
3.4. EXACTNESS OF FUNCTORS

All categories which we deal with in this section are abelian and all func-
tors are additive. So when we speak about a functor we mean an additive
one.

Let C and D two abelian categories. A functor T : C → D is called left
(right) exact if for every short exact sequence 0 → A → B → C → 0 in C,
the induced sequence

0 → T (A) → T (B) → T (C) (respectively T (A) → T (B) → T (C) → 0)

is exact in D. The functor T is exact provided that it is both left and right
exact i.e. it carries the exact sequence above into an exact sequence

0 → T (A) → T (B) → T (C) → 0.

Remark that every (additive) functor preserves split exact sequences.

Lemma 3.4.1. A functor T : C → D is exact if and only if it it sends every
exact sequence in C into an exact sequence in D.

Proof. The sufficiency of the condition is obvious. For the necessity let
A

α→ B
β→ C be an exact sequence in C. It gives rise to three short exact

sequences
0 → Kerα→ A→ Imα→ 0

0 → Kerβ → B → Imβ → 0

0 → Imβ → C → C/ Imβ → 0

with Imα = Kerβ. Since T preserves the exactness of each one of these
sequences, it follows ImT (α) = T (Imα) and KerT (β) = T (Kerβ), therefore

ImT (α) = KerT (β) and the sequence T (A)
T (α)→ T (B)

T (β)→ T (C) is exact.
�

Exercise 1. Show that a functor T : C → D is left (right) exact if and only
if it preserves the exactness of sequences of the form 0 → A → B → C
(respectively A→ B → C → 0).

A contravariant functor T : C → D is said to be left exact if the corre-
sponding covariant functor T : Cop → D has this property, more exactly
if it sends a short exact sequence 0 → A → B → C → 0 (or, using
Exercise 1 an exact sequence A → B → C → 0) to an exact sequence
0 → T (C) → T (B) → T (A). By duality we define a right exact contravari-
ant functor.
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Proposition 3.4.2. Let X ∈ C be a fixed object of the abelian category C.
Then the functors

C(X,−) : C → Ab (covaraiant)

C(−, X) : C → Ab (contravaraiant)
are left exact. (Compare with Theorem 1.2.3!).

Proof. Let 0 → A → B → C → 0 be an exact sequence in C. Hence
A ∼= Ker(B → C), so for every morphism X → B such that the composition
X → B → C vanishes, there is a unique morphism X → A, such that
X → B = X → A → B. Thus C(X,A) is the kernel of the induced group
homomorphism C(X,B) → C(X,C), showing that the sequence

0 → C(X,A) → C(X,B) → C(X,C)

is exact in Ab.

Exercise 2. Prove the left exactness of the contravariant Hom functor.

�

An object X of an abelian category C is called projective (injective) if the
functor C(X,−) (respectively C(−, X)) is exact. More explicitly an object
X ∈ C is projective (injective) if and only of every diagram with exact row
in C:

X

~~ ��
B // C // 0

 respectively

0 // A //

��

B

~~
X


may be completed commutative with the dotted arrow.

Lemma 3.4.3. Let (Xi)i∈I be a family of objects in C. Then:
a)
⊕

I Xi is projective if and only if each Xi is projective.
b)
∏
I Xi is injective if and only if each Xi is injective.

Proof. a) Denote X =
⊕

I Xi. For all i ∈ I let denote ρi : Xi → X the
canonical injection of the coproduct. Consider the diagram with exact row

Xi
ρi //

ξi
��

X

ξ~~ ��
B // C // 0

If every Xi is projective, then the diagram may be completed commutative
with ξi for all i ∈ I, so it may be completed also with ξ which is induced by
the definition of the coproduct, and X is projective as well. Conversely if
X is projective, then the diagram may be completed commutative with ξ,
and putting ξi = ξρi, we deduce that X is projective. The statement from
b) follows by duality.

Exercise 3. Prove directly the point b) above.
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�

Remark 3.4.4. An alternative proof of the previous Lemma uses the exact-
ness of the direct product in Ab and the formulae:

C

(⊕
I

Xi,−

)
∼=
∏
I

C(Xi,−) and C

(
−,
∏
I

Xi

)
∼=
∏
I

C(−, Xi).

Let P be an R-module, where R is an arbitrary ring. A dual basis for P
is a subset {xi | i ∈ I} ⊆ P together with R-linear maps ϕi : P → R for all
i ∈ I such that for each x ∈ P we have ϕi(x) = 0 for almost all i ∈ I and
one has

x =
∑
i∈I

ϕi(x)xi.

Proposition 3.4.5. The following are equivalent for an object P ∈ C:
(i) P is projective.
(ii) Every exact sequence 0 → A→ B → P → 0 splits.

Moreover if C = R-Mod, where R is an arbitrary ring, then the conditions
(i) and (ii) are also equivalent to:

(iii) P is a direct summand of a free module.
(iv) P has a dual basis.

Proof. (i)⇒(ii). If P is projective, then the diagram with exact row

P

��
1P

0 // A // B // P // 0
may be completed commutative with the dotted arrow, so the row split by
Proposition 3.3.3.

(ii)⇒(i). Consider an epimorphism B → C and complete it to an exact
sequence 0 → A → B → C → 0, by taking A → B = ker(B → C). For
every morphism P → C construct the diagram with exact rows

0 // A // B′ //

��

P

��

// 0

0 // A // B // C // 0

where the right square is a pullback (see Section 3.3, Exercise 16). By
hypothesis the upper row splits, so there is a morphism P → B′ such that
P → B′ → P is the identity on P . The composite morphism P → B′ → B
has the property

P → B′ → B → C = P → B′ → P → C = P → C,

showing that P is projective.
Suppose now that C = R-Mod. Then HomR(R,M) ∼= M , so HomR(R,−)

is exact, showing that R is projective. Using Lemma 3.4.3, every free module
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(that is a direct sum of copies of R) is also projective. Thus (ii)⇒(iii) is a
consequence of the fact that every module is a quotient of a free module,
whereas (iii)⇒(i) follows again from Lemma 3.4.3.

Now we want to prove the equivalence of the previous three conditions
to (iv). For that let β : F → P be an epimorphism of a free module F
into P . Let also (ei)i∈I be a basis for F , so F = R(I). If P is projective
then β splits, so there is ϕ : P → F , such that βϕ = 1P . Composing it
with the projections F = R(I) → R for all i ∈ I, we obtain homomorphisms
ϕi : P → R, with i ∈ I. Thus the set with elements xi = β(ei) ∈ P for all
i ∈ I is a dual basis. Conversely if {xi | i ∈ I} ⊆ P together with R-linear
maps ϕi : P → R for all i ∈ I is a dual basis for P then the R-linear maps
ϕi with i ∈ I induces, by the definition of the direct sum, an R-linear map
ϕ : P → R(I). Clearly βϕ = 1P , so P is a direct summand of F , so it is
projective. �

In the proof of the characterization of injective modules bellow we need
the following set theoretic result, well–known as Zorn’s Lemma. We shall
not prove the Zorn’s lemma, but we only mention that it is equivalent to
the famous axiom of choice.

Lemma 3.4.6. If (A,≤) is a poset (partially ordered set) such that every
ascending chain x0 ≤ x1 ≤ x2 ≤ . . . in A has an upper bound, then for every
x ∈ A there is a maximal element m ∈ A such that x ≤ m.

Proposition 3.4.7. The following are equivalent for an object E ∈ C:
(i) E is injective.
(ii) Every exact sequence 0 → E → B → C → 0 splits.

Moreover if C = R-Mod, where R is an arbitrary ring, then the conditions
(i) and (ii) are also equivalent to:

(iii) For every left ideal I of R and every R-linear map ϕ : I → E there
exists x ∈ E such that ϕ(a) = ax for all a ∈ I.

Note that the condition (iii) above is called the Baer’s criterion of injec-
tivity.

Proof. The equivalence between (i) and (ii) follows from Proposition 3.4.5
by duality.

Exercise 4. Prove directly the equivalence between (i) and (ii) above.

Suppose now that C = R-Mod, and E is an R-module. Recall that a left
ideal I of R is nothing but a left R-submodule of R. Note that every R-linear
R → E is of the form a 7→ ax for some x ∈ E (actually x corresponds to
1 ∈ R under this map). Therefore the Baer’s criterion follows as a particular
case of the definition of injectivity, more precisely it says that HomR(−, E)
preserves the exactness of the short exact sequence 0 → I → R→ R/I → 0.

Conversely, suppose that E satisfies the Baer’s criterion of injectivity, let
α : L → M be a monomorphism (without to loss the generality, we may
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consider α as an inclusion of a submodule L into R-module M), and let
ϕ : L→ E be any R-linear map. Consider the set

M = {(L′, ϕ′) | L ≤ L′ ≤M and ϕ′ : L′ → E extends ϕ}.
Note that ϕ′ extends ϕ means that there is a commutative diagram

L //

ϕ

��

L′

ϕ′
~~~~

~~
~~

~

E

where L→ L′ is the inclusion. We want to apply Zorn’s lemma in order to
show that ϕ may be extended to a linear map ψ : M → E, that is (M,ψ) ∈
M. Observe first that M is ordered by declaring (L′, ϕ′) ≤ (L′′, ϕ′′) if
L′ ≤ L′′ and ϕ′′ extends ϕ′. Moreover if (L0, ϕ0) ≤ (L1, ϕ1) ≤ . . . is an
ascending chain in M, we construct L∞ =

⋃
i≥0 Li, and ϕ∞ : L∞ → E

given as follows: for x ∈ L∞, we have x ∈ Ln for some n ≥ 0, and we put
ϕ∞(x) = ϕn(x).

Exercise 5. Verify that (L∞, ϕ∞) ∈M and it is an upper bound of the chain
(L0, ϕ0) ≤ (L1, ϕ1) ≤ . . . considered above.

By Zorn’s lemma there is a maximal element (L̄, ϕ̄), such that (L,ϕ) ≤
(L̄, ϕ̄). Suppose that L̄ < M . Then there is y ∈ M such that y /∈ L̄. Put
I = {a ∈ R | ay ∈ L̄} which is a left ideal of R. The map I → E, given by
a 7→ ϕ̄(ay) is R-linear, so by (iii) there is x ∈ E such that ϕ̄(ay) = ax for all
a ∈ I. Now put L′ = L̄+Ry and define ϕ′ : L′ → E as ϕ′(z+ay) = ϕ̄(z)+ax.

Exercise 6. Verify that the map ϕ′ given above is well defined and it is
R-linear. Moreover ϕ′ extends ϕ̄.

By the above Exercise, it is clear that (L̄, ϕ̄) < (L′ϕ′) inM, contradicting
the maximality of (L̄, ϕ̄). Therefore L̄ = M , so we put ψ = ϕ̄ which is an
R-linear map extending ϕ. �

A poset (I,≤) is called directed if for any two elements i, j ∈ I have
an upper bound in I, that is there exists k ∈ I such that i ≤ k and j ≤
k. Recall that every poset may be regarded as a small category satisfying
the additional property that there is at most morphism between every two
objects. A direct system in R-Mod is a functor I → R-Mod, where I is a
directed poset. Informally a direct system is a family (Mi)I of R-modules
(indexed over I), together with R-linear maps fji : Mi → Mj , for all i ≤
j ∈ I, such that for every i ≤ j ≤ k we have fki = fkjfji. Given a directed
system (Mi, fji)I we take the disjoint union

∐
IMi of sets Mi, and we define

a binary relation ∼ on
∐
IMi as follows: For x, y ∈

∐
IMi, we have x ∈Mi

and y ∈ Mj for some i, j ∈ I and we put x ∼ y if there is k ∈ I such that
i ≤ k and j ≤ k such that fki(x) = fkj(y).

Exercise 7. Show that the above defined relation ∼ is an equivalence relation
on
∐
IMi (provided that I is directed).
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Now we put lim
→
Mi =

∐
IMi/ ∼. Roughly speaking this means that in

lim
→
Mi we identify those elements which become equal for big i ∈ I. We

observe also that there are (canonical) maps fi : Mi → lim
→
Mi, sending each

xi ∈Mi into its equivalence class [xi], modulo the relation ∼. We have then
clearly fjfji = fi for all i ≤ j ∈ I. Moreover every element x ∈ lim

→
Mi is of

the form x = [xi] = fi(xi) for some xi ∈ Mi; we say that x is represented
by xi. If x, y ∈ lim

→
Mi, represented by xi ∈ Mi, respectively yj ∈ Mj then

choose k ∈ I such that i, j ≤ k and define x + y = [fki(xi) + fkj(yj)],
respectively ax = [axi] for all a ∈ R.

Exercise 8. Show that the operations

lim
→
Mi × lim

→
Mi → lim

→
Mi, (x, y) 7→ x+ y,

R× lim
→
Mi → lim

→
Mi, (a, x) 7→ ax

given above are well defined (in the sense that their definitions do not depend
on the choice of the representatives, and on the choice of k for the addition)
and lim

→
Mi becomes an R-module relative to these operations. Further show

that the maps fi : Mi → lim
→
Mi are R-linear.

The R-module lim
→
Mi together with R-linear maps fi : Mi → lim

→
Mi, with

i ∈ I, is called the direct limit of the system (Mi, fji)I .

Exercise 9. Show that the direct limit of a system (Mi, fji)I satisfies and,
up to a unique isomorphism, it is uniquely determined by, the following
universal property: For every R-module M and every R-linear maps gi :
Mi → M , with i ∈ I, for which gjfji = gi for all i ≤ j ∈ I, there is a
unique R-linear map g : lim

→
Mi → M such that gfi = gi for all i ∈ I. Note

that the universal property stated before may be visualized as the following
commutative diagram:

Mi

fji

��

fi ""EE
EE

EE
EE

gi

((RRRRRRRRRRRRRRRRRRR

lim
→
Mi

g // M

Mj

fj
<<yyyyyyyy

gj

66lllllllllllllllllll

Let fix now the directed set (I ≤). Since a direct system of R-modules is
a functor I → R-Mod, a morphism of such direct systems must be a natural
transformation between two such functors. Thus a morphism (Mi, fji)I

ϕ→
(Ni, gji)I consists of R-linear maps ϕi : Mi → Ni for all i ∈ I making
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commutative the diagram

Mi
ϕi //

fji

��

Ni

gji

��
Mj ϕj

// Nj

for all i ≤ j ∈ I. We may consider then the category (R-Mod)I of all direct
systems of R-modules.

Exercise 10. Show that the direct limit

lim
→

: (R-Mod)I → R-Mod

gives rise to a functor.

An exact sequence of direct systems is a sequence

(Li, fji)I
ϕ→ (Mi, gji)I

ψ→ (Ni, hji)I
of morphisms of such systems with the property that the sequence of R-
modules Li

ϕi→Mi
ψi→ Ni is exact for all i ∈ I.

Proposition 3.4.8. The direct limit functor (see Exercise 10) is a exact.

Proof. Let
0 → (Li, fji)I

ϕ→ (Mi, gji)I
ψ→ (Ni, hji)I → 0

be a short exact sequence of direct systems, what means we have short exact
sequences

0 → Li
ϕi→Mi

ψi→ Ni → 0
for all i ∈ I. Denote fi : Li → lim

→
Li, gi : Mi → lim

→
Mi and hi : Ni → lim

→
Ni

the canonical morphisms of the direct limit. We have to prove that the
direct limit sequence

0 → lim
→
Li

ϕ̄→ lim
→
Mi

ψ̄→ lim
→
Ni → 0

is exact in R-Mod, where ϕ̄ and ψ̄ comme from the universal property of the
direct limit, being induced by the R-linear maps {giϕi : Li → lim

→
Mi | i ∈ I},

respectively {hiψi : Mi → lim
→
Ni | i ∈ I}. More precisely, if x ∈ lim

→
Li is

represented by xi ∈ Li then ϕ̄(x) = [ϕi(xi)], and similarly for ψ̄. Note that
we denote sometimes lim

→
ϕi = ϕ̄ and similarly lim

→
ψi = ψ̄.

First we show that ϕ is a monomorphism. Let x ∈ lim
→
Li is represented

by xi ∈ Li, such that ϕ̄(x) = 0 in lim
→
Mi. Thus gjiϕi(xi) = 0 for some j ≥ i.

We have ϕjfji(xi) = gjiϕi(xi) = 0, and since ϕi is injective fji(xi) = 0.
Therefore x = [xi] = 0 in lim

→
Li.

Now we want to show that Ker ψ̄ = Im ϕ̄. Since ψ̄ϕ̄fi = hiψiϕi = 0, we
deduce ψ̄ϕ̄ = 0 from the uniqueness of the factorization through the direct
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limit, so Im ϕ̄ ≤ Ker ψ̄. Conversely let y ∈ Ker ψ̄ ≤ lim
→
Mi represented by

yi ∈ Mi. Thus [ψi(yi)] is zero in lim
→
Ni, so hjiψi(yi) = 0 for some j ≥ i. If

yj = gji(yi) then y = [yi] = [yj ] and ψj(yj) = ψjgji(yi) = hjiψi(yi) = 0, so
yj ∈ Kerψj = Imϕj . Thus yj = ϕj(xj) for some xj ∈ Lj , and y = [yj ] =
[ϕj(xj)] = ϕ̄([xj ]) ∈ Im ϕ̄. Hence Ker ψ̄ ⊆ Im ϕ̄.

Let z ∈ lim
→
Ni represented by zi ∈ Ni. Since ψi is surjective, there is

yi ∈ Mi such that ψi(yi) = zi. Then ψ̄([yi]) = [zi] = z, showing that ψ̄ is
surjective.

Exercise 11. Without using elements (that is in a categorical way) show
that ψ̄ is an epimorphism.

�

Fix a left R-module M . The Proposition 1.4.6 and the discussion preced-
ing it show that the tensor product gives rise to an additive functor

−⊗RM : R-Mod → Ab.

Proposition 3.4.9. The tensor product functor commutes with direct limits,
that is if (Li, fji)I is a direct system of right R-modules and M is a left R-
module then there is a natural isomorphism

lim
→

(Li ⊗RM) ∼=
(
lim
→
Li

)
⊗RM.

Proof. We denote by fi : Li → lim
→
Li the canonical morphisms of the direct

limit. Since (Li ⊗R M,fji ⊗R M) is a direct system of abelian groups,

the R-linear maps fi ⊗R M : Li ⊗R M →
(
lim
→
Li

)
⊗R M induce a unique

abelian group homomorphism f : lim
→

(Li ⊗RM) →
(
lim
→
Li

)
⊗R M , such

that fgi = fi ⊗RM for all i ∈ I, where gi : Li ⊗RM → lim
→

(Li ⊗RM) are
the canonical morphisms of this direct limit of the above direct system of
abelian groups. Note that f([xi⊗y]) = [xi]⊗y for all xi ∈ Li and all y ∈M .
On the other hand the map(

lim
→
Li

)
×M → lim

→
(Li ⊗RM) , ([xi], y) 7→ [xi ⊗ y]

is bilinear, so it induces a unique abelian group homomorphism

g :
(
lim
→
Li

)
⊗RM → lim

→
(Li ⊗RM) such that g([xi]⊗ y) = [xi ⊗ y].

We observe immediately that g is the inverse of f , so f is an isomorphism.
The proof ends with the help of the following:

Exercise 12. Let (L′i, f
′
ji)I be another direct system of right R-modules and

M ′ be another left R-module, such that there is a morphism of direct systems
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α = (αi)I : (Li, fji)I → (L′i, f
′
ji)I and an R-linear map β : M →M ′. If f ′ is

constructed as above, show that the diagram

lim
→

(Li ⊗RM) f //

lim
→

(αi⊗β)

��

(
lim
→
Li

)
⊗RM
�
lim
→

αi

�
⊗β

��

lim
→

(L′i ⊗RM ′)
f ′

//
(
lim
→
L′i

)
⊗RM ′

is commutative.

�

The left R-module F is called flat if the functor − ⊗R F is exact. Note
that the tensor product is always right exact, so F is flat if and only if f⊗RF
is injective, whenever f is a monomorphism of right R-modules.

Proposition 3.4.10. The following properties hold true:
a) A direct sum of modules is flat if and only if every term is flat.
b) A direct limit of flat modules is flat.

Proof. a) Consider a family of left R-modules (Fi)I , and a monomorphism
of right R-modules L → M . Since the tensor product of modules com-
mutes with direct sums (see Proposition 1.4.4), we deduce that we have a
commutative diagram

L⊗R
(⊕

i∈I Fi
)

∼=
��

// M ⊗R
(⊕

i∈I Fi
)

∼=
��⊕

i∈I (L⊗R Fi) //
⊕

i∈I (M ⊗R Fi)

The R-module
⊕

i∈I Fi is flat if and only if the upper row is injective, or
equivalently, the lower row is so, what means Fi is flat for all i ∈ I.

b) The conclusion follows as in the case of a) but using Proposition 3.4.9
instead of 1.4.4. �

Corollary 3.4.11. Every projective module is flat.

Proof. We have only to observe that R is flat as a left or right R-module,
since M⊗RR ∼= M . Hence the conclusion follows by Proposition 3.4.10. �

Exercise 13. An abelian group G is called divisible if for every n ∈ N∗ and
every a ∈ G the equation nx = a has at least a solution in G. Show that
an abelian group is divisible if and only if it is injective. Consequently Q,
Z(p∞) (p is prime) and Q/Z are injective abelian groups.

Exercise 14. Show that every vector space over a field K is both projective
and injective.

Exercise 15. Find an example of a non free projective module. (Hint: Look
at the direct summand of the ring Z(6) = Z/6Z.)
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Exercise 16. Let M be a module and let (Mi, fji)I be a direct system of
submodules, such that fij : Mi →Mj are inclusions. Then lim

→
Mi =

∑
IMi

and this sum coincide with the union of the sets Mi. (Compare with the
union of the union L∞ =

⋃
i≥0 Li in the proof of Proposition 3.4.7.)

Exercise 17. An abelian group G is called torsion free if every element 0 6=
x ∈ C has infinite order. Show that the following are equivalent for an
abelian group G:

(i) G if torsion free.
(ii) For every n ∈ N∗ and every a ∈ G the equation nx = a has at most

a solution in G.
(iii) G is flat.
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