I. (a) Define and give an example of: ring, linear map, equivalence relation. $(\mathbf{9p})$ (4p)

(b) State the Kronecker-Capelli theorem.

(c) Prove that n vectors in a K-vector space V are linearly dependent if and only if one of them can be written as a linear combination of the others. $(7\mathbf{p})$

2. Define the kernel and the image of a linear map and prove that they are subspaces in the domain, respectively codomain of that map. (**10p**)

3. Determine the rank of the matrix
$$A = \begin{pmatrix} 2 & 0 & 1 & -1 & -1 & 3 \\ 4 & 1 & 9 & -2 & 10 \\ 0 & 1 & 7 & 5 & -1 \\ 6 & 0 & 3 & -3 & \alpha \end{pmatrix}$$
 by using elementary operations. Discussion on $\alpha \in \mathbb{R}$.

4. (a) Define diagonalizable endomorphisms of a vector space. Give an example of diagonalizable endomorphism of
$$_{\mathbb{R}}\mathbb{R}^2$$
. State the theorem characterizing the diagonalizable endomorphisms. (6p)

(b) Let $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (-2y - 3z, x + 3y + 3z, z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . $(4\mathbf{p})$

I. 1. (a) Define and give an example of: ring, linear map, equivalence relation. (**9p**)

 $(4\mathbf{p})$

 $(4\mathbf{p})$

 $(4\mathbf{p})$

(b) State the Kronecker-Capelli theorem.

(c) Prove that n vectors in a K-vector space V are linearly dependent if and only if one of them can be written as a linear combination of the others. (**7p**)

2. Define the kernel and the image of a linear map and prove that they are subspaces in the domain, respectively codomain of that map. (**10p**)

3. Determine the rank of the matrix
$$A = \begin{pmatrix} 2 & 0 & 1 & -1 & 3 \\ 4 & 1 & 9 & -2 & 1 \\ 0 & 1 & 7 & 5 & -1 \\ 6 & 0 & 3 & -3 & \alpha \end{pmatrix}$$
 by using elementary operations. Discussion on $\alpha \in \mathbb{R}$.

on $\alpha \in \mathbb{R}$.

4. (a) Define diagonalizable endomorphisms of a vector space. Give an example of diagonalizable endomorphism of $_{\mathbb{R}}\mathbb{R}^2$. State the theorem characterizing the diagonalizable endomorphisms. $(\mathbf{6p})$

(b) Let $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (-2y - 3z, x + 3y + 3z, z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . (**4p**)

I. (a) Define and give an example of: ring, linear map, equivalence relation. $(\mathbf{9p})$

(b) State the Kronecker-Capelli theorem.

(c) Prove that n vectors in a K-vector space V are linearly dependent if and only if one of them can be written as a linear combination of the others. $(\mathbf{7p})$

2. Define the kernel and the image of a linear map and prove that they are subspaces in the domain, respectively codomain of that map. (10p)

3. Determine the rank of the matrix
$$A = \begin{pmatrix} 2 & 0 & 1 & 9 & -2 & 3 \\ 4 & 1 & 9 & -2 & 10 \\ 0 & 1 & 7 & 5 & -1 \\ 6 & 0 & 3 & -3 & \alpha \end{pmatrix}$$
 by using elementary operations. Discussion on $\alpha \in \mathbb{R}$. (10p)

on $\alpha \in \mathbb{R}$.

4. (a) Define diagonalizable endomorphisms of a vector space. Give an example of diagonalizable endomorphism of $_{\mathbb{R}}\mathbb{R}^2$. State the theorem characterizing the diagonalizable endomorphisms. (**6p**)

(b) Let $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (-2y - 3z, x + 3y + 3z, z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . (**4p**)

(b) State the Kronecker-Capelli theorem.

(c) Prove that n vectors in a K-vector space V are linearly dependent if and only if one of them can be written as a linear combination of the others. $(\mathbf{7p})$

2. Define the kernel and the image of a linear map and prove that they are subspaces in the domain, respectively codomain of that map. (10p)

3. Determine the rank of the matrix
$$A = \begin{pmatrix} 2 & 0 & 1 & -1 & -1 & 3 \\ 4 & 1 & 9 & -2 & 10 \\ 0 & 1 & 7 & 5 & -1 \\ 6 & 0 & 3 & -3 & \alpha \end{pmatrix}$$
 by using elementary operations. Discussion on $\alpha \in \mathbb{R}$. (10p)

4. (a) Define diagonalizable endomorphisms of a vector space. Give an example of diagonalizable endomorphism of $_{\mathbb{R}}\mathbb{R}^2$. State the theorem characterizing the diagonalizable endomorphisms. (**6p**)

(b) Let $f \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (-2y - 3z, x + 3y + 3z, z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . $(4\mathbf{p})$ **II. 1.** (a) Define and give an example of: group, basis, kernel of a linear map.

(b) State the theorem which relates the dimension of a sum of two subspaces of the dimension of their intersection. (4p)

(c) Let u, v, w be bases of the K-vector spaces U, V, respectively W and let $f: U \to V$ and $g: V \to W$ be linear maps. Show that $[g \circ f]_{u,w} = [g]_{v,w}[f]_{u,v}$. (7p)

 $\mathbf{2.}$ State the characterization theorem of subspaces, and show that the intersection of a family of subspaces is a subspace. (10p)

3. (a) Solve the system
$$\begin{cases} x + 4y + 2z = 1\\ 2x + 3y + z = 0\\ 3x + -z = \lambda \end{cases}$$
 by the Gauss method. Discussion on $\lambda \in \mathbb{R}$. (10p)

4. (a) Define the notion of eigenvalue of an endomorphism of a vector space. Give an example of an endomorphism of $_{\mathbb{R}}\mathbb{R}^2$ that has the eigenvalues 2 and 3. State the theorem that gives a practical method to compute eigenvalues. (6p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (x - y, x + y - 2z, -5y + z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . (4p)

II. 1. (a) Define and give an example of: group, basis, kernel of a linear map. (9p)

(b) State the theorem which relates the dimension of a sum of two subspaces of the dimension of their intersection. (4p)

(c) Let u, v, w be bases of the K-vector spaces U, V, respectively W and let $f: U \to V$ and $g: V \to W$ be linear maps. Show that $[g \circ f]_{u,w} = [g]_{v,w}[f]_{u,v}$. (7p)

 $\mathbf{2.}$ State the characterization theorem of subspaces, and show that the intersection of a family of subspaces is a subspace. (10p)

3. (a) Solve the system
$$\begin{cases} x + 4y + 2z = 1\\ 2x + 3y + z = 0\\ 3x + -z = \lambda \end{cases}$$
 by the Gauss method. Discussion on $\lambda \in \mathbb{R}$. (10p)

4. (a) Define the notion of eigenvalue of an endomorphism of a vector space. Give an example of an endomorphism of $_{\mathbb{R}}\mathbb{R}^2$ that has the eigenvalues 2 and 3. State the theorem that gives a practical method to compute eigenvalues. (6p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (x - y, x + y - 2z, -5y + z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . (4p)

II. 1. (a) Define and give an example of: group, basis, kernel of a linear map. (9p)

(b) State the theorem which relates the dimension of a sum of two subspaces of the dimension of their intersection. $({\bf 4p})$

(c) Let u, v, w be bases of the K-vector spaces U, V, respectively W and let $f: U \to V$ and $g: V \to W$ be linear maps. Show that $[g \circ f]_{u,w} = [g]_{v,w}[f]_{u,v}$. (7p)

2. State the characterization theorem of subspaces, and show that the intersection of a family of subspaces is a subspace. (10p)

3. (a) Solve the system
$$\begin{cases} x + 4y + 2z = 1\\ 2x + 3y + z = 0\\ 3x + -z = \lambda \end{cases}$$
 by the Gauss method. Discussion on $\lambda \in \mathbb{R}$. (10p)

4. (a) Define the notion of eigenvalue of an endomorphism of a vector space. Give an example of an endomorphism of $_{\mathbb{R}}\mathbb{R}^2$ that has the eigenvalues 2 and 3. State the theorem that gives a practical method to compute eigenvalues. (6p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (x - y, x + y - 2z, -5y + z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . (4p)

II. 1. (a) Define and give an example of: group, basis, kernel of a linear map. (9p)

(b) State the theorem which relates the dimension of a sum of two subspaces of the dimension of their intersection. (4p)

(c) Let u, v, w be bases of the K-vector spaces U, V, respectively W and let $f: U \to V$ and $g: V \to W$ be linear maps. Show that $[g \circ f]_{u,w} = [g]_{v,w}[f]_{u,v}$. (7p)

2. State the characterization theorem of subspaces, and show that the intersection of a family of subspaces is a subspace. (10p)

3. (a) Solve the system
$$\begin{cases} x + 4y + 2z = 1\\ 2x + 3y + z = 0\\ 3x + -z = \lambda \end{cases}$$
 by the Gauss method. Discussion on $\lambda \in \mathbb{R}$. (10p)

4. (a) Define the notion of eigenvalue of an endomorphism of a vector space. Give an example of an endomorphism of $_{\mathbb{R}}\mathbb{R}^2$ that has the eigenvalues 2 and 3. State the theorem that gives a practical method to compute eigenvalues. (6p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (x - y, x + y - 2z, -5y + z). Write the matrix of f in the canonical basis $e = (e_1, e_2, e_3)$ of \mathbb{R}^3 . (4p)

 $(\mathbf{9p})$

III. 1. (a) Define and give an example of: group, subspace, linear map.(9p)(b) State the rank theorem.(4p)

(c) Prove that n vectors in a K-vector space V form a basis if and only if every vector of V can be written in a unique way as a linear combination of these n vectors. (7p)

2. Define the sum of two subspaces and show that it is the subspace generated by their union. (10p)

3. Compute the inverse of the matrix $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$ by using elementary operations. (10p)

4. (a) Define the notions of homogeneous linear system of equations and fundamental system of solutions. Give an example of a homogeneous Cramer system. (5p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (2x, y + 2z, -y + 4z). Is f diagonalizable? (5p)

III. 1. (a) Define and give an example of: group, subspace, linear map.(9p)(b) State the rank theorem.(4p)

(c) Prove that n vectors in a K-vector space V form a basis if and only if every vector of V can be written in a unique way as a linear combination of these n vectors. (7p)

2. Define the sum of two subspaces and show that it is the subspace generated by their union. (10p)

3. Compute the inverse of the matrix $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$ by using elementary operations. (10p)

4. (a) Define the notions of homogeneous linear system of equations and fundamental system of solutions. Give an example of a homogeneous Cramer system. (5p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (2x, y + 2z, -y + 4z). Is f diagonalizable? (5p)

III. 1. (a) Define and give an example of: group, subspace, linear map.	(9p)
(b) State the rank theorem.	$(\mathbf{4p})$
(c) Prove that n vectors in a K-vector space V form a basis if and only if every vector of V	can be written

in a unique way as a linear combination of these *n* vectors. (7p) 2. Define the sum of two subspaces and show that it is the subspace generated by their union. (10p)

3. Compute the inverse of the matrix $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$ by using elementary operations. (10p)

4. (a) Define the notions of homogeneous linear system of equations and fundamental system of solutions. Give an example of a homogeneous Cramer system. (5p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (2x, y + 2z, -y + 4z). Is f diagonalizable? (5p)

III. 1. (a) Define and give an example of: group, subspace, linear map.(9p)(b) State the rank theorem.(4p)(c) Prove that n vectors in a K-vector space V form a basis if and only if every vector of V can be written

in a unique way as a linear combination of these n vectors. (7p)

2. Define the sum of two subspaces and show that it is the subspace generated by their union. (10p)

3. Compute the inverse of the matrix $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$ by using elementary operations. (10p)

4. (a) Define the notions of homogeneous linear system of equations and fundamental system of solutions. Give an example of a homogeneous Cramer system. (5p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (2x, y + 2z, -y + 4z). Is f diagonalizable? (5p)

III. 1. (a) Define and give an example of: group, subspace, linear map.(9p)(b) State the rank theorem.(4p)

(c) Prove that n vectors in a K-vector space V form a basis if and only if every vector of V can be written in a unique way as a linear combination of these n vectors. (7p)

2. Define the sum of two subspaces and show that it is the subspace generated by their union. (10p)

3. Compute the inverse of the matrix $A = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 3 & 0 & -1 \end{pmatrix}$ by using elementary operations. (10p)

4. (a) Define the notions of homogeneous linear system of equations and fundamental system of solutions. Give an example of a homogeneous Cramer system. (5p)

(b) Let $f \in End_{\mathbb{R}}(\mathbb{R}^3)$ be defined by f(x, y, z) = (2x, y + 2z, -y + 4z). Is f diagonalizable? (5p)