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Abstract. The object of this paper are multialgebras. Starting from the idea of Pickett
that the set of nonvoid subsets of a multialgebra can be organized naturally as a universal
algebra, and constructing the term functions over this algebra we can deduce some results on
multialgebras from some of the very known properties of the term functions of a universal
algebra. Also, we will present the form of the generated submultialgebra in two theorems,
which, in the particular case of the universal algebras are already known.

Given τ = (n0, ..., nγ , ...)γ<o(τ) , where o(τ) is an ordinal, and a multialgebra A =
= (A, f0, f1, ..., fγ , ...)γ<o(τ) , fγ : Anγ → P ∗(A) being a multioperation with the arity
nγ ∈ N , for any γ < o(τ), we denote by S(A) the set of the submultialgebras of A .

From the results of [5] we can deduce the following statements:
1) S(A) is an algebraic closure system on A .
2) S(A) = (S(A),⊆) is an algebraic lattice.
3) If X ⊆ A , then 〈X〉 =

⋂{B ∈ S(A)| X ⊆ B} with the multioperations of A form
a submultialgebra of A called the submultialgebra of A generated by the subset X . It is
easy to observe that if B is a submultialgebra for A then 〈B〉 = B.

4) 〈∅〉 = ∅ if and only if A has no nullary multioperations.
5) If A has nullary multioperations and A0 is the union of the sets which are images of

these multioperations, then ∅ 6= 〈∅〉 = 〈A0〉 is the least submultialgebra of A in the sense
of inclusion.

6) S is an algebraic closure system on A if and only if it exists a structure of multialgebra
A on A such that S(A) = S .

7) An ordered set L is an algebraic lattice if and only if it exists a multialgebra A such
that L ' S(A).

Now, we can give a way to construct the generated submultialgebra of a multialgebra:

1. Theorem. Let A = (A, f0, f1, ..., fγ , ...)γ<o(τ) be a multialgebra of type τ and X ⊆ A .
We consider X0 = X and for any k ∈ N,

Xk+1 = Xk ∪ (
⋃
{fγ(x0, ..., xnγ−1)| x0, ..., xnγ−1 ∈ Xk, γ < o(τ)}.

Then: 〈X〉 =
⋃

k∈NXk.

Proof. Let us consider M =
⋃

k∈NXk and x0, ..., xnγ−1 ∈ M (γ < o(τ) arbitrary). From
X0 ⊆ X1 ⊆ ... ⊆ Xk ⊆ ... it follows the existence of m ∈ N such that x0, ..., xnγ−1 ∈
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∈ Xm , which implies, according to the definitions of Xm+1 that fγ(x0, ..., xnγ−1) ⊆ Xm+1 .
Thus fγ(x0, ..., xnγ−1) ⊆ M , and M = (M, f0, f1, ..., fγ , ...) is a submultialgebra of the
multialgebra A . From X = X0 ⊆ M , by the definition of the generated submultialgebra,
it results 〈X〉 ⊆ 〈M〉 = M . To prove the inverse inclusion we will show by induction on
k ∈ N that Xk ⊆ 〈X〉 for any k ∈ N . Indeed, we have X0 = X ⊆ 〈X〉 . We suppose that
Xk ⊆ 〈X〉 . From 〈X〉 ∈ S(A) and the definition of Xk+1 we can deduce that Xk+1 ⊆ 〈X〉 .
Therefore M ⊆ 〈X〉 . The two inclusions lead us to M = 〈X〉 .

Let us remember that for a given multialgebra A = (A, f0, f1, ..., fγ , ...)γ<o(τ) , the set
of the nonvoid subsets of A , P ∗(A), can be organized as a universal algebra with the
operations:

fγ(A0, ..., Anγ−1) =
⋃
{fγ(a0, ..., anγ−1) | ai ∈ Ai, ∀i ∈ {0, ..., nγ − 1}},

for any γ <o(τ ) and A0, ..., Anγ−1 ∈ P ∗(A). We denote this algebra by P∗(A).
In [4] Grätzer presents the algebra of the term functions of a universal algebra(in fact,

the notion met in [4] is ”polynomial”, but in nowadays it was replaced by the notion of
term function (see [1])). If we consider an algebra B = (B, f0, f1, ..., fγ , ...)γ<o(τ) we call
n-ary term functions on B (n ∈ N) those and only those functions from Bn into B which
can be obtained by applying (i) and (ii) from bellow for finitely many times:

(i) the functions en
i : Bn → B, en

i (x0, ..., xn−1) = xi, i = 0, ..., n − 1 are n-ary term
functions on B ;

(ii) if p0, ..., pnγ−1 are n -ary term functions on B then fγ(p0, ..., pnγ−1) : Bn → B ,
(fγ(p0, ..., pnγ−1))(x0, ..., xn−1) = fγ(p0(x0, ..., xn−1), ..., pnγ−1(x0, ..., xn−1)) is also a n -ary
term function on B .

We can observe that (ii) organize the set of n -ary term functions on B(P (n)(B)) as a
universal algebra, denoted by P(n)(B).

For any n ∈ N , we can construct the algebra of n-ary term functions on P∗(A),
P(n)(P∗(A)) (we notice that P(0)(P∗(A)) exists only if there are nullary multioperations
on A).

One of the results presented in [6] is the following:

2. Theorem. A necessary and sufficient condition for P∗(B) to be a subalgebra of P∗(A)
is that B to be a submultialgebra for A .

3. Corollaries. a) Let A = (A, f0, f1, ..., fγ , ...) be a multialgebra of type τ , B a sub-
multialgebra of A and p ∈ P (n)(P∗(A)), (n ∈ N). If B0, ..., Bn−1 ⊆ B are nonvoid parts,
then p(B0, ..., Bn−1) ⊆ B .

b) Let A = (A, f0, f1, ..., fγ , ...) be a multialgebra of type τ , B a submultialgebra of A

and p ∈ P (n)(P∗(A)), (n ∈ N). If b0, ..., bn−1 ∈ B then p(b0, ..., bn−1) ⊆ B .

4. Theorem. Let A = (A, f0, f1, ..., fγ , ...) be a multialgebra of type τ , X ⊆ A, X 6= ∅.
Then a ∈ 〈X〉 if and only if ∃n ∈ N, ∃p ∈ P (n)(P∗(A)), ∃x0, ..., xn−1 ∈ X such that
a ∈ p(x0, ..., xn−1).
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Proof. We denote

M =
⋃
{p(x0, ..., xn−1)| n ∈ N, p ∈ P (n)(P∗(A)), x0, ..., xn−1 ∈ X}.

For any x ∈ X we have x = e1
0(x), thus x ∈ M hence X ⊆ M . Also, from the corollary

3.b), it follows M ⊆ 〈X〉 .
We will prove now that M ∈ S(A). We take γ < o(τ) and c0, ..., cnγ−1 ∈ M . It means

that there exist mi ∈ N, pi ∈ P (mi)(P∗(A)), xi
0, ..., x

i
mi−1 ∈ X, i ∈ {0, ..., nγ−1} such that

ci ∈ pi(x
i
0, ..., x

i
mi−1), ∀i ∈ {0, ..., nγ − 1}. According to the corollary 8.2 from [4], for any

n-ary term function p over P∗(A) and for any m ≥ n it exists a m-ary term function q

over P∗(A) such that p(A0, ..., An−1) = q(A0, ..., Am−1), for all A0, ..., Am−1 ∈ P ∗(A); this
allows us to consider instead of p0, ..., pnγ−1 the term functions q0, ..., qnγ−1 all with the
same arity m = m0+...+mnγ−1 and the elements y0, ..., ym−1 ∈ X (which are the elements

x0
0, ..., x

0
m0−1, ..., x

nγ−1
0 , ..., x

nγ−1
mnγ−1−1 ) such that ci ∈ qi(y0, ..., ym−1), ∀i ∈ {0, ..., nγ − 1}.

Then:

fγ(c0, ..., cnγ−1) ⊆ fγ(q0(y0, ..., ym−1), ..., qnγ−1(y0, ..., ym−1)) =

= fγ(q0, ..., qnγ−1)(y0, ..., ym−1),

and because fγ(q0, ..., qnγ−1) ∈ P (m)(P∗(A)) (m ∈ N), y0, ..., ym−1 ∈ X it results fγ(c0, ...,

cnγ−1) ⊆ M.

5. Remarks. a) If A has nullary multioperations then 〈∅〉 = 〈A0〉 is the union of the sets
which are algebraic constants for P∗(A).

b) The constructions of the generated subhypergroupoid and of the generated subsemi-
hypergroup are immediate now from the theorem 4.

c) We can observe that a hypergroup H is a multialgebra with three binary multi-
operations (H, ◦, /, \), with ”◦” associative, where for all a, b ∈ H we consider a/b = {x ∈
∈ H| a ∈ x ◦ b} and b\a = {x ∈ H| a ∈ b ◦ x}. The construction of the term functions
obtained in a hypergroup using the multioperations ”/” and ”\” is not easy; although the
construction of the generated hypergroup can be made from the theorem 1., and it results
the theorem 18, cap. III, from [2]: if (H, ◦) is a hypergroup and X 6= ∅, X ⊆ H then
〈XX〉 =

⋃
k∈NXk , where X0 = X and Xk+1 = Xn ∪ (Xn ◦Xn) ∪ (Xn/Xn) ∪ (Xn\Xn); it

is also justified the equality 〈∅〉 = ∅ .
Recall that if A = (A, f0, f1, ..., fγ , ...)γ<o(τ) and B = (B, f0, f1, ..., fγ , ...)γ<o(τ) are

multialgebras then a map h : A → B is called ideal homomorphism if for any γ < o(τ) we
have:

h(fγ(a0, ..., anγ−1)) = fγ(h(a0), ..., h(anγ−1)), ∀ a0, ..., anγ−1 ∈ A.

In this paper we will work only with this kind of homomorphisms.
If ϕ is an equivalence on A we say that ϕ is ideal on A if for any γ < o(τ) we have:

a ∈ fγ(x0, ..., xnγ−1) and xiϕyi, ∀i ∈ {0, ..., nγ − 1} ⇒ ∃b ∈ fγ(y0, ..., ynγ−1) with aϕb.

(For instance the regular equivalences of a hypergroupoid are ideal equivalences on it.)
Pickett presents in [6] this:
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6. Theorem. If h : A → B is an ideal homomorphism between the multialgebras A and B

then the relation ϕ = {(x, y) ∈ A2| h(x) = h(y)} is an ideal equivalence on A . Conversely,
if ϕ is an ideal equivalence on A , then p = pϕ : A → A/ϕ is an ideal homomorphism.
Moreover, the map b 7→ p(h−1(b)) is an isomorphism from h(B) onto A/ϕ .

7. Remark. Suppose that h is an homomorphism from A into B , where A and B are mul-
tialgebras of the same type. We construct the algebras P∗(A) and P∗(B). The homomor-
phism h induce an map h′ : P ∗(A) → P ∗(B), h′(X) = {h(x)| x ∈ X}, ∀X ⊆ A, X 6= ∅.

Let us consider A a set and P ∗(A) the set of its nonvoid subsets. Let ϕ be a equivalence
relation on A and let us consider the relation ϕ defined on P ∗(A) as follows:

AϕB ⇔ ∀ a ∈ A, ∃ b ∈ B such that aϕb and ∀ b ∈ B, ∃ a ∈ A such that aϕb.

It is immediate that ϕ is an equivalence on P ∗(A). We will prove the following:

8. Theorem. An equivalence ϕ on a multialgebra A is ideal if and only if ϕ is a congru-
ence on P∗(A) .

Proof. Let us suppose that ϕ is an ideal equivalence on A and let us consider γ < o(τ)
and Xi, Yi ⊆ A nonvoids (i ∈ {0, ..., nγ − 1}) such that XiϕYi, ∀ i ∈ {0, ..., nγ − 1} .
Then, for any a ∈ fγ(X0, ..., Xnγ−1), it exists x0 ∈ X0, ..., xnγ−1 ∈ Xnγ−1 such
that a ∈ fγ(x0, ..., xnγ−1); from the definition of ϕ it results the existence of y0 ∈
∈ Y0, ..., ynγ−1 ∈ Ynγ−1 with xiϕyi, ∀ i ∈ {0, ..., nγ−1}, and because ϕ is ideal, it exists b ∈
∈ fγ(y0, ..., ynγ−1) ⊆ fγ(Y0, ..., Ynγ−1) such that aϕb . Analogously we can prove that ∀ b ∈
∈ fγ(Y0, ..., Ynγ−1), ∃ a ∈ fγ(X0, ..., Xnγ−1) such that aϕb . Hence we have that
fγ(X0, ..., Xnγ−1)ϕfγ(Y0, ..., Ynγ−1) and we have proved ϕ is a congruence on P∗(A).

Conversely, let us take γ < o(τ) and a, xi, yi ∈ A (i ∈ {0, ..., nγ − 1}) such that
a ∈ fγ(x0, ..., xnγ−1) and xiϕyi, ∀ i ∈ {0, ..., nγ − 1}. Then, obviously {xi}ϕ{yi}, ∀ i ∈
∈ {0, ..., nγ − 1}, and because ϕ is a congruence on P∗(A), we can write
fγ({x0}, ..., {xnγ−1})ϕfγ({y0}, ..., {ynγ−1}), which leads us to the existence of b ∈
∈ fγ(y0, ..., ynγ−1) for which aϕb . In this way we have rich the conclusion that ϕ is
ideal and the theorem is proved.

9. Corollaries. a) If A = (A, f0, f1, ..., fγ , ...) is a multialgebra, ϕ is an ideal equivalence
on A and p ∈ P (n)(P∗(A)), then for any γ < o(τ) and for any Xi, Yi ⊆ A nonvoids, with
Xi ϕ Yi (i ∈ {0, ..., nγ − 1}) we have p(X0, ..., Xn−1) ϕ p(Y0, ..., Yn−1).

b) If A = (A, f0, f1, ..., fγ , ...) is a multialgebra, ϕ is an ideal equivalence on A and p ∈
∈ P (n)(P∗(A)), then for any γ < o(τ) and for any xi, yi ∈ A with xi ϕ yi (i ∈ {0, ..., nγ−
−1})we have p(x0, ..., xn−1) ϕ p(y0, ..., yn−1).

Let h be an homomorphism from A into B and let us take ϕ = {(x, y) ∈ A2| h(x) =
= h(y)} . Then we have ϕ = {(X,Y ) ∈ (P ∗(A))2| h′(X) = h′(Y )} . Obviously, ϕ is ideal
for A if and only if ϕ is a congruence on P∗(A). So we can find again a theorem from [6]:

10. Theorem. The map h′ is an homomorphism between the universal algebras P∗(A)
and P∗(B) if and only if h is an ideal homomorphism between A and B .
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11. Corollaries. a) Let A = (A, f0, f1, ..., fγ , ...) and B = (B, f0, f1, ..., fγ , ...) be
two multialgebras of the same type τ , h : A → B an homomorphism and p ∈
∈ P (n)(P∗(A)). Then for all A0, ..., An−1 ⊆ A nonvoid parts we have h′(p(A0, ..., An−1)) =
= p(h′(A0), ..., h′(An−1)).

b) Let A = (A, f0, f1, ..., fγ , ...) and B = (B, f0, f1, ..., fγ , ...) two multialgebras of
the same type τ , h : A → B an homomorphism and p ∈ P (n)(P∗(A)). Then for all
a0, ..., an−1 ∈ A we have h′(p(a0, ..., an−1)) = p(h(a0), ..., h(an−1)).

12. Remarks. a) Let us remember that for a given multialgebra A and for a given equiva-
lence ρ on A , A/ρ can be seen as a multialgebra A/ρ with the multioperations:

(1) fγ(ρ〈a0〉, ..., ρ〈anγ−1〉) = {ρ〈b〉| b ∈ fγ(b0, ..., bnγ−1),

bi ∈ ρ〈ai〉, ∀i ∈ {0, ..., nγ − 1}}, γ < o(τ)

and that we write for X,Y ⊆ A , X ρ Y if and only if ∀x ∈ X, ∀y ∈ Y, xρy . The
equivalence relations ρ on A for which A/ρ is a universal algebra are those equivalences on
A which satisfy the following property: if a, b ∈ A such that aρb then for every γ < o(τ)
and x0, ..., xnγ−1 ∈ A we have

fγ(x0, ..., xi−1, a, xi+1, ..., xnγ−1) ρ fγ(x0, ..., xi−1, b, xi+1, ..., xnγ−1),

for all i ∈ {0, ..., nγ − 1} .
Indeed, if aρb , knowing that xjρxj for all j ∈ {0, ..., nγ − 1} , because any fγ defined

on A/ρ by (1) is an operation it results that

fγ(x0, ..., xi−1, a, xi+1, ..., xnγ−1) ρ fγ(x0, ..., xi−1, b, xi+1, ..., xnγ−1),

for all i ∈ {0, ..., nγ − 1} . To prove the converse implication we will proceed as follows:
we take any x, y ∈ A such that ρ〈x〉, ρ〈y〉 ∈ fγ(ρ〈a0〉, ..., ρ〈anγ−1〉), with a0, ..., anγ−1 ∈
A, γ < o(τ); this means that there exist x0, ..., xnγ−1, y0, ..., ynγ−1 ∈ A such that x ∈
fγ(x0, ..., xnγ−1), y ∈ fγ(y0, ..., ynγ−1) and xi ∈ ρ〈ai〉, yi ∈ ρ〈ai〉 for all i ∈ {0, ..., nγ − 1} .
It results that xiρyi , for all i ∈ {0, ..., nγ − 1} . We have the following relations:

fγ(x0, x1, ..., xnγ−1) ρ fγ(y0, x1, ..., xnγ−1),

fγ(y0, x1, x2, ..., xnγ−1) ρ fγ(y0, y1, x2, ..., xnγ−1),

...

fγ(y0, ..., ynγ−2, xnγ−1) ρ fγ(y0, ..., ynγ−2, ynγ−1),

which leads us (from the definition of ρ) to xρy ,i.e. ρ〈x〉 = ρ〈y〉 . This means that fγ

given in (1) is an operation on A/ρ , for any γ < o(τ), and A/ρ is a universal algebra.
b) If we are in the case of the remark a) we can define the operations of the universal

algebra A/ρ as follows:

(2) fγ(ρ〈a0〉, ..., ρ〈anγ−1〉) = {ρ〈b〉| b ∈ fγ(a0, ..., anγ−1)}.
Moreover, we can write

(3) fγ(ρ〈a0〉, ..., ρ〈anγ−1〉) = ρ〈b〉, b ∈ fγ(a0, ..., anγ−1).
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13. Theorem. Let A = (A, f0, f1, ..., fγ , ...) be a multialgebra, ρ an equivalence on A for
which A/ρ is a universal algebra and p ∈ P (n)(P∗(A)) , then for any γ < o(τ) and for
every xi, yi ∈ A with xi ρ yi (i ∈ {0, ..., nγ − 1}) we have p(x0, ..., xn−1) ρ p(y0, ..., yn−1) .

Proof. We will consider p = en
i , with i ∈ {0, ..., n − 1} . Then p(x0, ..., xn−1) = en

i (x0, ...,

xn−1) = xi, and p(y0, ..., yn−1) = en
i (y0, ..., yn−1) = yi, so p(x0, ..., xn−1) ρ p(y0, ..., yn−1).

We suppose that the statement holds for the term functions p0, ..., pnγ−1 ∈ P (n)(P∗(A))
and we will prove it for the term function p = fγ(p0, ..., pnγ−1) (for any γ < o(τ)).
For every x ∈ p(x0, ..., xn−1) = fγ(p0(x0, ..., xn−1), ..., pnγ−1(x0, ..., xn−1)) and every y ∈
∈ p(y0, ..., yn−1) = fγ(p0(y0, ..., yn−1), ..., pnγ−1(y0, ..., yn−1)) there exist ai ∈ pi(x0, ...,

xn−1) and bi ∈ pi(y0, ..., yn−1) (with i ∈ {0, ..., nγ−1}) such that x ∈ fγ(a0, ..., anγ−1), y ∈
∈ fγ(b0, ..., bnγ−1). From the hypothesis of this induction we have aiρbi, ∀ i ∈ {0, ..., nγ−1},
which leads us, in the same way as in the remark 12.a) to fγ(a0, ..., anγ−1) ρ fγ(b0,

..., bnγ−1), thus we have xρy , and the theorem is proved.
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