

(3) x̂1 ◦ x̂2 = {ŷ | ∃m ∈ I, i1 ≤ m, i2 ≤ m, y ∈ ϕi1m(x1) ◦m ϕi2m(x2)}
(see [5, Lemma 15]). Using the above notations, we obtain the main result of this
section.

Theorem 1. The hypergroupoid (H∞, ◦) is the hypergroupoid determined by the
multialgebra (H∞, f).

Proof. Let (H∞, ∗) be the hypergroupoid determined by (H∞, f). We prove that

(H∞, ∗) = (H∞, ◦).
Let x̂1, x̂2 ∈ H∞ with x1 ∈ Hi1 , x2 ∈ Hi2 (i1, i2 ∈ I). Let

ŷ ∈ x̂1 ∗ x̂2 = f(x̂1) ∪ f(x̂2).

If ŷ ∈ f(x̂1) then there exists m1 ∈ I, i1 ≤ m1 such that

y ≡ y′ and y′ ∈ fm1(ϕi1m1(x1)).

If ŷ ∈ f(x̂2) then there exists m2 ∈ I, i2 ≤ m2 such that

y ≡ y′′ ∈ fm2(ϕi2m2(x2)).

Since y′ ≡ y ≡ y′′ there exists an upper bound m ∈ I for m1 and m2 such that

ϕm1m(y′) = ϕm2m(y′′).

It follows immediately that

y ≡ ϕm1m(y′) ∈ ϕm1m(fm1(ϕi1m1(x1))) ⊆ fm(ϕi1m(x1)),

y ≡ ϕm2m(y′′) ∈ ϕm2m(fm2(ϕi2m2(x2))) ⊆ fm(ϕi2m(x2)).

Thus ϕm1m(y′) = ϕm2m(y′′) is a representative for ŷ, and in Hm we have

ϕm1m(y′) ∈ fm(ϕi1m(x1)) ∪ fm(ϕi2m(x2)) = ϕi1m(x1) ◦m ϕi2m(x2).

From (3) it follows ŷ ∈ x̂1 ◦ x̂2, hence we have proved the inclusion

x̂1 ∗ x̂2 ⊆ x̂1 ◦ x̂2.

Conversely, let ŷ ∈ x̂1 ◦ x̂2. According to (3) it follows that there exists an upper
bound m ∈ I for i1 and i2 such that in Hm we have

y ∈ ϕi1m(x1) ◦m ϕi2m(x2) = fm(ϕi1m(x1)) ∪ fm(ϕi2m(x2)).

If y ∈ fm(ϕi1m(x1)) then ŷ ∈ f(x̂1) and if y ∈ fm(ϕi2m(x2)) then ŷ ∈ f(x̂2). Thus

ŷ ∈ f(x̂1) ∪ f(x̂2) = x̂1 ∗ x̂2

and we have proved the equality

x̂1 ∗ x̂2 = x̂1 ◦ x̂2

for any x̂1, x̂2 ∈ H∞. ¤



8 COSMIN PELEA AND IOAN PURDEA

Since (H∞, f), with the homomorphisms ϕi∞ : Hi → H∞, ϕi∞(x) = x̂ (i ∈ I) is
the direct limit in Malg(1) of the direct system H and (H∞, ◦), with the homomor-
phisms ϕi∞, is the direct limit in Malg(2) of the direct system of hypergroupoids
((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) (see [5]) it is quite clear now that the direct
limit of a direct system of hypergroupoids which satisfy (3) is a hypergroupoid
which satisfy (3). Thus we have:

Corollary 5. The subcategory Malg′(2) of Malg(2) is closed under direct limits
of direct systems.

Corollary 6. If H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct system
of multialgebras from Malg(1) and F (H) is the direct system of hypergroupoids
((F (Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) then F (lim−→H) is the direct limit of F (H)
in Malg(2).

Corollary 7. If ((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct system of hyper-
groupoids from Malg′(2) then the direct limit of the direct system of multialgebras
((G(Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) from Malg(2) is the monounary multial-
gebra which determines the direct limit of the hypergroupoids ((Hi, ◦i) | i ∈ I).

Consider that H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a direct system
of multialgebras from Malg′(1) (or Malg′′(1)). The direct limit (H∞, f) of H in
Malg(1) is a monounary multialgebra which determines the direct limit in Malg(2)
of the direct system of hypergroupoids ((Hi)fi | i ∈ I). Denote by (H∞, ◦) the
resulting hypergroupoid and we can write (H∞)f = (H∞, ◦). Since each (Hi)fi is
a semihypergroup (or a hypergroup, respectively), (H∞, ◦) is also semihypergroup
(or a hypergroup, respectively) (see [7, Theorems 3 and 4]) and since each (Hi)fi

satisfies condition (3) the semihypergroup (the hypergroup, respectively) (H∞, ◦)
satisfies (3). Thus (H∞, f) = G′(H∞, ◦) is the monounary multialgebra on which
determines the semihypergroup (the hypergroup, respectively) (H∞, ◦) and we have
proved the following results:

Corollary 8. The subcategory Malg′(1) of Malg(1) is closed under direct limits
of direct systems. Moreover, if H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is
a direct system of multialgebras from Malg′(1) and F ′(H) is the direct system of
semihypergroups ((F ′(Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) then F ′(lim−→H) is the
direct limit of F ′(H) in Malg(2).

Corollary 9. The subcategory Malg′′(1) of Malg(1) is closed under direct limits
of direct systems. Moreover, if H = (((Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) is a
direct system of multialgebras from Malg′′(1) and F ′′(H) is the direct system of
semihypergroups ((F ′′(Hi, fi) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) then F ′′(lim−→H) is the
direct limit of F ′′(H) in Malg(2).

Let (I,≤) be a directed partially ordered set and let

A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j))

be a direct system of multialgebras and let us consider J ⊆ I such that (J,≤) is
also a directed partially ordered set. Denote by AJ the direct system consisting of
the multialgebras (Ai | i ∈ J) whose carrier is (J,≤) and the homomorphisms are
(ϕij | i, j ∈ J, i ≤ j).



DIRECT LIMITS OF HYPERGROUPOIDS ASSOCIATED TO BINARY RELATIONS 9

Proposition 7. [5, Proposition 22] Let A be a direct system of multialgebras with
the carrier (I,≤) and let us consider J ⊆ I such that (J,≤) is a directed par-
tially ordered set cofinal with (I,≤). Then the multialgebras lim−→A and lim−→AJ are
isomorphic.

Using the above Proposition, we get the following properties:

Corollary 10. Let (I,≤) be a directed partially ordered set and J ⊆ I such that
(J,≤) is a directed partially ordered set cofinal with (I,≤). If ((Hi, fi) | i ∈ I)
is a direct system of monounary multialgebras and for any i ∈ J , (Hi, fi) sat-
isfies the conditions ii), iii) from Proposition 4 then the direct limit multialgebra
lim−→i∈I(Hi, fi) satisfies the conditions ii), iii) from Proposition 4. The hypergroupoid
determined by the monounary multialgebra lim−→i∈I(Hi, fi) is a semihypergroup which
is the direct limit of the semihypergroups ((Hi)fi

| i ∈ J) in Malg(2).

Corollary 11. Let (I,≤) be a directed partially ordered set and J ⊆ I such that
(J,≤) is a directed partially ordered set cofinal with (I,≤). If ((Hi, fi) | i ∈ I)
is a direct system of monounary multialgebras and for any i ∈ J , (Hi, fi) satis-
fies the conditions i), ii), iii) from Proposition 4 then the direct limit multialgebra
lim−→i∈I(Hi, fi) satisfies the conditions i), ii), iii) from Proposition 4. The hyper-
groupoid determined by the monounary multialgebra lim−→i∈I(Hi, fi) is a hypergroup
which is the direct limit of the hypergroups ((Hi)fi | i ∈ J) in Malg(2).

Remark 7. In [1, Theorem 2.8], Corsini considers a direct system of relational
systems with one binary relation whose (partially ordered) carrier has a cofinal
subset for which all the binary relations determines hypergroups. From the previous
corollary follows not only the fact that the direct limit of the given direct system
of relational system determines a hypergroup (fact proved by Corsini), but it also
results that this hypergroup is the hypergroup obtained as the direct limit of the
resulting direct system of hypergroups.
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