
10th International AHA Congress Brno, 3.– 9. 9. 2008

Identities in multialgebra theory

Cosmin Pelea?1 and Ioan Purdea2
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Abstract

Adapting the notion of identity from universal algebras to multialgebras allows to provide
a common language and a common approach to many important topics from multialge-
bra theory. In this survey article we will present some of our results on identities and
multialgebras and a lot of remarks and examples which will support (in our opinion) this
statement.

1. Introduction

One of the most important results concerning multialgebras is G. Grätzer’s cha-
racterization theorem, which proves in [4] that the study of multialgebras is a
natural extension of the theory of universal algebras. One of the problems sug-
gested by Grätzer in his paper is the following: What are the factor multialgebras
of a group, abelian group, lattice, ring and so on? Characterize these with a
suitable axiom system. This problem as well as many of the definitions of the
hyperstructures from [2] and T. Vougiouklis’s works (for instance, [21]) pointed
out the necessity to study the identities for multialgebras. We can talk about
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(at least) two types of identities for multialgebras: (strong) identities and weak
identities. In this survey article we will refer to the following topics concerning
the identities in the hyperstructure theory:
1. How weak and/or strong identities determine some particular hyperstructures?
2. How identities acts with respect to some constructions of multialgebras?
1. Some multialgebras such as semihypergroups, Hv-semigroups, hypergroups,
Hv-groups, canonical hypergroups, different types of hyperrings and Hv-rings,
Hv-modules are determined by weak and/or strong identities.
2. The construction of factor multialgebras is one of the first and, maybe, the
most important construction in multialgebra theory. The study of the term func-
tions of the factor multialgebra of a universal algebra leads us to an answer to the
first part of Grätzer’s problem, since the identities of a universal algebra usually
become weak identities on the factor multialgebra. An important role in hyper-
structure theory is played by those (ideal) equivalence relations for which the
factor multialgebras are universal algebras. A series of important works on these
equivalences of hypergroupoids, semihypergroups, hypergroups, hyperrings have
been published after 1990 and converge towards the study of the fundamental
relation. We gave a characterization of these equivalence relations of a multialge-
bra, we determined the fundamental relation of a (general) multialgebra, and we
proved that the (weak) identities of a multialgebra become identities of the uni-
versal algebra obtained by factorization modulo this kind of equivalence relations.
We also determined the smallest equivalence for which the factor multialgebra is
a universal algebra for which a given identity is verified and we proved that the
factorization of a universal algebra modulo an equivalence relation, which gave
rise to multialgebras, can be seen as an intermediate step of such a factorization.
As in the case of universal algebras, for a family of multialgebras which satisfy a
certain (weak) identity the direct product satisfies the same identity. A similar
result holds for direct limits of direct systems of multialgebras.

The main purpose of this survey article is to point out some general results
which already exist in multialgebra theory and which do not need to be ”redis-
covered” on particular hyperstructures, but may be adapted and improved. This
is why a big part of the presentation consists in remarks and examples. The
proofs and other details concerning our results which appear in this paper can be
found in [10], [11], [12], [13], [14], and [15]

2. Preliminaries

Let τ = (nγ)γ<o(τ) be a sequence of nonnegative integers (o(τ) is an ordinal) and
for any γ < o(τ), let fγ be a symbol of an nγ-ary (multi)operation. Denote by

P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ))

the algebra of the n-ary terms (of type τ).
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If A is a set, we denote by P (A) the set of the subsets of A and by P ∗(A) the
set of the nonempty subsets of A.

Definition 1. A multialgebra A of type τ consists in a set A and a family of
multioperations (fγ)γ<o(τ), where

fγ : Anγ → P ∗(A)

is the nγ-ary multioperation which corresponds to the symbol fγ .

It is easy to observe that if the multialgebra A has no nullary multioperations,
we can allow the set A to be empty, and that universal algebras are particular
multialgebras.

Remark 1. A multialgebra A = (fγ)γ<o(τ) can be seen as in [20] as a relational
system (A, (rγ)γ<o(τ)), where rγ is the nγ + 1-ary relation defined by

(a0, . . . , anγ−1, anγ ) ∈ rγ ⇔ anγ ∈ fγ(a0, . . . , anγ−1).

If we allow the multioperations to be defined into P (A) instead of P ∗(A) then any
relational system can be modelled as a multialgebra using the above equivalence.
It must be mentioned that in the literature there are many important papers
dealing with this kind of multialgebras. From our point of view, the relational
systems modelled as multialgebras are partial multialgebras, they don’t satisfy
the characterization theorem from [4], and most of the results we will present
here are not valid for them in this form.

Remark 2. As in [16], a multialgebra A determines a universal algebra P∗(A)
on P ∗(A) defining for any γ < o(τ), and any A0, . . . , Anγ−1 ∈ P ∗(A),

fγ(A0, . . . , Anγ−1) =
⋃
{fγ(a0, . . . , anγ−1) | ai ∈ Ai, i ∈ {0, . . . , nγ − 1}}.

We call P∗(A) the (universal) algebra of the nonempty subsets of A.

Definition 2. Let q, r ∈ P(n)(τ). We say that the n-ary (strong) identity

q = r

is satisfied on a multialgebra A if

q(a0, . . . , an−1) = r(a0, . . . , an−1), ∀a0, . . . , an−1 ∈ A.

We say that the weak identity
q ∩ r 6= ∅

is satisfied on a multialgebra A if

q(a0, . . . , an−1) ∩ r(a0, . . . , an−1) 6= ∅, ∀a0, . . . , an−1 ∈ A

(q and r denote the term functions induced by q and r respectively on P∗(A)).
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Since P∗(A) is a universal algebra, one can construct the algebra of the
n-ary polynomial functions of P∗(A) (see, for instance, [1]). We denote it by
P

(n)
P ∗(A)(P

∗(A)) and we denote by P
(n)
A (P∗(A)) its subalgebra generated by

{cn
a | a ∈ A} ∪ {en

i | i ∈ {0, . . . , n− 1}},

where cn
a , en

i : P ∗(A)n → P ∗(A) are defined by

cn
a(A0, . . . , An−1) = {a} and en

i (A0, . . . , An−1) = Ai.

Of course, the algebra P(n)(P∗(A)) of the n-ary term functions on P∗(A) is the
subalgebra of P

(n)
A (P∗(A)) generated by {en

i | i ∈ {0, . . . , n− 1}}.

3. A different approach of hypergroups, and not only ...

It is known that a semihypergroup (H, ◦) is a multialgebra with one binary mul-
tioperation satisfying the identity

(1) (x0 ◦ x1) ◦ x2 = x0 ◦ (x1 ◦ x2),

and that an Hv-semihypergroup can be defined in a similar way replacing (1) with

(1′) (x0 ◦ x1) ◦ x2 ∩ x0 ◦ (x1 ◦ x2) 6= ∅.

The following question seems to arise naturally in the context of our discus-
sion: Can we characterize hypergroups (Hv-groups) using (weak and/or strong)
identities? If the answer were yes, then we can characterize some particular
hypergroups, some hyperrings, Hv-rings, hypermodules . . . using identities.

Definition 3. Let H 6= ∅. A hypergroup (H, ◦) is a semihypergroup which
satisfies the reproductibility condition:

a ◦H = H ◦ a = H, ∀a ∈ H.

From Definition 3 it follows that the maps /, \ : H ×H → P ∗(H) defined by

(2) b/a = {x ∈ H | b ∈ x ◦ a}, a\b = {x ∈ H | b ∈ a ◦ x},

are two binary multioperations on H. So, a hypergroup (H, ◦) can be seen as a
multialgebra (H, ◦, /, \) with three binary multioperations, with H 6= ∅, which
satisfy (1) and (2).

Remark 3. In [12] we analyzed the reproductibility condition from the point of
view of hyperoperations from (2), and we deduced that we can see a hypergroup
as a nonempty multialgebra (H, ◦, /, \) of type (2, 2, 2) which satisfy (1) and

(3) x1 ∩ (x1/x0) ◦ x0 6= ∅, x1 ∩ x0 ◦ (x0\x1) 6= ∅.

It is not hard to observe that this multialgebra also satisfies the identities

(4) x1 ∩ (x1 ◦ x0)/x0 6= ∅, x1 ∩ x0\(x0 ◦ x1) 6= ∅.
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If in a semihypergroup the identities (3) are satisfied then the reproductibility
condition holds, thus we obtain the following characterization of hypergroups:

Proposition 1. A nonempty semihypergroup (H, ◦) is a hypergroup if and only
if there exist two binary multioperations /, \ on H such that the multialgebra
(H, ◦, /, \) satisfies the weak identities (3).

Corollary 1. A nonempty hypergroupoid (H, ◦) is an Hv-group if and only
if there exist two binary multioperations /, \ on H such that the multialgebra
(H, ◦, /, \) satisfies the weak identities (1′) and (3).

We will see that in some cases the above characterization of hypergroups is
very useful. Yet, in some cases, some of them presented herein after, it is not
good enough because we cannot be sure that the existence of / and \ satisfying
(3) on a semihypergroup (H, ◦) does not mean necessarily that / and \ are the
multioperations defined by (2).

Example 1. If (H, ◦) is a group, |H| ≥ 2, and we consider the multioperations
/, \ : H ×H → P ∗(H), defined by

a/b = a\b = H, ∀a, b ∈ H.

(H, ◦) is hypergroup, the identities (3) and (4) hold on (H, ◦, /, \), but the sets

{x ∈ H | a ∈ x ◦ b} = {x ∈ H | a = x ◦ b},
{x ∈ H | a ∈ b ◦ x} = {x ∈ H | a = b ◦ x}

are singletons for any a, b ∈ H, so, they cannot be H.

An important class of hypergroups whose definition is very close to the usual
abelian group definition is the class of canonical (or reversible abelian) hyper-
groups. The definition we are dealing with is the one used in [18].

Definition 4. A set H with a binary multioperation + : H ×H → P ∗(H) is a
canonical hypergroup if it verifies the following conditions:

(i) the multioperation + is associative and commutative;

(ii) there exists an element 0 ∈ H such that 0 + a = a for all a ∈ H;

(iii) for each a ∈ H, there exists an element −a ∈ H such that the following
reversibility condition holds: for any b, c ∈ H, if c ∈ a+ b then b ∈ (−a)+ c.

Clearly, the set H is not empty and (H,+) is a hypergroup having the fol-
lowing properties:

Lemma 1. [18, Lemma 1.1] The element 0 is the unique element which have the
required property, and for each a ∈ H, a−1 is the unique element in H satisfying
the above requirements.
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The element 0 is called the identity element of the canonical hypergroup (H,+)
and for each a ∈ H, the element a−1, called the inverse of a, is the only element
in H such that 0 ∈ a + (−a).

Corollary 2. Canonical hypergroups can be seen as multialgebras (H,+, /, \, 0,−)
where +, /, \ are binary multioperations, 0 is a nullary operation, and − is a unary
operation, satisfying the identities (1), (3) and

x0 + x1 = x1 + x0, x0 + 0 = x0, x0/x1 = −(x1/x0).

Remark 4. The identity x0/x1 = −(x1/x0) is the translation of the reversibility
condition from Definition 4 in the language of (2).

Remark 5. Let (H,+, /, \, 0,−) be a multialgebra with the binary multiopera-
tions +, /, \, the nullary operation 0, and the unary operation −, satisfying the
above identities. If we want to verify if the multialgebra (H,+) is a canonical
hypergroup it seems necessary to prove first that / and \ are obtained from +
using the equalities (2). Otherwise, we are not sure that the satisfiability of the
identity x0/x1 = −(x1/x0) ensure the condition (iii) from Definition 4.

Now we are prepared to approach in a similar way other hypergroup based
hyperstructures, like those which generalize rings and modules. Here we will talk
only about some generalizations of rings which can be found in [9], [7] and [21],
but a similar approach works for different types of hypermodules.

Definition 5. A set A with a binary multioperation + and a binary operation ·
is a hyperringoid if:

(i) (A,+) is a hypergroup;

(ii) (A, ·) is a semigroup;

(iii) the operation · is distributive with respect to +, i.e.

a · (b + c) = a · b + a · c, (b + c) · a = b · a + c · a, ∀ a, b, c ∈ A.

Remark 6. A hyperringoid can be seen as a multialgebra (A,+, /, \, ·) with three
binary multioperations +, /, \ and a binary operation · satisfying the following
identities:

(x0 + x1) + x2 = x0 + (x1 + x2), x1 ∩ (x1/x0) + x0 6= ∅, x1 ∩ x0 + (x0\x1) 6= ∅,

(x0 · x1) · x2 = x0 · (x1 · x2),

x0 · (x1 + x2) = x0 · x1 + x0 · x2, (x1 + x2) · x0 = x1 · x0 + x2 · x0.

It is also clear that if a multialgebra (A,+, /, \, ·) with three binary multiopera-
tions +, /, \ and a binary operation · satisfies the above identities then (A,+, ·)
is a hyperringoid, but is not necessary that /, \ be obtained from + using (2).
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Definition 6. A set A with a binary multioperation + and a binary operation ·
is a (Krasner) hyperring if the following conditions hold:

i) (A,+) is a canonical hypergroup having 0 as identity element;

ii) (A, ·) is a semigroup;

iii) 0 · a = a · 0 = 0, for all a ∈ A;

iv) the operation · is distributive with respect to the multioperation +.

Remark 7. Krasner’s hyperrings can be seen as multialgebras (A, +, /, \, 0,−, ·)
with three binary multioperations +, /, \, a nullary operation 0, a unary operation
−, and a binary operation · satisfying the identities:

(x0 + x1) + x2 = x0 + (x1 + x2), x1 ∩ (x1/x0) + x0 6= ∅, x1 ∩ x0 + (x0\x1) 6= ∅,

x0 + x1 = x1 + x0, x0 + 0 = x0, x0/x1 = −(x1/x0),

(x0 · x1) · x2 = x0 · (x1 · x2), x0 · 0 = 0, 0 · x0 = 0

x0 · (x1 + x2) = x0 · x1 + x0 · x2, (x1 + x2) · x0 = x1 · x0 + x2 · x0.

As for a multialgebra (A,+, /, \, 0,−, ·) with three binary multioperations +, /, \,
a nullary operation 0, a unary operation −, and a binary operation · satisfying the
above identities, to verify if (A, +, ·) is a (Krasner) hyperring, it seems necessary
to show that /, \ are obtained from + using (2).

Definition 7. A set A with two binary multioperations + and · is called Hv-ring
if (A, +) is an Hv-group, (A, ·) is an Hv-semigroup, and

a(b + c) ∩ (ab + ac) 6= ∅ and (b + c)a ∩ (ba + ca) 6= ∅

for any a, b, c ∈ A.

Remark 8. An Hv-ring can be seen as a multialgebra (A,+, /, \, ·) with four
binary multioperations +, /, \, · satisfying the following weak identities:

(x0 +x1)+x2∩x0 +(x1 +x2) 6= ∅, x1∩ (x1/x0)+x0 6= ∅, x1∩x0 +(x0\x1) 6= ∅,

(x0 · x1) · x2 ∩ x0 · (x1 · x2) 6= ∅,
x0 · (x1 + x2) ∩ x0 · x1 + x0 · x2 6= ∅, (x1 + x2) · x0 ∩ x1 · x0 + x2 · x0 6= ∅.

Conversely, if a multialgebra (A,+, /, \, ·) satisfies the above identities, then
(A,+, ·) is an Hv-ring but, again, is not necessary that /, \ be obtained from
+ using (2).

Remark 9. It is clear that in a semihypergroup (A,+) the construction of the
term functions from P (n)(A, +) (n ∈ N∗) is easy. The distributivity makes this
construction quite easy also in the case of hyperringoids and hyperrings. The
things are from afar more complicated if + is only weak associative and situation
is even more complicated if we are dealing with Hv-rings.
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4. Identities and factor multialgebras

For an equivalence relation ρ on a set A, we denote by ρ〈x〉 the class of x modulo
ρ, and A/ρ = {ρ〈x〉 | x ∈ A}.

Definition 8. Let A be a multialgebra of type τ and let ρ be an equivalence
relation on A. Taking for each γ < o(τ),

fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = {ρ〈b〉 | b ∈ fγ(b0, . . . , bnγ−1), aiρbi, i = 0, . . . , nγ − 1},

one obtains a multialgebra A/ρ on A/ρ called the factor multialgebra of A deter-
mined by ρ.

Remark 10. Clearly, if A is a universal algebra then the definition of the mul-
tioperations in the factor multialgebra can be rewritten as follows:

fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = {ρ〈b〉 | b = fγ(b0, . . . , bnγ−1), aiρbi, i = 0, . . . , nγ − 1}.

This is one of the most important construction of multialgebras, not only
because in 1934 the first hypergroup mentioned in the literature appeared this
way, but also because in 1962 it was proved that any multialgebra is obtained
from such a factorization of a universal algebra.

4.1. Factor multialgebras of universal algebras

Maybe the most important result in multialgebra theory is the following:

Theorem 1. [4] Any multialgebra which has no nullary multioperations or for
which the nullary multioperations are operations is (isomorphic to) a factor of a
universal algebra modulo an equivalence relation.

As a matter of fact, the form of the above theorem from [4] is slightly different,
but it was stated in this version according to some important remarks from
[6]. In [4], G. Grätzer also stated the following problem: What are the factor
multialgebras of a group, abelian group, lattice, ring and so on? Characterize
these with a suitable axiom system.

To give an answer to the question in the first part of the problem we restated
it as follows: What happens with an identity of an universal algebra A when we
factorize it modulo an equivalence relation ρ?

It is easy to prove that if n ∈ N, q, r ∈ P (n)(τ) and the identity q = r is
satisfied on A then for any a0, . . . , an−1 ∈ A the class of

q(a0, . . . , an−1) = r(a0, . . . , an−1)

modulo ρ is in q(ρ〈a0〉, . . . , ρ〈an−1〉)∩ r(ρ〈a0〉, . . . , ρ〈an−1〉) (see [15, Remark 8]).
Thus, the answer we found was that the identities of a multialgebra become, in
general, weak identities in the factor multialgebra.
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Proposition 2. Let A be a universal algebra and let ρ be an equivalence relation
on A. If n ∈ N, q, r ∈ P (n)(τ) and q = r is satisfied on A then the weak identity
q ∩ r 6= ∅ is satisfied on A/ρ.

Let (G, ·) be a group. The sets

(2′) b/a = {x ∈ G | b = x · a}, a\b = {x ∈ G | b = a · x}

are one-element sets, and the group G group can be seen as a nonempty universal
algebra (G, ·, /, \) satisfying the identities

(x0 · x1) · x2 = x0 · (x1 · x2), x1 = x0 · (x0\x1), x1 = (x1/x0) · x0,

x1 = x0\(x0 · x1), x1 = (x1 · x0)/x

(see [17, p. 215, Exercices 8, 9]). So, if ρ is an equivalence relation on G, according
to Proposition 2, the factor multialgebra (G/ρ, ·, /, \) satisfies the above identities
in a weak manner. Thus, using Corollary 1, we deduce the following.

Corollary 3. The factor of a group is an Hv-group.

Moreover, using the above notations, we have:

Proposition 3. In the factor multialgebra (G/ρ, ·, /, \), the multioperations /, \
and · verifies the equalities (2).

Proof. Let us denote by // and \\ the multioperations defined on G/ρ by the
equalities (2), i.e.

ρ〈b〉//ρ〈a〉 = {ρ〈x〉 ∈ G/ρ | ρ〈b〉 ∈ ρ〈x〉 · ρ〈a〉},

ρ〈a〉\\ρ〈b〉 = {ρ〈x〉 ∈ G/ρ | ρ〈b〉 ∈ ρ〈a〉 · ρ〈x〉}.

According to Remark 10, the multioperations / and \ are defined as follows:

ρ〈b〉/ρ〈a〉 = {ρ〈x〉 ∈ G/ρ | x = b′/a′, aρa′, bρb′},

ρ〈a〉\ρ〈b〉 = {ρ〈x〉 ∈ G/ρ | x = a′\b′, aρa′, bρb′}.

If ρ〈x〉 ∈ ρ〈b〉//ρ〈a〉 then ρ〈b〉 ∈ ρ〈x〉 · ρ〈a〉. Since

ρ〈x〉 · ρ〈a〉 = {ρ〈b′〉 | b′ = x′ · a′, xρx′, aρa′},

there exist a′, b′, x′ ∈ G such that b′ = x′ · a′, xρx′, aρa′ and bρb′. But then
x′ = b′/a′, which implies ρ〈x〉 = ρ〈x′〉 ∈ ρ〈b〉/ρ〈a〉. Conversely, if ρ〈x〉 ∈ ρ〈b〉/ρ〈a〉
then there exist a′, b′ ∈ G such that aρa′, bρb′ and x = b′/a′. It results that
b′ = x · a′, hence ρ〈b〉 = ρ〈b′〉 ∈ ρ〈x〉 · ρ〈a〉, which implies ρ〈x〉 ∈ ρ〈b〉//ρ〈a〉.

So, we proved that // = /. In the same way it results that \\ = \.
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Remark 11. If we consider the usual definition of group, from Proposition 2 we
deduce that the factor Hv-group of a group also ”weakly” preserves the existence
of an identity element and the existence of an inverse for each element (see [15,
p. 127]).

It may be interesting to investigate if and when an identity is strongly pre-
served in the factor multialgebra of a universal algebra. For instance, in gene-
ral, the (strong) associativity of a binary operation is not satisfied in the factor
multialgebra (see [15, Example 1]). Yet, the identities which characterize the
commutativity of an operation of a universal algebra hold strongly on the factor
multialgebra (see [15, Example 2]). Hence the ”strongly” preservation of some
identity in the factor multialgebra depends on the identity. But the ”strongly”
preservation of some identity in the factor multialgebra depends also on the equi-
valence relation we are factorizing with. To show this, we consider the following
example.

Example 2. If (G, ·) is a finite group and ρ is the equivalence relation

xρy ⇔ ∃g ∈ G : y = g−1xg

(i.e. ρ is the conjugacy relation on G) then G = G/ρ is the set of the conjugacy
classes of G, and the definition of · in G/ρ can be also written as follows

Ci · Cj = {Ck ∈ G | ∃gi ∈ Ci,∃gj ∈ Cj : gi · gj ∈ Ck},

for any Ci, Cj ∈ G. The hypergroupoid (G, ·) is a canonical hypergroup having
the identity element ρ〈1〉 = {1}, and for each conjugacy class C from G, the
inverse element is the class C−1 which consists in the inverses of the elements of
C (see [18]). However, let us consider / and \ as in (2′), 1 the nullary operation
which points out the identity element, −1 the unary operation which associates
to each element its inverse. Let us take the universal algebra (G, ·, /, \, 1,−1 )
and the factor multialgebra (G/ρ, ·, /, \, ρ〈1〉,−1 ). Of course, ρ〈1〉 and −1 are
operation on G/ρ, too. According to Proposition 3, /, \ and · satisfy (2), thus
the following identities are satisfied (in a strong manner) both on (G, ·, /, \, 1,−1 )
and (G/ρ, ·, /, \, ρ〈1〉,−1 ):

(x0 · x1) · x2 = x0 · (x1 · x2), x0 · 1 = 1 · x0 = x0, x0/x1 = −(x1/x0).

Another consequence of Proposition 2 is:

Corollary 4. The factor of a ring (R,+, ·) is an Hv-ring.

Of course, there are more identities than those in the definition of an Hv-ring
which are ”weakly” preserved in the factor Hv-ring of a ring, and even ”strongly”
preserved if we are thinking to the commutativity of +.

Remark 12. The factor multialgebra of a lattice is not necessarily a hyperlattice,
since the absorption is required in a strong manner in the definition of a hyper-
lattice, and, in general, it is preserved only in a weak manner by the factorization
of a multialgebra (see [15, Example 3]).
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4.2. Factor multialgebras which are universal algebras

Let ρ be an equivalence relation on a set A. Let us remember that ρ induces a
relation ρ on P ∗(A) as follows: for X, Y ∈ P ∗(A),

XρY ⇔ xρy, ∀x ∈ X, ∀y ∈ Y (⇔ X × Y ⊆ ρ).

Proposition 4. [15, Proposition 4.1] Let A = (A, (fγ)γ<o(τ)) be a multialgebra
and let ρ be an equivalence relation on A. The following conditions are equivalent:

a) A/ρ is a universal algebra;

b) If γ < o(τ), a, b, xi ∈ A, i ∈ {0, . . . , nγ − 1}, with aρb, then

fγ(x0, . . . , xi−1, a, xi+1, . . . , xnγ−1)ρfγ(x0, . . . , xi−1, b, xi+1, . . . , xnγ−1)

for all i ∈ {0, . . . , nγ − 1};

c) If γ < o(τ), xi, yi ∈ A and xiρyi for any i ∈ {0, . . . , nγ − 1}, then

fγ(x0, . . . , xnγ−1)ρfγ(y0, . . . , ynγ−1);

d) If n ∈ N, p ∈ P
(n)
A (P∗(A)), xi, yi ∈ A and xiρyi for all i ∈ {0, . . . , n − 1},

then
p(x0, . . . , xn−1)ρp(y0, . . . , yn−1).

Example 3. An equivalence relation ρ on a hypergroupoid (H, ◦) is called
strongly regular if for any a, b, x ∈ H with aρb we have a ◦ xρb ◦ x and x ◦ aρx ◦ b
(see [2]). It is clear that the strongly regular equivalences of a hypergroupoid are
those relations ρ for which (H/ρ, ·) is a groupoid.

Notation 1. We denote by Eua(A) the set of the relations characterized in
Proposition 4.

Remark 13. If ρ ∈ Eua(A) then in the factor multialgebra A/ρ, which is a
universal algebra, we have

fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = ρ(fγ(a0, . . . , anγ−1)),

the canonical projection is an ideal homomorphism, so, using Theorem 2 from
[16], we deduce that for any n ∈ N and p ∈ P (n)(τ), we also have

(5) p(ρ〈a0〉, . . . , ρ〈an−1〉) = ρ(p(a0, . . . , an−1)).

As a matter of fact, condition d) from Proposition 4 allows us to rewrite (5) as
follows

(5′) p(ρ〈a0〉, . . . , ρ〈an−1〉) = ρ(p(a0, . . . , an−1)) = ρ〈b〉, ∀ b ∈ p(a0, . . . , an−1).
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Lemma 2. [15, Lemma 4.2] Eua(A) is an algebraic closure system on A×A.

Corollary 5. [15, Corollary 4.3] The smallest relation from Eua(A) which con-
tains a relation R ⊆ A×A is

α(R) =
⋂
{ρ ∈ Eua(A) | R ⊆ ρ}.

Corollary 6. [15, Remark 14] The relation α∗ = α(∅) = α(δA) is the smallest
element of Eua(A) and it is called the fundamental relation of A.

Remark 14. Given q, r ∈ P (n)(τ) (n ∈ N) and a multialgebra A, we can obtain
a factor multialgebra of A which is a universal algebra satisfying q = r by taking
the factor multialgebra determined by a relation ρ from Eua(A) which contains

Rqr =
⋃
{q(a0, . . . , an−1)× r(a0, . . . , an−1) | a0, . . . , an−1 ∈ A}.

This happens because, using (5′), one obtains immediately that in the factor
(multi)algebra A/ρ, q(ρ〈a0〉, . . . , ρ〈an−1〉) and r(ρ〈a0〉, . . . , ρ〈an−1〉) are equal ele-
ments. Using (5′), it also follows that each relation from Eua(A) which gives a
factor multialgebra satisfying the identity q = r must contain the relation Rqr.

In [12] we proved that the following Proposition.

Proposition 5. Any identity (weak or strong) which holds on A is also satisfied
on its fundamental algebra A = A/α∗.

Since α∗ is the smallest element from Eua(A), from the previous remark we
get that if a weak (or strong) identity q ∩ r 6= ∅ (or q = r) holds in A and
ρ ∈ Eua(A) then Rqr ⊆ α∗ ⊆ ρ. Thus it follows immediately the following:

Corollary 7. If an identity q∩r 6= ∅ (or q = r) is satisfied in A and ρ ∈ Eua(A)
then the identity q = r is satisfied in the universal algebra A/ρ.

Applying the previous corollary to a semihypergroup (H, ◦) and a relation
ρ ∈ Eua(H, ◦) we obtain the first part of Theorem 31 from [2]:

Corollary 8. The factor hypergroupoid of a semihypergroup modulo a strongly
regular equivalence is a semihypergroup.

Remark 15. In the second part of [2, Theorem 31] is also proved that if the
semihypergroup (H, ◦) is a hypergroup than the factor semihypergroup (H/ρ, ◦)
is a group. This means that considering the hypergroup (H, ◦) as a multialgebra
(H, ◦, /, \) with three binary multioperations as in Remark 3 we have

Eua(H, ◦) = Eua(H, ◦, /, \).

Moreover, / (and \) determines in the factor (multi)algebra (H/ρ, ◦, /, \) the
binary operation which associates to a pair (ρ〈a〉, ρ〈b〉) ∈ H/ρ×H/ρ the (unique)
solution from H/ρ of the equation

ρ〈b〉 = x ◦ ρ〈a〉 (and ρ〈b〉 = ρ〈a〉 ◦ x respectively).

12
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Indeed, if a, b ∈ H then

ρ〈b〉/ρ〈a〉 = {ρ〈c〉 | c ∈ b′/a′, aρa′, bρb′},

thus for x ∈ ρ〈a〉/ρ〈b〉 there exists a′, b′, c ∈ H such that

ρ〈a〉 = ρ〈a′〉, ρ〈b〉 = ρ〈b′〉, x = ρ〈c〉 and b′ ∈ c ◦ a′.

But then
ρ〈a〉 = ρ〈a′〉 = ρ〈c〉 ◦ ρ〈b′〉 = x ◦ ρ〈b〉.

Since (H/ρ, ◦) is a group, we deduce that for any ρ〈a〉, ρ〈b〉 ∈ H/ρ the set
ρ〈b〉/ρ〈a〉 consists in the only element x which verifies the equality

ρ〈b〉 = x ◦ ρ〈a〉.

Analogously, we can prove the same property for \.

As a matter of fact, in the above remark is already contained the proof of
the fact that (H/ρ, ◦) is a group, since the existence of solution for each of the
equations ρ〈b〉 = x◦ρ〈a〉 and ρ〈b〉 = ρ〈a〉◦x for any ρ〈a〉, ρ〈b〉 ∈ H/ρ is a necessary
and sufficient condition for the nonempty semigroup H/ρ to be a group.

Corollary 9. Let (A,+, ·) be an Hv-ring. An equivalence relation ρ on A is in
Eua(A,+, ·) if and only if it is strongly regular both on (A, +) and (A, ·). In this
case, the factor multialgebra (A/ρ,+, ·) is a nearring. If, in addition, + is at
least weak commutative, then (A/ρ,+, ·) is a ring.

Corollary 10. Let (A,+, ·) be a hyperringoid and ρ an equivalence relation on
A. The relation ρ is in Eua(A, +, ·) if and only if it is strongly regular on (A,+)
and it is a congruence on (A, ·). In this case, the factor multialgebra (A/ρ,+, ·)
is a nearring. If, in addition, + is at least weak commutative, then (A/ρ,+, ·) is
a ring.

Remark 16. [15, Remarks 13, 14] The smallest equivalence relation from Eua(A)
for which the factor multialgebra is a universal algebra satisfying the identity
q = r is the relation α∗qr = α(Rqr). In particular, α∗ = α∗x0x0

.

Theorem 2. [10, Theorem 4] The fundamental relation α∗ of a multialgebra A

is the transitive closure of the relation α defined by

xαy ⇔ ∃n ∈ N, ∃p ∈ P
(n)
A (P∗(A)), ∃a0, . . . , an−1 ∈ A : x, y ∈ p(a0, . . . , an−1).

Remark 17. [5, Corollary 8.2] For any n ∈ N, p ∈ P (n)(P∗(A)) and for any
m ∈ N, m ≥ n there exists q ∈ P (m)(P∗(A)) such that

p(A0, . . . , An−1) = q(A0, . . . , Am−1),

for every A0, . . . , Am−1 ∈ P ∗(A).

13
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Remark 18. For any n ∈ N, p ∈ P (n)(P∗(A)) and for any permutation σ of the
set {0, . . . , n− 1} there exists q ∈ P (n)(P∗(A)) such that

p(A0, . . . , An−1) = q(Aσ(0), . . . , Aσ(n−1)), ∀A0, . . . , An−1 ∈ P ∗(A).

Remark 19. The relation α remains the same if we can consider term functions
from P (n)(P∗(A)) instead of polynomial functions from P

(n)
A (P∗(A)) since for

any polynomial function p ∈ P
(n)
A (P∗(A) and any a0, . . . , an−1 ∈ A, there exist

m ∈ N, m ≥ n, b0, . . . , bm−1 ∈ A and a term function p′ ∈ P
(m)
A (P∗(A) such that

p(a0, . . . , an−1) = p′(b0, . . . , bm−1).

Indeed, if p = cn
a , we can consider m = n + 1, b0 = a0, . . . , bn−1 = an−1,

bn = bm−1 = a and p′ = em
m−1 and we have

cn
a(a0, . . . , an−1) = a = bm−1 = em

m−1(b0, . . . , bm−1).

If p = en
i (i ∈ {0, . . . , n− 1}), the equality trivially holds if we consider

m = n, b0 = a0, . . . , bn−1 = an−1, p′ = p.

Let us take γ < o(τ), the polynomial functions p0, . . . , pnγ−1 ∈ P
(n)
A (P∗(A)) and

p = fγ(p0, . . . , pnγ−1).

Let a0, . . . , an−1 ∈ A and assume that for each j ∈ {0, . . . , nγ − 1} there exist
mj ∈ N, n ≤ mj , bj

0, . . . , b
j
mj−1 ∈ A and a term function p′j ∈ P (mj)(P∗(A)) such

that
pj(a0, . . . , an−1) = p′j(b

j
0, . . . , b

j
mj−1).

Consider m = m1 + · · ·+ mnγ−1 and let b0, . . . , bm−1 be the elements

b0
0, . . . , b

0
m0−1, . . . , b

nγ−1
0 , . . . , b

nγ−1
mnγ−1−1

respectively. According to Remarks 17 and 18, for each j ∈ {0, . . . , nγ − 1} there
exists a term function p′′j ∈ P (m)(P∗(A)) such that

p′j(b
j
0, . . . , b

j
mj−1) = p′′j (b0, . . . , bm−1).

Hence for any j ∈ {0, . . . , nγ − 1},

pj(a0, . . . , an−1) = p′′j (b0, . . . , bm−1).

It follows that

p(a0, . . . , an−1) = fγ(p0, . . . , pnγ−1)(a0, . . . , an−1)
= fγ(p0(a0, . . . , an−1), . . . , pnγ−1(a0, . . . , an−1))
= fγ(p′′0(b0, . . . , bm−1), . . . , p′′nγ−1(b0, . . . , bm−1))

= fγ(p′′0, . . . , p
′′
nγ−1)(b0, . . . , bm−1).

So, if we take p′ to be the term function fγ(p′′0, . . . , p
′′
nγ−1) we obtain the required

equality.

14
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Corollary 11. The fundamental relation α∗ of a multialgebra A is the transitive
closure of the relation α defined by

xαy ⇔ ∃n ∈ N, ∃p ∈ P (n)(P∗(A)), ∃a0, . . . , an−1 ∈ A : x, y ∈ p(a0, . . . , an−1).

Example 4. The fundamental relation of a semihypergroup (H, ◦) is the transi-
tive closure of the relation β =

⋃
n∈N∗ βn where for any x, y ∈ H,

xβny ⇔ ∃a0, . . . , an−1 ∈ H : x, y ∈ a0 ◦ · · · ◦ an−1.

If the semihypergroup (H, ◦) is a hypergroup, the relation β is already transitive,
so β∗ = β (see [2]).

Remark 20. Let us see a hypergroup (H, ◦) as a multialgebra (H, ◦, /, \) as
in Remark 3. Remark 15 gives a reason why in the construction of the the
fundamental relation of the multialgebra (H, ◦, /, \) (hence of a hypergroup) we
do not have to consider the term functions obtained using the multioperations /
and \, but only using the multioperation ◦.

Theorem 3. [15, Theorem 4.4] The relation α∗qr is the transitive closure of the
relation αqr defined as follows

xαqry ⇔ ∃p ∈ P
(1)
A (P∗(A)), ∃ a0, . . . , an−1 ∈ A :

x ∈ p(q(a0, . . . , an−1)), y ∈ p(r(a0, . . . , an−1)) or
y ∈ p(q(a0, . . . , an−1)), x ∈ p(r(a0, . . . , an−1)).

Example 5. [15, Example 5] In the case of (semi)hypergroups, taking q = x0x1

and r = x1x0 (i.e. the studied identity is the commutativity of the hyperproduct)
the relation α∗qr is the relation γ∗ introduced Freni in [3] to characterize the
derived subhypergroup of a hypergroup.

4.3. Back to factor multialgebras of universal algebras

Let n ∈ N, q, r ∈ P(n)(τ), let A be a universal algebra and ρ an equivalence
relation on A.

Notation 2. We denote by ρqr the smallest equivalence relation on A containing
ρ and

{(q(a0, . . . , an−1), r(a0, . . . , an−1)) | a0, . . . , an−1 ∈ A}.

We denote by θ(ρqr) the smallest congruence relation on A containing ρqr and
by θ(ρ) the smallest congruence relation on A which contains ρ.

Theorem 4. [15, Theorem 5.3] Let n ∈ N and q, r ∈ P(n)(τ). If A is a universal
algebra and ρ is an equivalence relation on A then

(A/ρ)/α∗qr
∼= A/θ(ρqr).

15
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Corollary 12. [15, Corollary 5.4] If A is a universal algebra and ρ is an equi-
valence relation on A then

A/ρ ∼= A/θ(ρ).

Corollary 13. [15, Corollaries 5.5, 5.6] Let n ∈ N and q, r ∈ P(n)(τ). If ρ is
an equivalence relation on the universal algebra A then

A/ρqr
∼= A/θ(ρqr) ∼= (A/ρ)/α∗qr.

Example 6. Let (G, ·) be a group, H a subgroup of G, G/H = {xH | x ∈ G}
and consider the multioperation

(xH)(yH) = {zH | z = x′y′, x′ ∈ xH, y′ ∈ yH}.

The hypergroupoid (G/H, ·) is mentioned in the literature as the first example
of multialgebra, more exactly, the first example o hypergroup. Obviously, this
hypergroup is a group if and only if H is a normal subgroup of G.

Let γ be the smallest strongly regular equivalence on G/H such that the
factor hypergroup is a commutative group (see [3]). If G′ is the derived subgroup
of G then G′H is the smallest normal subgroup N of G for which H ⊆ N and
G/N is abelian. From Theorem 4 we obtain the group isomorphism

(G/H)/γ ∼= G/(G′H).

If G/H is the fundamental group of the hypergroup G/H and H is the smallest
normal subgroup of G which contains H then, according to Corollary 12, we have

G/H ∼= G/H.

5. Direct products and direct limits of direct systems

Let (Ai | i ∈ I) be a family of multialgebras of type τ . The Cartesian product∏
i∈I Ai with the multioperations

fγ((a0
i )i∈I , . . . , (a

nγ−1
i )i∈I) =

∏
i∈I

fγ(a0
i , . . . , a

nγ−1
i ),

is a multialgebra called the direct product of the multialgebras (Ai | i ∈ I).

Lemma 3. [11, Lemma 1] If p ∈ P(n)(τ) and (a0
i )i∈I , . . . , (an−1

i )i∈I ∈
∏

i∈I Ai

then
p((a0

i )i∈I , . . . , (an−1
i )i∈I) =

∏
i∈I

p(a0
i , . . . , a

n−1
i ).

Proposition 6. [11, Propositions 3, 4] The direct product of a family of multial-
gebras which satisfy a certain identity (weak or strong) satisfies the same identity.
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Using the remarks from Section 3 we have:

Corollary 14. The direct product of a family of semihypergroups is a semihy-
pergroup.

Corollary 15. The product of a family of Hv-semigroups is an Hv-semigroup.

Corollary 16. The direct product of a family of Hv-groups is an Hv-group.

Corollary 17. [13, Corollary 2] The direct product of a family of hypergroups is
a hypergroup.

From the above corollaries we obtain easily the following:

Corollary 18. The direct product of a family of hyperringoids is a hyperringoid
and the direct product of a family of Hv-rings is an Hv-ring.

Remark 21. In the proof of [13, Corollary 2] we proved even more: if we see
each hypergroup of a family ((Hi, ◦i) | i ∈ I) of hypergroups as a multialgebra
(Hi, ◦i, /i, \i) as in Remark 3 and we consider the direct product multialgebra(∏

i∈I Hi, ◦, /, \
)

then
(∏

i∈I Hi, ◦
)

is a hypergroup and /, \ are obtained from ◦
using (2). Thus the above corollaries also can be written for canonical hyper-
groups and Krasner’s hyperrings.

LetA = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of multialgebras
and let A∞ be the direct limit of the direct system of their supporting sets. Let
us remember that:

• (I,≤) is a directed preordered set;

• the homomorphisms ϕij are such that

ϕjk ◦ ϕij = ϕik, ∀i, j, k ∈ I, i ≤ j ≤ k,

ϕii = 1Ai , ∀i ∈ I.

• the set A∞ is the factor of the disjoint union A of the sets Ai modulo
the equivalence relation ≡ defined as follows: for any x, y ∈ A there exist
i, j ∈ I, such that x ∈ Ai, y ∈ Aj , and

x ≡ y ⇔ ∃k ∈ I, i ≤ k, j ≤ k : ϕik(x) = ϕjk(y).

We define the multioperations fγ on A∞ = {x̂ | x ∈ A} as follows: if
x̂0, . . . , x̂nγ−1 ∈ A∞ and for any j ∈ {0, . . . , nγ − 1} we consider that xj ∈ Aij

(ij ∈ I) then

fγ(â0, . . . , ânγ−1) = {â ∈ A∞ | ∃m ∈ I, i0 ≤ m, . . . , inγ−1 ≤ m,

a ∈ fγ(ϕi0m(a0), . . . , ϕinγ−1m(anγ−1))}.

17
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We obtain a multialgebra A∞ = (A∞, (fγ)γ<o(τ)), called the direct limit of the
direct system A.

We mentioned that the construction of the direct limit of a direct system
of multialgebras was inspired by the construction of the direct limit of a direct
system of semihypergroups from [19] and equivalently changed to bring it closer
to the same construction from universal algebra theory (see, for instance, [5]).

Lemma 4. [14, Lema 28] If p ∈ P(n)(τ), a0, . . . , an−1 ∈ A and i0, . . . , in−1 ∈ I
are such that aj ∈ Aij for all j ∈ {0, . . . , n− 1} then

p(â0, . . . , ân−1) = {â ∈ A∞ | ∃m ∈ I, i0 ≤ m, . . . , in−1 ≤ m,

a ∈ p(ϕi0m(a0), . . . , ϕin−1m(an−1))}.

Proposition 7. [14, Lemmas 29, 31] The direct limit of a direct system of multi-
algebras which satisfy a certain identity (weak or strong) satisfies the same iden-
tity.

Using the remarks from Section 3 we obtain:

Corollary 19. The direct limit of a direct system of Hv-semigroups is an Hv-
semigroup and the direct limit of a direct system of Hv-groups is an Hv-group.

Corollary 20. [19, Theorem 3] The direct limit of a direct system of semihyper-
groups is a semihypergroup.

Corollary 21. The direct limit of a direct system of hypergroups is a hypergroup.

The above result appear in [19], but not quite in this form.

Corollary 22. The direct limit of a direct system of hyperringoids is a hyper-
ringoid and the direct limit of a direct system of Hv-rings is an Hv-ring.

Remark 22. In [14, Remark 35] we proved that if we see each hypergroup of the
given direct system ((Hi, ◦i) | i ∈ I) as a multialgebra (Hi, ◦i, /i, \i) as in Remark
3 and we consider the direct limit multialgebra (H∞, ◦, /, \) then (H∞, ◦) is a
hypergroup and /, \ are obtained from ◦ using (2). Thus the above corollaries
can be rewritten for canonical hypergroups and then for Krasner’s hyperrings.
The result containing Krasner’s hyperrings is, somehow, contained in [8].

We mention that an important property of direct limits of direct systems
of multialgebras is presented in Proposition 22 from [14]. It is the tool which
leads us from the above results on hypergroups and Krasner hyperrings to their
versions from [19] and [8].
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