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Chapter 0

Course description

0.1 Topics of the course

The following topics will be discussed in this course.
- triangulated spaces and simplicial sets;
- chain complexes and homology;
- modules and algebras;
- categories, functors and natural transformations;
- derived functors.

0.2 Location

Class meets on Wednesdays 14:00 – 15:50 in Mathematicum Lecture Room e.

0.3 Grading

The students will get the grades according to the following rules.

1. The students will get points (from 0.5 to 2 or 3) for homeworks (exercises given during the course).

2. The points for an exercise or a program will be awarded to only one student, to avoid copying.

3. 10 points are equal with the grade 10 (and so one).
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Chapter 1

Simplicial Sets

1.1 Triangulated Spaces

These spaces can be glued from simplices (points, segments, triangles, tetrahedrons,. . . higher dimensional sim-
plices). They can be described combinatorially, by giving:

(1) the number of simplices of any dimension;
(2) how they are glued together.

Definition 1.1.1 The n-dimensional simplex is the topological space

∆n = {(x0, . . . xn) ∈ Rn+1 |

n∑

i=0

xi = 1, xi ≥ 0 ∀i = 0, . . . , n}
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The point ei = (0, . . . , 1
i
, . . . , 0) is the i-th vertex of ∆n. The vertices are ordered as e0 < e1 < · · · < en. Denote

[n] = {0, 1, 2, . . . n}. If I ⊂ [n], then the I-th face of ∆n is

{(x0, . . . xn) ∈ ∆n | xi = 0 ∀i /∈ I}

Instead of a subset I ⊂ [n] we may take 0 ≤ m ≤ n and the increasing map f : [m] → [n] such that Imf = I,
where |I| = m + 1. It is clear that there exists a unique linear map ∆f : ∆m → ∆n that preserves the order of
vertices and has the I-th face as image.

Example 1.1.2 a) If I = {1, 2} ⊂ [2], then the I-th face of ∆2 is the segment e0e1.
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1.1 Triangulated Spaces 5

b) Let f : [1] → [2] be defined by f(0) = 0, f(1) = 2, so Imf = I = {0, 2} ⊂ [2]. Then ∆f : R2 → R2,
∆f(1, 0) = (1, 0, 0), ∆f(0, 1) = (0, 0, 1), and the matrix of ∆f is

[∆f] =




1 0

0 0

0 1


 .

Then ∆f : ∆1 → ∆2 has as image the segment e0e1.

Definition 1.1.3 A gluing data is the following set X• of structures:
a) What we glue: X(0)- points, X(1)-segments, X(2)-triangles, . . . X(n)-n-dimensional simplices.
b) How to glue: for any pair {n : I ⊂ [n]}, |I| = m + 1 a map : X(n) → X(m) is given that specifies which

m-dimensional simplex should be identified with the I-th face of the corresponding n-dimensional simplex.
More precisely, let a face correspond to an increasing map f : [m] → [n]. Let X(f) : X(n) → X(m) be the

corresponding gluing map. The family {X(f)}f should satisfy the following conditions:

X(id) = id, X(g ◦ f) = X(g) ◦ X(f).

This means that two different elements of X(m) correspond to different simplices and that a face of a simplex . . .

Definition 1.1.4 For a simplicial set X, let |X| be the topological space with underlying set

|X| =

∞⋃

n=0

(∆n × X(n))/ρ,

where ρ is the smallest equivalence relation that satisfies

(x, s)ρ(t, y) ∀(s, x) ∈ ∆n × X(n), (t, y) ∈ ∆m × X(m) : y = X(f)x, s = ∆f(t)

for some increasing map f : [m] → [n]. The canonical topology on |X| is the weakest topology such that the
canonical projection τ :

⋃∞
n=0(∆n × X(n)) → |X| is continuous.

c) The space |X| with the gluing data X• is called a triangulated space.

For instance, in the case of the 3-dimensional simplex, we have |X(0)| = 4, |X(1)| = 6, |X(2)| = 4, |X(3)| = 1.
Informally, we say that:

• Each point of |X| belongs to at least one simplex;
• Each point of |X| belongs to finitely many simplices;
• The set of points of two simplices is either the empty set or is a face or a face of a face . . . of each simplex.

Example 1.1.5 Examples of triangulated spaces:
a) The n-dimensional simplex ∆n with the standard triangulation:

X(i) = subsets of cardinality i + 1 in [n] = increasing maps from [i] to [n].

If f : [i] → [j] is an increasing map then X(f) maps the simplex g : [j] → [n] into g ◦ f : [i] → [n].
b) The sphere Sn is obtained from the standard triangulation of ∆n+1 by deleting the unique n+1-dimensional

simplex.

Exercise 1 Verify that ∆n is indeed a triangulated space.

Proposition 1.1.6 Any triangulated space is the set theoretical disjoint union of the interior of its simplices.
Namely, let

◦
∆n =

{
int(∆n), n ≥ 1

∆0, n = 0
, int(∆n) = {(x0, . . . xn) ∈ Rn+1 |

n∑

i=0

xi = 1, xi > 0, i ∈ [n]}, n ≥ 1.

Let (X(i), X(f)) be some gluing data. Let τ :
⋃∞

n=0 (∆n × X(n)) →|X| be the (continuous) triangulation map. Then
τ induces the bijective map

◦
τ :

∞⋃

n=0

(
◦
∆n × X(n)) → |X|
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1.2 Simplicial Sets

Definition 1.2.1 A simplicial set X is a family of sets X• = (Xn)n≥0 and maps X(f) : Xn → Xm for each
nondecreasing map f : [m] → [n], such that

X(id) = id, X(g ◦ f) = X(g) ◦ X(f).

(The difference with the gluing data introduced in 1.1.3 is that f need not be strictly increasing.)
The elements of Xn are called n-simplices. Instead of X• we often denote X.
For any nondecreasing map f : [m] → [n] define the f-th face ∆f as the linear map from ∆m into ∆n that maps

ei ∈ ∆m to ef(i) ∈ ∆n, ∀i ∈ [m]. (The difference to 1.1.1 is that ∆f need not be embedding. If f is not strictly
increasing, then ∆f decreases the dimension since we glue together some vertices of ∆n.)

Definition 1.2.2 The geometric realization |X| of the simplicial set X• is the topological space with underlying

set |X| =
∞⋃

n=0

(∆n × Xn)/ρ where ρ is the smallest equivalence relation that satisfies

(s, x)ρ(t, y) ∀(s, x) ∈ ∆n × Xn, (t, y) ∈ ∆m × Xm : y = X(f)x, s = ∆f(t)

for some nondecreasing map f : [m] → [n]. The topology on |X| is the weakest one for which the canonical map
∞⋃

n=0

(∆n × Xn) → |X| is continuous.
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Remark 1.2.3 One can associate to each triangulation a simplicial set with the same geometric realization, but
the notion of simplicial set is more general.

1.3 Chains and cochains

The boundary of ∆1 = (P0P1) is the difference P1 − P0 of its vertices. This is similar to the Newton-Leibnitz
formula

∫1

0

f ′(x)dx = f(1) − f(0)

Similarly, the boundary of ∆n is the alternating sum of its n − 1 dimensional faces.

Definition 1.3.1 Let X be a simplicial set.
a) Let Cn(X) be the free abelian group generated by all n-simplices of X

Cn(X) = {
∑

x∈Xn

axx | ax ∈ Z, an 6= 0 for a finite number of simplices x},

Thus Cn(X) is the free Z-module with basis Xn. The elements of Cn(X) are called n-chains of X.
b) Let ∂i

n : [n − 1] → [n] be the unique stricly increasing map whose image is [n] \ {i}.
c) Let c =

∑
x∈Xn

axx ∈ Cn(X) be a n-chain. The boundary of c is the n − 1-chain

dnc =
∑

x∈Xn

ax

n∑

i=0

(−1)iX(∂i
n)(x)

So dn is Z-linear, i.e. morphism of abelian groups, and for all x ∈ Xn

dnx =

n∑

i=0

(−1)iX(∂i
n)(x).

This defines the boundary operator dn : Cn(X) → Cn−1(X), which is a Z-linear map. For n = 0 we let dn = 0,
and Cn(X) = {0} for n < 0.

d) We can generalize the definition to obtain chains with coefficients in an abelian group (A, +).

Cn(A,X) = {
∑

x∈Xn

axx : ax ∈ A}.

This means that Cn(A,X) = Cn(X)⊗Z A. In particular, Cn(X) = Cn(X,Z).

Definition 1.3.2 a) We define cochains with coefficients in an abelian group (A, +).

Cn(A,X) = {f | f : Xn → A}

is called the group of n-cochains of X. So (Cn(A,X), +) is also an abelian group, where

f + g : Xn → An, (f + g)(x) = f(x) + g(x).

b) The coboundary operator is the group homomorphism dn : Cn(A,X) → Cn−1(A,X) defined by

dnf : Xn+1 → A, (dnf)(x) =

n+1∑

i=0

(−1)if(X(∂i
n+1)(x))

Lemma 1.3.3 a) dn−1 ◦ dn = 0, ∀n ≥ 1;
b) dn+1 ◦ dn = 0, ∀n ≥ 0.

Proof. a) Consider the diagram Cn(X)
dn−−→ Cn−1(X)

dn−1−−−→ Cn−2(X). Note first that for any 0 6 j < i 6 n − 1

we have ∂i
n ◦ ∂

j
n−1 = ∂i

n ◦ ∂
j
n−1. Let x ∈ Cn(X). Then

(dn−1 ◦ dn)(x) = dn−1(

n∑

i=0

(−1)iX(∂i
n)(x))

=

n−1∑

j=0

n∑

i=0

(−1)i+j(X(∂i
n−1) ◦ X(∂i

n))(x)

=

n−1∑

j=0

n∑

i=0

(−1)i+jX(∂i
n−1 ◦ ∂i

n)(x).
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Composition ∂i
n ◦ ∂

j
n−1 for different i, j yields all increasing maps defined on [n − 2] into [n] and the map whose

image does not contain i and j appear exactly twice as ∂i
n ◦ ∂

j
n−1 with sign (−1)i+j, and the second time as

∂i
n ◦ ∂

j
n−1 = ∂

j
n ◦ ∂i−1

n−1 with the opposite sign (−1)i+j−1. Hence the sum is zero, i.e. dn−1 ◦ dn = 0.

Exercise 2 Prove statement b).

1.4 Complexes and homology

The motivation for the concepts introduces below comes from the following idea: we associate to a complicated
object, say a topological space, something which is easier to study – an abelian group for instance. To the
simplicial set X we associate its (co)homology groups: H•(X) and H•(X). If X ∼ Y (there exists some equivalence
between them) then we must have an isomorphism H•(X) ' H•(Y) of abelian groups.

Definition 1.4.1 a) A chain complex is a sequence of abelian groups and homomorphisms with the property
that dn ◦ dn+1 = 0.

C• = (· · · → Cn+1
dn+1−−−→ Cn

dn−−→ Cn−1 → . . .)

b) A cochain complex is a sequence of abelian groups and homomorphisms with the property that dn◦dn−1 =
0.

C• = (· · · → Cn−1 dn−1

−−−→ Cn
dn

−−→ Cn−1 → · · ·)

Remark 1.4.2 Any chain complex can be transformed into a cochain complex by letting Dn := C−n, dn =
d−n−1.

Definition 1.4.3 Let C• be a chain complex and C• a cochain complex.
a) The group of n-cycles is

Zn(C•) = Ker dn = {x ∈ Cn | dn = 0} 6 Cn.

The group of n-boundaries is

Bn(C•) = Im dn+1 = {dn+1 | y ∈ Cn+1} 6 Cn.

Note that Bn(C•) 6 Zn(C•).
b) The group of n-cocycles is

Zn(C•) = Ker dn = {x ∈ Cn | dn = 0} 6 Cn

The group of n-coboundaries is

Bn(C•) = Im dn−1 = {dn−1(y) | y ∈ Cn−1} 6 Cn.

c) If c, c ′ ∈ Cn, we say that c, c ′ are homologous (c ∼ c ′) if

c − c ′ ∈ Bn(C•) ⇔ ∃c ′′ ∈ Cn+1 : c − c ′ = dn(c ′′)

Similarly, if f, f ′ ∈ Cm are cohomologous (f ∼ f ′) if

f − f ′ ∈ Bn(C•) ⇔ ∃f ′′ ∈ Cn : f − f ′ = dn−1(f ′′)

d) The homology groups of the chain complex C• are the factor groups

Hn(C•) =
kerdn

Im dn+1
=

Zn(C•)
Bn(C•)

The cohomology groups of the cochain complex C• are factor groups

Hn(C•) =
kerdn

Im dn−1
=

Zn(C•)
Bn(C•)

If X is a simplicial set, we denote Hn(X,A) := Hn(C•(X,A)) (the n-th homology group of X with coefficients
in (A, +)), and Hn(X, A) := Hn(C•(X,A)) (the n-th cohomology group of X with coefficients in (A, +)).
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Recall that if B is a subgroup of (A,+), then

A/B = {a + B | a ∈ A} = A/ ∼,

where ∼ is defined by a ∼ a ′ ⇔ a − a ′ ∈ B.

Example 1.4.4 We calculate the homology of the sphere S2, space which is homeomorphic to the surface of the
tetrahedron P0P1P2P3. The groups of chains are

C0(S2) = 〈P0, P1, P2, P3〉 = {n0P0 + n1P1 + n2P2 + n3P3 | ni ∈ Z, i = 0, . . . , 3},

C1(S2) = 〈P0P1, P0P2, P0P3, P1P2, P1P3, P2P3〉 ,
C2(S2) = 〈P0P1P2, P0P1P3, P0P2P3, P1P2P3〉
Cn(S2) = 0, ∀n ∈ Z\{0, 1, 2}.

Consider the complex

C•(S2) = (· · · → 0
d3−−→ C2

d2−−→ C1
d1−−→ C0

d0−−→ 0 → . . .).

Let n = 0. We have

Z0 = Kerd0 = {x ∈ C0 | d0(x) = 0} = C0

B0 = Im d1 = 〈d1(P0P1), d1(P0P2), . . . , d1(P2P3)〉
= 〈P1 − P0, P2 − P0, P3 − P0, P2 − P1, P3 − P1, P3 − P2〉

It follows that {P1 − P0, P2 − P0, P3 − P0} is a Z -basis of B0. Hence B0 ' Z3. We want to show that H0 ' (Z, +).
We use the first isomorphism theorem. The map

ϕ : Z0 → Z, ϕ(n0P0 + n1P1 + n2P2 + n3P3) = n0 + n1 + n2 + n3

is Z-linear, surjective, and B0 ⊆ Ker ϕ. Conversely, let x = n0P0 + n1P1 + n2P2 + n3P3 belong to Ker ϕ. This
means ϕ(x) = 0 and it follows immediately that x ∈ B0. Hence B0 = Kerϕ, and this implies the statement.

Let n = 1. By definition H1 = Z1/B1 = Kerd1/ Im d2. Let

x = n1P0P1 + n2P0P2 + n3P0P3 + n4P1P2 + n5P1P3 + n6P2P ∈ C1.

Then one easily calculates that

x ∈ Z1 ⇔ d1(x) = 0 ⇔





n3 = −n1 − n2

n5 = n1 − n4

n6 = n2 + n4,

where n1, n2, n4 ∈ Z are independent parameters. Then x is a 1-cycle if and only if

x = n1(P0P1 − P0P3 + P1P3) + n2(P0P2 − P0P3 + P2P3) + n4(P1P2 − P1P3 + P2P3)

= n1d2(P0P1P3) + n2d2(P0P2P3) + n4d2(P1P2P3)

= d2(n1P0P1P3 + n2P0P2P3 + n4P1P2P3)

It follows that every 1-cycle is an 1-boundary, so Z1 ⊆ B1, hence B1 = Z1. Consequently, H1 = Z1/B1 ' {0}.

Let n = 2. By definition, H2 = Z2/B2 = Ker d2/ Im d3. Since Im d3 = 0, we have H2 ' Kerd2 = Z2. Let

x = n0P0P1P2 + n1P0P1P3 + n2P0P2P3 + n3P1P2P3 ∈ C2.

Then, by an easy calculation, we get

x ∈ Z2 ⇔ d2(x) = 0 ⇔ x = n(P1P2P3 − P0P2P3 + P0P1P3 − P0P1P2),

where n ∈ Z. It follows that Z2 = Kerd2 = (Z, +), and H2 = Z2/B2 = Z/{0} ' (Z,+).
Finally, Hi(S

2) = {0}, ∀i ∈ Z \ {0, 1, 2}.
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Exercise 3 Compute the homology with coefficients in Z of the simplicial sets corresponding to the following
triangulated spaces:

a) one point; union of two points; segment;
b) triangle;
c) the 1-dimensional sphere S1.
d) solid tetrahedron;
e) the plane annular region between two concentric circles;
f) two tangent 1-spheres;
g) two tangent 2-spheres;
h) the cylinder;
g) the Möbius strip;
h) the 2-dimensional torus.
i) the Klein bottle;
j) the real projective plane;
k) a circle touching a 2-sphere at one point;
l) a 2-sphere with an annular ring whose inner circle is a great circle of the 2-sphere;
m) the 2-sphere with two handles;
n) a 2-sphere touching a Klein bottle at one point;
o) the n-dimensional simplex ∆n;
p) the (n − 1)-sphere Sn−1 (i.e. the boundary of ∆n).

Exercise 4 Let X be a triangulated space. Prove that H0(X) is isomorphic to the free abelian group generated
by the connected components of X.

Exercise 5 Let X and Y be disjoint triangulated spaces. Prove that Hi(X ∪ Y) ' Hi(X)⊕Hi(Y).

Example 1.4.5 (singular homology) Let Y be a topological space. By definition, a singular n-simplex of Y

is a continuous map φ : ∆n → Y. The following data defines a simplicial set.
• Let Xn be the set of all singular n-simplices of Y, for n ∈ N;
• X(f)(φ) = φ ◦ ∆f, where f : [m] → [n].
Let Cn(X,A) be the group of n-chains of X. Its homology is denoted H

sing
n (Y,A), and it is called the singular

homology of Y with coefficients in the abelian group A. Similarly, one defines singular cohomology.

Exercise 6 Verify that X is indeed a simplicial set.

1.5 Coefficient systems

We may construct chains and cochains of a simplicial set using as coefficients objects which are more general then
the abelian groups. We introduce two types of coefficient systems: homological and cohomological.

Definition 1.5.1 a) A homological coefficient system A on a simplicial set X consists of a family of abelian
groups (Ax)x∈Xn, n∈N and a family of group homomorphisms (A(f,x)), where x ∈ Xn, n ∈ N, f : [m] → [n]
non-decreasing, and A(f,x) : Ax → AX(f)x, such that the following two conditions are satisfied:

A(id,x) = id, A(f◦g,x) = A(g,X(f)x) ◦A(f,x).

b) A homological coefficient system B on a simplicial set X consists of a family of abelian groups
(Bx)x∈Xn, n∈N and a family of group homomorphisms (B(f,x)), where x ∈ Xn, n ∈ N, f : [m] → [n] non-
decreasing, and B(f,x) BX(f)x → Bx, such that the following two conditions are satisfied:

B(id,x) = id, B(f◦g,x) = B(f,x) ◦B(g,X(f)x).

Definition 1.5.2 a) Let A be a homological coefficient system on a simplicial set X. An n-dimensional chain of
X with coefficients in A is a formal linear combination c =

∑
x∈Xn

a(x)x, where ax ∈ Ax. These chains form an
abelian group (under addition) which is denoted by Cn(X, A). The boundary map is

dn : Cn(X, A) → Cn−1(X, A), dnc =
∑

x∈Xn

n∑

i=0

(−1)iA(∂i
n,x)(ax)X(∂i

n)(x).

Exercise 7 Verify that C•(X, A) is a chain complex, i.e. dn−1 ◦ dn = 0.
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Homology groups of the complex C•(X, A) are called the homology groups of the simplicial set X with coeffi-
cients in A; they are denoted by Hn(X, A).

b) Let B be a cohomology coefficient system on X. Let Cn(X, B) = {f | f : Xn → ⋃
x∈Xn

Bx with f(x) ∈ Bx},
which is an abelian group under addition. The coboundary operator is

dn : Cn(X, B) → Cn+1(X, B), (dnf)(x) =

n+1∑

i=0

(−1)iB(∂i
n+1,x)(f(X(∂i

n+1))x), x ∈ Xn.

Exercise 8 Verify that C•(X, B) is a chain complex, i.e. dn+1 ◦ dn = 0.

Cohomology groups of the complex C•(X, B) are called the cohomology groups of the simplicial set X with
coefficients in B; they are denoted by Hn(X, B).

Example 1.5.3 Let A be an abelian group, Ax := A for all x, and A(f,x) = id for all (f, x). This is the constant
coefficient system, and it is both homological and cohomological. Moreover, we have Hn(X, A) = Hn(X,A)
and Hn(X, A) = Hn(X,A).

Example 1.5.4 (coverings, Čech cohomology) Let Y be a topological space, U = (Uα)α∈A be a covering of
Y (either by open or by closed sets). We define a simplicial set called the nerve of the covering.

• Let Xn = {(α0, . . . , αn) | Uα0
∩ · · · ∩Uαn 6= ∅};

• For f : [m] → [n], let X(f)(α0, . . . , αn) = (αf(0), . . . , αf(m)).
The following data form a cohomological coefficient system:
• Fα0,...,αn) is the group of continuous function (under addition) Uα0

∩ · · · ∩Uαn → R,
• F(f,(α0,...,αn)) maps a function φ : Uαf(0)

∩ · · · ∩Uαf(m)
→ R into its restriction to Uα0

∩ · · · ∩Uαn .

Exercise 9 Verify that:
a) X is a simplicial set;
b) F is a cohomological coefficient system.

The cohomology groups Hn(X, F) are called the Čech cohomology groups of the sheaf of continuous on Y

w.r.t the covering U.
The simplicial set X reflects the combinatorial structure of a covering. One can show that if the covering U is

locally finite and all nonempty finite intersections Uα0
∩· · ·∩Uαn are contractible, then the geometric realization

|X| of X is homotopically equivalent to Y, so that the topology can be efficiently encoded into combinatorical data.
Note that to verify the axioms we need only trivial properties of the restriction of a function to a subset. So,

instead of all functions we can take a subset stable under addition and restriction, e.g., smooth functions for a
differentiable manifold, analytic functions for a complex manifold, etc. We can also take the group of invertible
functions under multiplication.

Example 1.5.5 ((co)homology of groups) Let G be a finite group, and let (BG)n = Gn = G × · · · × G (n
times), and for f : [m] → [n] let (BG)(f)(g1, . . . , gn) = (h1, . . . , hm), where

hi =

{∏f(i)
j=f(i−1)+1 gj, if f(i − 1) < f(i)

e, if f(i − 1) = f(i).

Then BG is a simplicial set, and its geometric realizaton |BG| is called the classifying space of G.
In order to define coefficient systems on BG, let A be a ZG-module.
• Let Bx = A for all x ∈ (BG)n; next, if f : [m] → [n], x = (g1, . . . , gn) ∈ (BG)n and a ∈ A, define

B(f,x)(a) = ha, where h :=
∏f(0)

j=1 gj.
• Let Ax = A for all x ∈ (BG)n; next, if f : [m] → [n], x = (g1, . . . , gn) ∈ (BG)n and a ∈ A, let

A(f,x)(a) = h−1a, where h :=
∏f(0)

j=1 gj.

Exercise 10 Verify that:
a) BG is a simplicial set;
b) A (respectively B) is a (co)homological coefficient system.

The groups Hn(BG, A) (respectively Hn(BG,B)) are called the (co)homology groups of G with coefficients in A.



Chapter 2

The long exact sequence

We regard Hn(X, A) and Hn(X, B) as functions of two variables. In some cases these groups can be computed
directly. In general, the main techniques to compute these groups apply only in the study of their behavior under
the change of X or the change of A and B.

2.1 Exact Sequences

Definition 2.1.1 a) An exact sequence (also called acyclic complex) of abelian groups is a complex

C• = (· · · → Cn−1 dn−1

−−−→ Cn dn

−−→ Cn+1 → . . .)

with Ker dn = Im dn−1 ∀n ∈ Z, or equivalently, Hn(C•) = 0 ∀n ∈ Z.
b) A short exact sequence is an exact sequence of the form

0 → A
i−→ B

p−→ C → 0

Note that this means:

• i is injective (A ' Im i)

• p is surjective (Im p = C)

• Im i = Ker p (that is, by the 1st Isomorphism Theorem, p and i induce the isomorphism C ' B/A).

Remark 2.1.2 1) The sequence 0 → A
i−→ A⊕ C

p−→ C → 0 is exact, where

• A and C with are abelian groups;

• A⊕ C = A× C = {(a, c) : a ∈ A, c ∈ C};

• i(a) = (a, c) (hence A ' A× {0});

• p(a, c) = c (hence C ' {0}× C).

Clearly, Im i = A× {0} = Ker p.
2) A short exact sequence is also called an extension of A by C (or of C by A). The previous remark shows

that there is an extension of A by C, but there can be several non-isomorphic extensions. For instance, there are
two non-isomorphic extensions of (Z2,+) by (Z2, +).

(1) 0 → Z2 → Z2 × Z2 → Z2 → 0, where i : a → (a, a), p : (a, c) → c;
(2) 0 → Z2

i−→ Z4
p−→ Z2 → 0, where i(ā) = 2â, p(b̂) = b̄.

Clearly Z2 × Z2 6= Z4.
3) Let f : A → B be a homomorphism of abelian groups. Then we have the exact sequence

0 → Ker f
i−→ A

f−→ B
p−→ B/ Im f → 0,

where i is the inclusion and p is the canonical projection.

Exercise 11 Let 0 → A
i−→ B

p−→ C → 0 be a short exact sequence. Then the following statements are equivalent:
(i) there is a homomorphism s : C → B such that p ◦ s = 1C;
(ii) there is a homomorphism r : B → A such that r ◦ i = 1A;
(iii) there is an isomorphism B ' A⊕ C induced by i and p.

In this case the above sequence is called a split sequence.
12
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Theorem 2.1.3 Let X be a simplicial set and let 0 → A
i−→ B

p−→ C → 0 be a short exact sequence of abelian
groups. Then we have the following exact sequences (called long exact sequences):

0 → H0(X,A) → H0(X,B) → H0(X,C) → H1(X,A) → · · · → Hn(X,A) → Hn(X,B) → Hn(X,C) → Hn+1(X,A) → . . .

· · · → Hn(X,A) → Hn(X,B) → Hn(X,C) → Hn−1(X,A) → · · · → H1(X,C) → H0(X,A) → H0(X,B) → H0(X,C) → 0

The proof of the theorem consists of two main steps:
(1) The construction of all homomorphisms;
(2) The proof of the exactness.

It is convenient to perform both steps in a more general setting. For this, we introduce new concepts.

2.2 Morphisms of Complexes

Let B•, C• be complexes.

Definition 2.2.1 A morphism f• : B• → C• of complexes is a family f• = (fn)n∈Z

. . . // Bn−1
dn−1

//

fn−1

²²

Bn dn
//

fn

²²

Bn+1 //

fn+1

²²

. . .

. . . // Cn−1

dn−1

// Cn
dn

// Cn+1 // . . .

such that for all n ∈ Z

fn+1 ◦ dn = dn−1 ◦ fn.

Remark 2.2.2 A morphism f• : B• → C• of complexes induces a family Hn(f•) : Hn(B) → Hn(C) of homomor-
phism of abelian groups, where for each [x] = x + Bn(C•) ∈ Hn(C•), with x ∈ Kerdn,

Hn(f•)([x]) = [fn(x)].

Indeed, let [b] ∈ Hn(B•), that is b ∈ Bn, dn(b) = 0, [b] = b + Bn(B•). We have fn(b) ∈ Cn, dn (fn(b)) =
fn+1 (dn(b)) = 0. It follows that fn(b) ∈ Zn(C•) is a cocycle.

By definition, let Hn(f)([b]) = [fn(b)] = fn(b) + Bn(C•). This is a good definition, that is it does not depend
on the choice of representatives. Indeed, let b ′ ∈ Zn(B•) s.t.

[b] = [b ′] ⇔ b − b ′ ∈ Bn(B•) = Im(dn−1
B ) ⇔ ∃b ′′ ∈ Bn−1 : b − b ′ = dn−1(b ′′)

We have to see that [fn(b)] = [fn(b ′)] ⇔ fn(b) − fn(b ′) ∈ Bn(C•). Indeed

fn(b) − fn(b ′) = fn(b − b ′) = fn
(
dn−1

B (b ′′)
)

= dn−1
C

(
fn−1(b ′′)

) ∈ Imdn−1.

Finally Hn(f•) is a homomorphism of abelian groups:

Hn(f•) ([b] + [b ′]) = Hn(f•) ([b + b ′]) = [fn(b + b ′)] = [fn(b) + fn(b ′)]

= [fn(b)] + [fn(b ′)] = Hn(f•) ([b]) + Hn(f•) ([b ′]) .

Definition 2.2.3 a) If f• : B• → C• is a morphism of complexes, then Ker f• := (Ker fn)n∈Z, and Coker f• :=
(Coker fn)n∈Z.

b) We say that

0 → A• i•−→ B•
p•−−→ C• → 0

is a short exact sequence of complexes, if for all n ∈ Z, the sequence

0 → An in

−→ Bn pn

−−→ Cn → 0

of abelian group is exact.
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Example 2.2.4 (The mapping cone) 1) Let f• : B• → C• be a morphism of chain complexes. We define the
complex Cone(f)• = (Cone(f)n)n∈Z, where Cone(fn) = Bn−1 ⊕ Cn, and

· · · → Cone(f)n
dn−−→ Cone(f)n−1 → . . . , dn(b, c) = (−d(b), d(c) − f(b)),

i.e.

dn =

[
−dB 0

−f dC

]
.

Dually, if f• : B• → C• is a morphism of cochain complexes, we define the cochain complex Cone (f)
•

=
(Cone(f)n)n∈Z where Cone (fn) = Bn+1 ⊕ Cn

2) (The mapping cylinder) Let f• : B• → C• be a morphism of chain complexes. We define the complex
Cyl (f)• = (Cyl(f)n)n∈Z where Cyl (fn) = Bn ⊕ Bn−1 ⊕ Cn, and

dn : Cyl(f)n → Cyl(f)n−1, dn(b, b ′, c) = (d(b) + b ′, −d(b ′), d(c) − f(b ′)),

i.e.

d =




dB 1B 0

0 −dB 0

0 −f dC


 .

Exercise 12 (The 3× 3 lemma) Consider the commutative diagram with exact colums:

0

²²

0

²²

0

²²
0 // A ′ //

²²

B ′ //

²²

C ′ //

²²

0

0 // A //

²²

B //

²²

C //

²²

0

0 // A ′′ //

²²

B ′′ //

²²

C ′′ //

²²

0

0 0 0

a) If the first two rows are exact, then the third row is also exact.
b) If the last two rows are exact, then the first row is also exact.
c) If the first and the third rows are exact and the composed map A → C is zero, then the second row is also

exact.

2.3 Homotopic mappings of complexes

In addition to the long exact sequence, there exists another important tool to compute homology: change of
complexes that preserve homology.

Let f•, g• : C• → C ′
• be morphisms of chain complexes:

· · · // Cn+1

fn+1

²²
gn+1

²²

d // Cn

fn

²²
gn

²²

d // Cn−1

fn−1

²²
gn−1

²²

// · · ·

· · · // C ′
n+1

d ′ // C ′
n

d ′ // C ′
n−1

// · · ·

Definition 2.3.1 a) We say that f• and g• are homotopic (f• ∼ g•) if there is k• = (kn : Cn → C ′
n+1)n∈Z such

that fn − gn = kn−1 ◦ dn + d ′n+1 ◦ kn for all n ∈ Z.

· · · // Cn+1
d // Cn

kn

||yy
yy

yy
yy
fn

²²
gn

²²

d // Cn−1

kn−1||yy
yy

yy
yy

// · · ·

· · · // C ′
n+1

d ′
// C ′

n
d ′

// C ′
n−1

// · · ·
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b) Similarly, if f•, g• : C• → C ′• are morphisms of cochain complexes, then we say that f• and g• are homotopic
if ∃ k = (kn : Cn → C ′n−1)n∈Z such that fn − gn = d ◦ k + k ◦ d.

· · · // Cn−1
d // Cn

kn

{{ww
ww

ww
ww

w
fn

²²
gn

²²

d //
Cn+1

kn+1
{{ww

ww
ww

ww
w

// · · ·

· · · //
C ′n−1

d ′
// C ′n

d ′
//
C ′n+1 // · · ·

Exercise 13 Prove that homotopy is an equivalence relation.

Lemma 2.3.2 If f• and g• are homotopic, then Hn(f•) = Hn(g•), ∀n ∈ Z .

Proof. Let x ∈ Zn(C•), so dn x = 0. Since f• ∼ g•, we have

fn(x) − gn(x) = (d ′n+1 ◦ kn)(x) + (kn−1 ◦ dn)(x) = d ′n+1 kn x ∈ Bn(C•).

It follows that

(Hn(f•) − Hn(g•))[x] = Hn(f•)[x] − Hn(g•)[x] = [fn(x)] − [gn(x)]

= [fn(x) − gn(x)] = [(fn − gn)(x)] = [d ′n+1(kn(x))] = [0]

Consequently, Hn(f•) = Hn(g•).

Definition 2.3.3 Let C• and C ′
• be chain complexes. We say that C• and C ′

• are homotopic if there exist a
morphism of complexes f• : C• → C ′

• and g• : C• → C ′
• such that

g• ◦ f• ∼ 1C• , f• ◦ g• ∼ 1C ′•

Exercise 14 Prove that homotopy is an equivalence relation between complexes.

Corollary 2.3.4 If C• and C ′
• are homotopic, then Hn(C•) ' Hn(C ′

•), ∀n ∈ Z.

Proof. We know that g• ◦ f• ∼ 1C• and f• ◦ g• ∼ 1C ′• . We take homology on both sides and so we have the two
relations

Hn(g• ◦ f•) = Hn(g•) ◦Hn(f•) and Hn(1C•) = 1Hn(C•).

Hence, Hn(f•) : Hn(C•) → Hn(C ′
•) is an isomorphism of abelian groups, with Hn(g•),∀n ∈ Z.

Remark 2.3.5 a) There is a concept of homotopy in topology. Let ϕ and ψ : X → Y be two continuous maps
of topological spaces, and denote I := [0, 1]. Then ϕ and psi are said to be homotopic (ϕ ∼ ψ) if there is a
continuous map F : X× I → Y such that F(x, 0) = f(x) and F(x, 1) = ψ(x) for all x ∈ X.

Assume that X, I are triangulated spaces and let ϕ and ψ be continuous maps. Then ϕ and ψ induce morphism
of complexes ϕ•, ψ• : C•(X) → C•(Y). If ϕ ∼ ψ, then ϕ• ∼ ψ•.

b) The topological spaces X and Y are called homotopic (X ∼ Y), if ∃ϕ : X → Y and ψ : Y → X continuous
maps such that ψ ◦ϕ ∼ idX and ϕ ◦ψ ∼ idY . Note that if X ' Y (i.e. X and Y are homeomorphic), then X ∼ Y.

If X ∼ Y, then Hn(X) ' Hn(Y) ∀n ∈ N∗. Equivalently, if H•(X) 6' H•(Y), then X 6∼ Y.



Chapter 3

Constructions with modules and
algebras

We want to construct more examples of complexes, and we shall consider homomorphisms and tensor products
in connection with exact sequences and complexes.

3.1 Review of modules

Throughout R will be a ring with 1. Recall that a left (respectively right) R-module is an abelian group (M,+)
together with a multiplication with scalars R×M → M (respectively M×R → M) such that the following axioms
hold:

α(x + y) = αx + βy

(α + β)x = αx + βy

(αβ)x = α(βx)
1 · x = x,

respectively

(x + y)α = xα + yβ

x(α + β) = xα + yβ

x(αβ) = (xα)β
x · 1 = x,

for all α,β ∈ R and x, y ∈ M. By an R-module we shall mean a left R-module.
Let R and S be two rings. An (R, S)-bimodule is an abelian group (M,+) such that M is a left R-module, M

is a right S-module, and

• for all r ∈ R, s ∈ S, x ∈ M we have (rx)s = r(xs).

We denote by RM respectively MR to emphasize that M is a left respectively right R-module, and ee denote an
(R, S)-bimodule by RMS.

A map g : M → M ′ is called R-linear or a homomorphism of R-modules if

g(αx + βy) = αg(x) + βg(y)

for all α,β ∈ R and x, y ∈ M.
A nonempty subset N of M is a R-submodule, if it is closed under both operations. It is easy to see that if

g : M → M ′ is an R-homomorphism, then the kernel

Ker f := {x ∈ M | f(x) = 0}

of f is an R-submodule of M, and the image

Im f := {f(x) | x ∈ M}

is an R-submodule of M ′.
If R is a field, then an R-module is a called an R-vector space. Note also that the concepts of abelian group

Z-module coincide.
A subset X of a (left) R-module M is called a basis of M is every map f : X → N, where N is another R-module,

can be uniquely extended to a R-linear map f : X → N. An R-module which has a basis is called free. Any vector
space is a free module, but in general, not any R-module is free.

More intuitively, R is a free R-module with the basis X if and only if any element of M can be expressed in a
unique way as a linear combination of finitely many elements of X. In this case,

M = {
∑

x∈X

αxx | αx ∈ R, αx = 0 for all but finitely many x ∈ X}.

16
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Exercise 15 Let RM, RM ′ and RF be R-modules. Assume that f : M → M ′ and p : M → F are R-
homomorphisms, and that p is surjective. Consider the following diagram.

M ′
>>

f

OO

f

F oo p
M

.

a) There is an R-homomorphism f : F → M ′ such that f ◦ p = f if and only if Ker p ⊆ Ker f. Moreover, in this
case, f is unique;

b) f is injective if and only if Ker p = Ker f;
c) f is surjective if and only if f is surjective.

3.2 The group of R-homomorphisms

Let R be a ring (associative, with unit). If M, and N are (left) R-modules, then

HomR(M,N) := {f : M → N | f(x + x ′) = f(x) + f(x ′), f(rx) = rf(x), ∀r ∈ R, x, x ′ ∈ M},

is the set of R-linear maps. In fact (HomR(M,N),+) is an abelian group, where

f + g : M → N, (f + g)(x) = f(x) + g(x).

Proposition 3.2.1 Let R, S, T be rings.
a) If RMS, RNT are bimodules, then HomR(M,N) is an (S, T)-bimodule;
b) If SMR, TNR are bimodules, then HomR(M,N) is a (T, S)-bimodule.

Proof. a) For s ∈ S, t ∈ T , and f : M → N left R-linear, define

sf : M → N, (sf)(x) = f(xs),

ft : M → N, (ft)(x) = f(x)t.

For x, y ∈ M, (sf)(x + y) = f((x + y)s) = f(xs + ys) = f(xs) + f(ys) = (sf)(x) + (sf)(y), from which it follows
that sf is a homomorphism. Furthermore, for r ∈ R (sf)(rx) = f((rx)s) = f(r(xs)) = rf(xs) = r(sf)(x), thus
sf ∈ HomR(M,N).

(ft)(x + y) = f(x + y)t = (f(x) + f(y))t = f(x)t + f(y)t = (ft)(x) + (ft)(y), hence ft is a homomorphism.
Furthermore, (ft)(rx) = f(rx)t = (rf(x))t = r(f(x)t) = r(ft)(x), thus tf ∈ HomR(M,N).

Let · : S×HomR(M,N) → HomR(M,N) given by (s, f) 7→ sf and " · " : HomR(M, N)× T → HomR(M,N) given
by (f, t) 7→ ft. We can easily check that HomR(M,N) is a left S-module and a right T -module. We have the maps
(sf)t, s(ft) : M → N, where

[(sf)t](x) = (sf)(x) · t = f(sx) · t, [s(ft)](x) = (ft)(sx) = f(sx) · t.
Hence (sf)t = s(ft).

The proof of b) is similar.

Remark 3.2.2 a) Fix RM and regard HomR(M, −) as a “function” of one “variable”. The “variable” can be
another module as an R-linear map.

If N is an R-module, then (HomR(M,N),+) was define above. Let f : M → N ′ be an R-linear map. Then by
definition

HomR(M, f) : HomR(M, N) → HomR(M,N ′), HomR(M, f)(α) = f ◦ α, M
α //

f◦α !!B
BB

BB
BB

B N

f

²²
N ′

We get a group homomorphism, since

HomR(M, f)(α + β) = f ◦ (α + β) = f ◦ α + f ◦ β = HomR(M, f)(α) + HomR(M, f)(β).

b) We can similarly regard HomR(−,M) as a “function”. If N is an R-module, then HomR(N,M), +) is defined
as above. Let f : N → N ′ be an R-linear map. Then

HomR(f,M) : HomR(N ′,M) → HomR(N,M), HomR(f,M)(α) = α ◦ f, N ′ α // M

N

f

OO

α◦f

==||||||||

This also gives a group homomorphisms.
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3.3 The tensor product

Definition 3.3.1 Let RN and MR be R-modules, and G an abelian group. Then a map ϕ : M×N → G is called
R-balanced if

ϕ(x1 + x2, y) = ϕ(x1, y) + ϕ(x2, y)

ϕ(x, y1 + y2) = ϕ(x, y1) + ϕ(x, y2)

ϕ(αx, y) = ϕ(x, αy)

for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and all α ∈ R.

Exercise 16 For any modules RN and MR and any abelian group G, if ϕ : M × N → G is R-balanced and
f : G → X is a group homomorphism, then f ◦ϕ : M×N → X is R-balanced.

Proposition 3.3.2 For any two R-modules RN and MR there is an abelian group G and an R-balanced map
ϕ : M×N → G satisfying the following universal property.

G

f

{{

OO

ϕ

X oo ψ
M×N

For any abelian group (X,+) and any R-balanced map ψ : M × N → X there is a unique group homomorphism
f : G → X such that ψ = f ◦ϕ. Moreover this universal property determines G up to an isomorphism.

Proof. Let L be the free abelian group (i.e. free Z-module with basis M×N. This means that

L =





∑

(x,y)∈M×N

a(x,y)(x, y) | a(x,y) ∈ Z, a(x,y) = 0 for almost all (x, y) ∈ M×N



 .

Let H be the subgroup of L generated by the elements

(x1 + x2, y) − (x1, y) − (x2, y), (x, y1 + y2) − (x, y1) − (x, y2), (xα, y) − (x, αy),

where x, x1, x2 ∈ M, y, y1, y2 ∈ N, α ∈ R. We set G = L/H and let ϕ = p ◦ i : M ×N → G, where M ×N
i−→

L
p−→ L/H = G are the inclusion map, respectively the canonical projection.
Let X be an abelian group and ψ : M×N → X an R-balanced map. As M×N is a basis for L, we get a unique

group homomorphism g : L → G such that g ◦ i = ψ. In fact,

g


 ∑

(x,y)∈M×N

a(x,y)(x, y)


 =

∑

(x,y)∈M×N

a(x,y)ψ(x, y).

It is easy to show that Ker p = H and H ⊆ Kerg. So, due to Exercise 15, there is a unique f : G → X such that
f ◦ p = g. Therefore f ◦ϕ = f ◦ p ◦ i = g ◦ i = ψ, and f is unique with this property.

Finally, Let X be an abelian group and ψ a balanced map satisfying the same universal property as G and ϕ.

G

f

{{

OO

ϕ

X oo ψ
M×N

G;;
f ′

OO

ϕ

X oo ψ
M×N

Then f ′ ◦ f ◦ϕ = f ′ ◦ψ = ϕ, and f ◦ f ′ ◦ψ = ϕ. It follows that f ′ ◦ f = idG, and f ◦ f ′ = idX.

Definition 3.3.3 The group constructed above is called the tensor product of M and N over R, and is denoted
by M⊗R N. We also denote x⊗ y := ϕ(x, y), where ϕ : M×N → M⊗R N is the canonical R-balanced map.

Remark 3.3.4 The set {x⊗y | x ∈ M,y ∈ N} generates M⊗RN as an abelian group, that is, for each z ∈ M⊗RN

there are r ≥ 1, x1, . . . , xr ∈ M, y1, . . . , yr ∈ N, such that z = x1⊗y1 + · · ·+xr⊗yr. Note that such an expression
for z is not unique.

Let f : MR → MR ′ and g : RN → RN ′ be R-linear maps and denote:

M⊗R g : M⊗R N → M⊗R N ′, M⊗R g = idM ⊗ g

f⊗R N : M⊗R N → M ′ ⊗R N, f⊗R N = f⊗ idN.
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Lemma 3.3.5 a) If g is surjective then M⊗R g is surjective.
b) If f is surjective then f⊗R N is surjective.

Remark 3.3.6 If g is injective, it does not follow that M⊗R g is injective. As an example, let R = Z, I : Z→ Q
and M = Z2. We see that M⊗ Z ' M for all abelian groups M, but Z2 ⊗Q = 0.

Definition 3.3.7 We say that the right R-module M is flat if M ⊗R g is injective whenever g : N → N ′ is an
injective linear map (of left R-modules).

Proposition 3.3.8 Let R, S, T be rings and let SMR, RNT be bimodules. Then M⊗R N is an (S, T)-bimodule.

Proof. We define " · " : S× (M⊗R N) → M⊗R N induced by

(s, x⊗ y) 7→ s(x⊗ y) = (sx)⊗ y

and " · " : (M⊗R N)× T → M⊗R N induced by

(x⊗ y, t) 7→ (x⊗ y)t = x⊗ (yt),

where M⊗R N = {x⊗ y| x ∈ M, y ∈ N}.
For s ∈ S let ψs : M × N → M ⊗R N given by ψs(x, y) = (sx) ⊗ y. We check that ψs is balanced. We

have ψs(x1 + x2, y) = (s(x1 + x2) ⊗ y) = (sx1 + sx2) ⊗ y = sx1 ⊗ y + sx2 ⊗ y = ψs(x1, y) + ψs(x2, y). Also,
ψs(sx, y1 +y2) = (sx)⊗ (y1 +y2) = (sx)⊗y1 +(sx)⊗y2 = ψs(x, y1)+ψs(x, y2). Finally ψs(xr, y) = s(xr)⊗y =
(sx)r⊗y = (sx)⊗ry = ψs(x, ry), showing that ψs is balanced. It follows that there exists an fs group isomorphism
on M⊗R N. Then, for z ∈ M⊗R N, sz = fs(z).

It is easy to show that SM⊗R NT is a bimodule.

Lemma 3.3.9 If N is a left R-module and G is an abelian group then

HomZ(N, G) = {f : N → G | f is Z linear } = {f : N → G | f is a group homomorphism}

has natural structure of a right R-module.

Proof. We define a multiplication with scalars HomZ(N,G)×R → HomZ(N,G) by (f, r) 7→ fr where fr : N → G,
fr(x) = f(rx). This multiplication is well defined, since fr ∈ HomZ(N,G).

Theorem 3.3.10 Let consider a right R-module M and a left R-module N and an abelian group G. Then there
is a group isomorphism

αM,N,G : HomR(M, HomZ(N,G)) → HomZ(M⊗R N,G)

which is natural in M,N, G.
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