3.4. EXACTNESS OF FUNCTORS

All categories which we deal with in this section are abelian and all func-
tors are additive. So when we speak about a functor we mean an additive
one.

Let C and D two abelian categories. A functor T : C — D is called left
(right) exact if for every short exact sequence 0 - A — B — C — 0 in C,
the induced sequence

0—-T(A) — T(B) — T(C) (respectively T(A) — T(B) — T(C) — 0)

is exact in D. The functor T is exact provided that it is both left and right
exact i.e. it carries the exact sequence above into an exact sequence

0—-T(A) —-T(B)—T(C)—0.
Remark that every (additive) functor preserves split exact sequences.

Lemma 3.4.1. A functor T : C — D is exact if and only if it it sends every
exact sequence in C into an exact sequence in D.

Proof. The sufficiency of the condition is obvious. For the necessity let

A% B2 ¢ be an exact sequence in C. It gives rise to three short exact
sequences

0—>Kera— A—Ima—0
0—Kerf—B—=Imp@—0
0—->Imf—-C—-C/ImpB—0

with Ima = Ker 5. Since T preserves the exactness of each one of these
sequences, it follows Im T'(«) = T'(Im «) and Ker T'(3) = T'(Ker 3), therefore

ImT(a) = Ker T'(f) and the sequence T'(A) Tie) T(B) e T(C) is exact.
U

FEzercise 1. Show that a functor T': C — D is left (right) exact if and only
if it preserves the exactness of sequences of the foorm 0 — A — B — C
(respectively A — B — C' — 0).

A contravariant functor 7' : C — D is said to be left exact if the corre-
sponding covariant functor T' : C°°? — D has this property, more exactly
if it sends a short exact sequence 0 — A — B — C — 0 (or, using
Exercise 1 an exact sequence A — B — C — 0) to an exact sequence
0—T(C)— T(B) — T(A). By duality we define a right exact contravari-
ant functor.
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Proposition 3.4.2. Let X € C be a fized object of the abelian category C.
Then the functors

C(X,—):C — Ab (covaraiant)
C(—,X):C— Ab (contravaraiant)
are left exact. (Compare with Theorem 1.2.3!).
Proof. Let 0 - A — B — C — 0 be an exact sequence in C. Hence
A = Ker(B — C), so for every morphism X — B such that the composition
X — B — (C vanishes, there is a unique morphism X — A, such that

X - B=X — A— B. Thus C(X, A) is the kernel of the induced group
homomorphism C(X, B) — C(X, C), showing that the sequence

0—-C(X,A) —-C(X,B)—C(X,C)
is exact in .Ab.
Exercise 2. Prove the left exactness of the contravariant Hom functor.

O

An object X of an abelian category C is called projective (injective) if the
functor C(X, —) (respectively C(—, X)) is exact. More explicitly an object
X € C is projective (injective) if and only of every diagram with exact row
in C:

X 0—=A—>B
l respectively i
y y
B——C——=0 X

may be completed commutative with the dotted arrow.

Lemma 3.4.3. Let (X;)ier be a family of objects in C. Then:

a) @; Xi is projective if and only if each X; is projective.

b) [1; Xi is injective if and only if each X; is injective.
Proof. a) Denote X = @; X;. For all i € I let denote p; : X; — X the
canonical injection of the coproduct. Consider the diagram with exact row

vt

B—C——>0

If every X; is projective, then the diagram may be completed commutative
with &; for all 4 € I, so it may be completed also with £ which is induced by
the definition of the coproduct, and X is projective as well. Conversely if
X is projective, then the diagram may be completed commutative with &,
and putting & = £p;, we deduce that X is projective. The statement from
b) follows by duality.

Ezercise 3. Prove directly the point b) above.
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O

Remark 3.4.4. An alternative proof of the previous Lemma uses the exact-
ness of the direct product in Ab and the formulae:

C <€B X;, —> =~ J[c(xi,—) and C (—,HXZ) = J[c- xv).
I I I I

Let P be an R-module, where R is an arbitrary ring. A dual basis for P
is a subset {z; | i € [} C P together with R-linear maps ¢; : P — R for all
i € I such that for each x € P we have ¢;(z) = 0 for almost all i € I and

one has
x = Z vi(x)z;.
i€l

Proposition 3.4.5. The following are equivalent for an object P € C:

(i) P is projective.

(ii) Every exact sequence 0 — A — B — P — 0 splits.
Moreover if C = R-Mod, where R is an arbitrary ring, then the conditions
(i) and (ii) are also equivalent to:

(iii) P is a direct summand of a free module.
(iv) P has a dual basis.

Proof. (i)=-(ii). If P is projective, then the diagram with exact row
P

1p

4
0 A B P 0
may be completed commutative with the dotted arrow, so the row split by
Proposition 3.3.3.
(ii)=(i). Consider an epimorphism B — C' and complete it to an exact
sequence 0 - A — B — C — 0, by taking A — B = ker(B — (). For
every morphism P — C' construct the diagram with exact rows

0 A B’ P 0
0 A B C 0

where the right square is a pullback (see Section 3.3, Exercise 16). By
hypothesis the upper row splits, so there is a morphism P — B’ such that
P — B’ — P is the identity on P. The composite morphism P — B’ — B
has the property

P—-B -B—-C=P—-B —-P—-C=P—C,
showing that P is projective.

Suppose now that C = R-Mod. Then Hompg(R, M) = M, so Hompg(R, —)
is exact, showing that R is projective. Using Lemma 3.4.3, every free module
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(that is a direct sum of copies of R) is also projective. Thus (ii)=-(iii) is a
consequence of the fact that every module is a quotient of a free module,
whereas (iii)=(i) follows again from Lemma 3.4.3.

Now we want to prove the equivalence of the previous three conditions
to (iv). For that let § : FF — P be an epimorphism of a free module F
into P. Let also (e;)ier be a basis for F, so F = R, If P is projective
then § splits, so there is ¢ : P — F, such that Sp = 1p. Composing it
with the projections F = RU) — R for all i € I, we obtain homomorphisms
i : P — R, with ¢ € I. Thus the set with elements x; = ((e;) € P for all
i € I is a dual basis. Conversely if {z; | i € I} C P together with R-linear
maps @; : P — R for all ¢ € I is a dual basis for P then the R-linear maps
; with ¢ € I induces, by the definition of the direct sum, an R-linear map
¢ : P — RU. Clearly Bp = 1p, so P is a direct summand of F, so it is
projective. ([

In the proof of the characterization of injective modules bellow we need
the following set theoretic result, well-known as Zorn’s Lemma. We shall
not prove the Zorn’s lemma, but we only mention that it is equivalent to
the famous axiom of choice.

Lemma 3.4.6. If (A, <) is a poset (partially ordered set) such that every
ascending chain xg < x1 < x9 < ... in A has an upper bound, then for every
x € A there is a mazimal element m € A such that x < m.

Proposition 3.4.7. The following are equivalent for an object E € C:

(i) E is injective.

(ii) Fvery exact sequence 0 — E — B — C — 0 splits.
Moreover if C = R-Mod, where R is an arbitrary ring, then the conditions
(i) and (ii) are also equivalent to:

(iii) For every left ideal I of R and every R-linear map ¢ : I — E there
exists x € E such that ¢(a) = ax for all a € I.

Note that the condition (iii) above is called the Baer’s criterion of injec-
tivity.

Proof. The equivalence between (i) and (ii) follows from Proposition 3.4.5
by duality.

Ezercise 4. Prove directly the equivalence between (i) and (ii) above.

Suppose now that C = R-Mod, and FE is an R-module. Recall that a left
ideal I of R is nothing but a left R-submodule of R. Note that every R-linear
R — FE is of the form a +— ax for some = € E (actually x corresponds to
1 € R under this map). Therefore the Baer’s criterion follows as a particular
case of the definition of injectivity, more precisely it says that Hompg(—, E)
preserves the exactness of the short exact sequence 0 - I — R — R/I — 0.

Conversely, suppose that E satisfies the Baer’s criterion of injectivity, let
a : L — M be a monomorphism (without to loss the generality, we may
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consider a as an inclusion of a submodule L into R-module M), and let
@ : L — E be any R-linear map. Consider the set

M={(L',¢)|L<L <Mand ¢ : L — E extends ¢}.
Note that ¢’ extends ¢ means that there is a commutative diagram

L—1TI'

|

E

where L — L' is the inclusion. We want to apply Zorn’s lemma in order to
show that ¢ may be extended to a linear map ¢ : M — E, that is (M, ) €
M. Observe first that M is ordered by declaring (L', ¢") < (L”, ") if
L' < L" and ¢" extends ¢'. Moreover if (Lo, ) < (L1,¢1) < ... s an
ascending chain in M, we construct Loe = (J;>¢ Li, and ¢oo : Lo — E
given as follows: for z € Lo, we have x € L,, for some n > 0, and we put
Poo () = @n().

Ezercise 5. Verify that (Lo, poo) € M and it is an upper bound of the chain
(Lo, o) < (L1,¢1) < ... considered above.

By Zorn’s lemma there is a maximal element (L, ), such that (L, p) <
(L, p). Suppose that L < M. Then there is y € M such that y ¢ L. Put
I ={a € R|ay <€ L} which is a left ideal of R. The map I — E, given by
a — @(ay) is R-linear, so by (iii) there is z € E such that ¢(ay) = ax for all
a € I. Now put L' = L+ Ry and define ' : L' — E as ¢'(z+ay) = ¢(z)+ax.

Exercise 6. Verify that the map ¢’ given above is well defined and it is
R-linear. Moreover ¢’ extends @.

By the above Exercise, it is clear that (L, ) < (L'¢') in M, contradicting
the maximality of (L, @). Therefore L = M, so we put 1) = ¢ which is an
R-linear map extending ¢. (]

A poset (I,<) is called directed if for any two elements i,j € I have
an upper bound in I, that is there exists £k € I such that ¢ < k and j <
k. Recall that every poset may be regarded as a small category satisfying
the additional property that there is at most morphism between every two
objects. A direct system in R-Mod is a functor I — R-Mod, where [ is a
directed poset. Informally a direct system is a family (M;); of R-modules
(indexed over I), together with R-linear maps f;; : M; — M, for all i <
J € I, such that for every i < j < k we have fi; = fi;fji. Given a directed
system (M;, f;i)r we take the disjoint union [[; M; of sets M;, and we define
a binary relation ~ on [[; M; as follows: For z,y € [[; M;, we have x € M;
and y € M; for some i,j € I and we put x ~ y if there is £ € I such that
i <k and j < k such that fi;(z) = fi;(y).

Ezercise 7. Show that the above defined relation ~ is an equivalence relation
on [[; M; (provided that I is directed).
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Now we put limM; = [[; M;/ ~. Roughly speaking this means that in
limM; we identify those elements which become equal for big i € I. We
observe also that there are (canonical) maps f; : M; — limM;, sending each

x; € M; into its equivalence class [x;], modulo the relation ~. We have then
clearly f;f;; = fi for all i < j € I. Moreover every element x € limM; is of

the form x = [z;] = fi(x;) for some x; € M;; we say that z is represented
by x;. If z,y € limM;, represented by x; € M;, respectively y; € M; then

choose k € I such that 4,5 < k and define x +y = [fri(z:) + frj(y;)]
respectively ax = [az;] for all a € R.

Ezercise 8. Show that the operations

LmM; x imM; — UimM;, (z,y) — = + vy,

R x imM; — limM;, (a,z) — ax

given above are well defined (in the sense that their definitions do not depend
on the choice of the representatives, and on the choice of k for the addition)
and limM; becomes an R-module relative to these operations. Further show

that the maps f; : M; — limM; are R-linear.

The R-module limM; together with R-linear maps f; : M; — limM;, with
i € 1, is called the direct limit of the system (M;, fj;)r.

FEzercise 9. Show that the direct limit of a system (M;, fj;)r satisfies and,
up to a unique isomorphism, it is uniquely determined by, the following
universal property: For every R-module M and every R-linear maps g; :
M; — M, with ¢ € I, for which g;f;; = g; for all i« < j € I, there is a
unique R-linear map g : liLnMi — M such that gf; = g; for all i € I. Note
that the universal property stated before may be visualized as the following
commutative diagram:

Let fix now the directed set (I <). Since a direct system of R-modules is
a functor I — R-Mod, a morphism of such direct systems must be a natural
transformation between two such functors. Thus a morphism (M;, fji)r R
(Ni, gji)1 consists of R-linear maps ¢; : M; — N; for all ¢ € I making
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commutative the diagram

©i
7 s Nz

M:
fjil lgji

Mj ——N;

for all i < j € I. We may consider then the category (R-Mod) of all direct
systems of R-modules.

FExercise 10. Show that the direct limit
lim : (R-Mod)! — R-Mod

gives rise to a functor.
An ezact sequence of direct systems is a sequence
Y
(Li, f5i)1 = (M;, gji)1 — (Ni, hji)r
of morphisms of such systems with the property that the sequence of R-

modules L; 2 M,; ¥ N; is exact for all 7 € 1.
Proposition 3.4.8. The direct limit functor (see Ezercise 10) is a exact.

Proof. Let
¥
0= (Li, fji)1 = (Mi, gji)r = (N, hji)r — 0
be a short exact sequence of direct systems, what means we have short exact
sequences
0— Li & M; % Ny — 0
for all ¢ € I. Denote f; : L; — limL;, g; : M; — limM; and h; : N; — limIV;
the canonical morphisms of the direct limit. We have to prove that the
direct limit sequence
0 — lim Z; % lim M; % lim N; — 0
is exact in R-Mod, where @ and 1) comme from the universal property of the
direct limit, being induced by the R-linear maps {g;p; : L; — UimM; | i € T},
respectively {h;1; : M; — limN; | @ € I}. More precisely, if x € limL; is
represented by x; € L; then @(x) = [p;(x;)], and similarly for . Note that
we denote sometimes limyp; = ¢ and similarly limy; = 1.

First we show that ¢ is a monomorphism. Let z € limL; is represented
by x; € L;, such that ¢(x) = 0 in limM;. Thus g;;;(z;) = 0 for some j > 1.
We have ¢; fji(zi;) = gjipi(z;) = 0, and since ¢; is injective fj;(z;) = 0.
Therefore z = [z;] = 0 in limZ,.

Now we want to show that Kervy = Im@. Since ¥@f; = hiyp; = 0, we
deduce Y@ = 0 from the uniqueness of the factorization through the direct



8 3.4. EXACTNESS OF FUNCTORS

limit, so Im@ < Ker. Conversely let y € Kere < limM; represented by
y; € M;. Thus [1;(y;)] is zero in ImN;, so hji(y;) = 0 for some j > 4. If
yj = g5i(yi) then y = [y;] = [y;] and ¥;(y;) = ¥;g;i(y:) = hjivhi(yi) = 0, so
y; € Keryp; = Imyp;. Thus y; = ¢;(x;) for some z; € Lj, and y = [y;] =
[pj(z;)] = &([z;]) € Imp. Hence Kery C Im @.

Let z € limN; represented by z; € N;. Since v; is surjective, there is
yi € M; such that 1;(y;) = z;. Then 9 ([yi]) = [2] = z, showing that 1) is
surjective.

Ezercise 11. Without using elements (that is in a categorical way) show
that ¢ is an epimorphism.

O

Fix a left R-module M. The Proposition 1.4.6 and the discussion preced-
ing it show that the tensor product gives rise to an additive functor

— ®pr M : R-Mod — Ab.

Proposition 3.4.9. The tensor product functor commutes with direct limits,
that is if (Li, fji)1 s a direct system of right R-modules and M is a left R-
module then there is a natural isomorphism

lim (L; @ M) = (thi) ®p M.

Proof. We denote by f; : L; — limL; the canonical morphisms of the direct
limit. Since (L; ®r M, fj; ®r M) is a direct system of abelian groups,
the R-linear maps f; g M : L; Qg M — (limLZ) ®pr M induce a unique

abelian group homomorphism f : lim (L; @ M) — (limLi> ®gr M, such
that fg; = fi ®r M for all i € I, where g; : L; g M — lim (L; ® g M) are

the canonical morphisms of this direct limit of the above direct system of
abelian groups. Note that f([z;®y]) = [z;]®@y for all z; € L; and all y € M.
On the other hand the map

(ninLi) x M —lim (L; 9 M), ([zi],y) — 25 © 9]
is bilinear, so it induces a unique abelian group homomorphism
g: (li_r)nLi) ®r M — lim (L; ® M) such that g([zi] ®y) = [z; ® y].

We observe immediately that g is the inverse of f, so f is an isomorphism.
The proof ends with the help of the following:

Exercise 12. Let (L, J’Z) 1 be another direct system of right R-modules and
M’ be another left R-module, such that there is a morphism of direct systems
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o= (ai)r: (Li, fi)r — (L, f};)1 and an R-linear map 3: M — M'. If f' is
constructed as above, show that the diagram

lim (L; @ M) S (thLi) ®r M

hgl(ai@a)l l (hinai) 8
lim (L} @ M) — (timz;) @ 7

is commutative.
O

The left R-module F' is called flat if the functor — ®pg F' is exact. Note
that the tensor product is always right exact, so F'is flat if and only if fRgrF
is injective, whenever f is a monomorphism of right R-modules.

Proposition 3.4.10. The following properties hold true:

a) A direct sum of modules is flat if and only if every term is flat.
b) A direct limit of flat modules is flat.

Proof. a) Consider a family of left R-modules (F;);, and a monomorphism
of right R-modules L. — M. Since the tensor product of modules com-
mutes with direct sums (see Proposition 1.4.4), we deduce that we have a
commutative diagram

L ®gr (@ie[ Fz) — M ®r (@ie[ Fi)

%l i%

Dic; LR F) — D) (M ®r F;)

The R-module @, ; F; is flat if and only if the upper row is injective, or
equivalently, the lower row is so, what means F; is flat for all i € I.

b) The conclusion follows as in the case of a) but using Proposition 3.4.9
instead of 1.4.4. O

Corollary 3.4.11. Every projective module is flat.

Proof. We have only to observe that R is flat as a left or right R-module,
since M @ g R =2 M. Hence the conclusion follows by Proposition 3.4.10. [

Exercise 13. An abelian group G is called divisible if for every n € N* and
every a € GG the equation nx = a has at least a solution in G. Show that
an abelian group is divisible if and only if it is injective. Consequently Q,
Z(p*>) (p is prime) and Q/Z are injective abelian groups.

Ezercise 14. Show that every vector space over a field K is both projective
and injective.

Ezercise 15. Find an example of a non free projective module. (Hint: Look
at the direct summand of the ring Z(6) = Z/6Z.)
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Exercise 16. Let M be a module and let (M;, fj;)r be a direct system of
submodules, such that f;; : M; — M; are inclusions. Then limM; =3, M;

and this sum coincide with the union of the sets M;. (Compare with the
union of the union Log = [J;5¢ Li in the proof of Proposition 3.4.7.)

Exercise 17. An abelian group G is called torsion free if every element 0 #
x € C has infinite order. Show that the following are equivalent for an
abelian group G:

(i) G if torsion free.

(ii) For every n € N* and every a € G the equation nx = a has at most

a solution in G.
(iii) G is flat.
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