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A NEW CLASS OF SEMIPRIME RINGS
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Communicated by Manfred Dugas

Abstract. A ring R is called unit-semiprime if for any a ∈ R, a = 0

whenever aua = 0 for all units u ∈ U(R). This turns out to be a proper class

of semiprime rings which, among others, includes the reduced rings and the

unit-regular rings, is closed to matrix extensions but is not Morita invariant.

The usual Ring theoretic constructions are investigated and connections with

some other known classes of rings are established.

1. Introduction

In this note, we consider only nonzero (associative) rings with identity. The

group of units of a ring R is denoted by U(R) and the center of the ring R is

denoted by Z(R). For unexplained definitions and results in Ring Theory we refer

to [5].

Especially in noncommutative rings, prime and semiprime are important classes

of rings. Their definitions are (among others) given as follows: an ideal P of a ring

R is prime if for any a, b ∈ R, aRb ⊆ P implies a ∈ P or b ∈ P , and, semiprime

if for any a ∈ R, aRa ⊆ P implies a ∈ P . Further, a ring R is (semi)prime if (0)

is a (semi)prime ideal in R.

Our starting definition is obtained by formally replacing the whole ring in the

above definitions, by the group of units U(R). Thus, an ideal P of a ring R is

unit-prime if for any a, b ∈ R, aU(R)b ⊆ P implies a ∈ P or b ∈ P , and, unit-

semiprime if for any a ∈ R, aU(R)a ⊆ P implies a ∈ P . Recall that an ideal P is

called completely prime if for any a, b ∈ R, ab ∈ P implies a ∈ P or b ∈ P . Since
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1 ∈ U(R), every completely prime ideal is unit-prime, that is, for ideals

{completely − prime} ⊆ {unit− prime} ⊆ {prime}

Since it is well-known that in a commutative ring every prime ideal is completely

prime, in the commutative case all these classes of ideals coincide.

Further, a ring R is unit-(semi)prime if (0) is a unit-(semi)prime ideal of R.

The main goal of this paper is to investigate the class of unit-semiprime rings.

Reduced rings (e.g. rings with trivial group of units) and unit-regular rings

(e.g. semisimple) are unit-semiprime. Moreover, we prove in Section 3 that von

Neumann regular rings are also unit-semiprime. We have the following chart

prime

↗ ↘
domain −→ unit− prime semiprime

↘ ↗
unit− semiprime

None of these implications can be reversed and prime and unit-semiprime are

independent properties. Suitable examples are given in the last section.

It is easy to see that in special conditions these new definitions coincide with the

old ones. Such conditions are reversible rings (Cohn [2], i.e., ab = 0 implies ba = 0)

or, rings additively generated by their units. In a special case, a commutative

ring is unit-prime iff it is prime iff it is an integral domain, and, is unit-semiprime

iff it is semiprime iff it is reduced.

In Section two, Ring theoretic constructions (i.e., products, quotients, poly-

nomial rings, corners, representation as subdirect products) are studied, sepa-

rating the matrix extensions in Section three, where we also conclude that unit-

semiprime is not a Morita invariant property. In Section four some examples are

given and connections with other classes of rings are made. To encourage future

work some open questions are stated all over the paper.

2. Ring Theory constructions

By denial, a ring is unit-semiprime iff for every a 6= 0 there is a unit u ∈ U(R)

with aua 6= 0. Since for a2 6= 0, the condition if obviously fulfilled, the condition

must be verified only for nonzero zero-square elements: R is unit-semiprime iff

for every a 6= 0 with a2 = 0, there is a unit u ∈ U(R) with aua 6= 0.

Since intersections of unit-semiprime ideals are unit-semiprime, for an ideal A,

consider A =
⋂
{P |P is unit-semiprime ideal in R, A ⊆ P}. This is the smallest

unit-semiprime ideal which includes A. Thus we immediately obtain
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Proposition 1. The set of all unit-semiprime ideals of a ring, ordered by inclu-

sion, forms a complete lattice.

Proof. As usual, for an arbitrary family {Pi}i∈I of unit-semiprime ideals, the

inf is the intersection
⋂
i∈I

Pi and the sup is
⋃
i∈I

Pi. �

Proposition 2. A product of rings is unit-semiprime iff each component is unit-

semiprime.

Proof. To simplify the writing we prove this for two rings R, S. Suppose R×S
is unit-semiprime and let 0 6= r, r2 = 0 so that (0, 0) 6= (r, 0) and (r, 0)2 =

(0, 0). Since U(R × S) = U(R) × U(S) there are u ∈ U(R) and v ∈ U(S)

such that (r, 0)(u, v)(r, 0) = (rur, 0) 6= (0, 0), as desired. Conversely, assume

(0, 0) 6= (r, s) ∈ R× S and (r, s)2 = (r2, s2) = (0, 0). Further, suppose r 6= 0 (the

case s 6= 0 is symmetric). Thus, since r2 = 0, there is u ∈ U(R) with rur 6= 0.

Hence (r, s)(u, 1)(r, s) = (rur, s2) 6= (0, 0) as claimed. �

Next recall the following

Lemma 3. Let f : R −→ R′ be a ring homomorphism (of rings with identities).

(i) If f is surjective then f is unital (i.e., f(1) = 1′).

(ii) If f is unital then f(U(R)) ≤ U(R′).

(iii) Denote
−1

f (X ′) = {r ∈ R|f(r) ∈ X ′} the inverse image of X ′ by f . If P

is an ideal of R then f(P ) is an ideal of f(R). If P ′ is an ideal in R′ then
−1

f (P ′)

is an ideal of R.

(iv) If A is a subring of R then
−1

f (f(A)) = A+ ker f . Hence if ker f ≤ A then
−1

f (f(A)) = A.

Thus we can prove a correspondence result for unit-semiprime ideals.

Theorem 4. Let f : R −→ R′ be a surjective ring homomorphism. Then

(a) if P is a unit-semiprime ideal of R and ker f ≤ P then f(P ) is unit-

semiprime in R′.

(b) if P ′ is a unit-semiprime ideal of R′ and f(U(R)) = U(R′) then
−1

f (P ′) is

unit-semiprime in R.

Proof. As seen in the previous Lemma, both correspondences preserve ideals.

(a) First notice that for any subset S of R and ideal P of R, since ker f ≤ P ,

f(S) ⊆ f(P ) implies S ⊆ P . Indeed, f(S) ⊆ f(P ) implies S ⊆
−1

f (f(S)) ⊆
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−1

f (f(P )) = P + ker f = P (the first inclusion, always true). Next, suppose

a′U(R′)a′ ⊆ f(P ) for some a′ ∈ R′. Since f(U(R)) ≤ U(R′) and f is surjective

we have f(aU(R)a) ⊆ f(P ) for some a ∈ R. But then aU(R)a) ⊆ P from the

first part and a ∈ P by hypothesis. Finally, a′ = f(a) ∈ f(P ) as desired.

(b) Suppose aU(R)a ⊆
−1

f (P ′). Then f(aU(R)a) = f(a)f(U(R))f(a) =

f(a)U(R′)f(a) ⊆ f(
−1

f (P ′)) = P ′ and so f(a) ∈ P ′ by hypothesis. Hence

a ∈
−1

f (P ′), as required. �

Remark. Obviously f(U(R)) ⊆ U(R′) holds for every unital ring homomor-

phism. To have the best possible correspondence between unit-semiprime ideals

we need equality. For factor rings, if πA : R −→ R/A, πA(r) = r + A denotes

the canonical projection (surjective and kerπA = A), the corresponding equality

πA(U(R)) = {u+A|u ∈ U(R)} = U(R/A) amounts to lifting units, a notion (see

[6] for references) defined similarly with the well-known lifting of idempotents.

Definition. If A is an ideal of a ring R, we say a unit x ∈ R/A can be lifted

to R if there exists a unit u ∈ U(R) such that πA(u) = x (i.e., u+A = x).

Corollary 5. Let A be an ideal of the ring R such that units in R/A can be lifted

to R. An ideal of the quotient ring R/A is unit-semiprime iff it has the form P/A

with P a unit-semiprime ideal of R which includes A.

Proof. Just apply the previous Theorem to the canonical projection πA. Indeed,

by (a), if P is unit-semiprime and A ≤ P then P/A is unit-semiprime in R/A

and, by (b), since units can be lifted, every unit-semiprime ideal P ′ of R/A has

the form P/A (with A ≤ P =
−1
πA(P ′) and P ′ = P/A). �

Corollary 6. If for an ideal P of a ring R, units in R/P can be lifted to R, then

the factor ring R/P is unit-semiprime iff the ideal P is unit-semiprime.

Proof. From the previous Corollary. �

Clearly, proving results on unit-semiprime polynomial rings depends to what

extent we know the invertible polynomials. An easy example is: for any integral

domain D, the polynomial ring D[X] is unit-semiprime.

Since for commutative rings, unit-semiprime, semiprime and reduced are equiv-

alent conditions, we obtain at once (see (10.18) in [5])

Theorem 7. For a set T of indeterminates, the polynomial ring R[T ] over a

commutative (unital) ring is unit-semiprime iff R is reduced.

A similar result holds for unit-prime rings, that is
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Theorem 8. For a set T of indeterminates, the polynomial ring R[T ] over a

commutative (unital) ring is unit-prime iff R is an (integral) domain.

A well-known fact is that semiprime rings are characterized by being isomorphic

to subdirect products of prime rings. Since unit-semiprime rings are semiprime,

these are also isomorphic to subdirect products of prime rings. However, we may

wonder whether these are isomorphic to subdirect products of unit-prime rings.

For this we need the following

Claim 9. For an ideal P the following are equivalent:

(1) P is unit-semiprime,

(2) P is an intersection of unit-prime ideals.

(3) P is the intersection of all the unit-prime ideals containing P .

For semiprime rings this holds because the prime radical of an ideal P equals

the intersection of all prime ideals containing P . For unit-(semi)prime, clearly

(3) ⇒ (2) ⇒ (1) hold, but (1) ⇒ (3) generally fails. The problem here are the

maximal ideals: very likely, but we were not able to give an example, these need

not be unit-prime.

Therefore we state the following

Question. Are maximal ideals unit-prime ? Or at least unit-semiprime?

3. Matrix rings

First it is easy to discard rings of (upper) triangular matrices. Since these are

not even semiprime, the ring of triangular matrices over any (nonzero) ring is not

unit-semiprime.

Clearly, trivial extensions T (R,M) for any nonzero ring R and R-R-bimodule

M are not unit-semiprime. Moreover, (formal) triangular rings, i.e., for two rings

R, S and an R-S-bimodule M , the rings

[
R M

0 S

]
, are not unit-semiprime.

Further, since by a result of Henriksen, matrix rings are additively generated by

units (see [3], Theorem 3), for matrix rings, Mn(R) is unit-semiprime iffMn(R)

is semiprime. This way, if R is a semiprime ring, Mn(R) is not only semiprime

but also unit-semiprime.

To make this paper self-contained (the proof of Henriksen’s theorem is one

page long) in the sequel we give a direct proof for the following

Theorem 10. Matrix rings over unit-semiprime rings are unit-semiprime.
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Proof. The proof will be by induction on n, the case n = 1 being trivial. For n ≥

2, suppose that Mn−1(R) is unit-semiprime and take A =

[
M β

α d

]
∈ Mn(R)

with M ∈ Mn−1(R), α an n − 1 row, β an n − 1 column and d ∈ R, such that

A 6= 0 but A2 = 0. By block multiplication A2 =

[
M2 + βα Mβ + βd

αM + dα αβ + d2

]
= 0

and we go into several cases.

Case 1. α = 0 and so M2 = 0n−1 and d2 = 0.

(1) M = 0n−1 and d = 0. Here A =

[
0 β

0 0

]
with nonzero column β = β1

...

βn−1

 6= 0, say βi 6= 0. We use the n−1 row γ with all entries zero excepting

the i-th entry which we denote by t and the invertible matrix U =

[
In−1 0

γ 1

]
.

Since γβ = tβi we obtain

AUA =

[
0 β

0 0

] [
In−1 0

γ 1

] [
0 β

0 0

]
=

[
0 βγβ

0 0

]
=

[
0 β(tβi)

0 0

]
.

Therefore, if β2
i 6= 0 we can take t = 1 and if β2

i = 0, since R is unit-semiprime,

there exists a unit u ∈ U(R) such that βiuβi 6= 0, and we can take t = u. In both

cases AUA 6= 0n, as desired.

(2) M = 0n−1 and d 6= 0. Since d2 = 0, there is a unit u ∈ U(R) with dud 6= 0

and for the invertible matrix U =

[
In−1 0

0 u

]
we get

AUA =

[
0 β

0 d

] [
In−1 0

0 u

] [
0 β

0 d

]
=

[
0 βud

0 dud

]
6= 0n.

(3) M 6= 0n−1. By induction hypothesis, there exists an invertible (n − 1) ×
(n − 1) matrix V such that MVM 6= 0n−1. Then for the invertible matrix

U =

[
V 0

0 1

]
we obtain

AUA =

[
M β

0 d

] [
V 0

0 1

] [
M β

0 d

]
=

[
MVM MV β + βd

0 d2

]
6= 0n.

Case 2. The row α =
[
α1 ... αn−1

]
6= 0, say αj 6= 0. Now we use the

column δ with all entries zero excepting the j-th entry denoted s. Then αδ = αjs,

we take the invertible matrix U =

[
In−1 δ

0 1

]
and the following computation
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(we use the vanishing of all entries in the initial block multiplication A2 = 0n)

solves this final case

AUA =

[
M β

α d

] [
In−1 δ

0 1

] [
M β

α d

]
=

[
Mδα Mδd

αδα αδd

]
6= 0n. Indeed,

if α2
j 6= 0 we can take s = 1 and if α2

j = 0 we can take s = u with a unit u given

by the unit-semiprime ring for αjuαj 6= 0, and the proof is complete. �

In the last section, an example of prime ring which is not unit-semiprime (con-

structed by G. Bergman) will be given. Using our remarks before the proposition

above, we can justify the following

Proposition 11. The unit-semiprime property fails to pass to corners.

Proof. (Jerzy Matczuk) Take S to be any prime ring which is not unit-semiprime.

Then M2(S) is a prime ring, so unit-prime since it is (additively) generated by

units, and finally unit-semiprime. However its corner S is not unit-semiprime. �

Therefore

Corollary 12. Unit-semiprime is not a Morita invariant property of rings.

Since unit-regular rings are unit-semiprime, in particular semisimple and simple

Artinian rings are unit-semiprime. Therefore

Proposition 13. For any division ring D and positive integer n, the matrix ring

Mn(D) is unit-semiprime.

Thus we have an analogue for (10.24) from [5]

Corollary 14. A ring is semisimple iff it is unit-semiprime and left Artinian.

Notice that for matrix rings over commutative rings the converse is obvious: if

Mn(R) is unit-semiprime, it is also semiprime and so (see (10.20) in [5]), R is

semiprime. But if R is also commutative, it is also unit-semiprime.

Von Neumann regular rings are clearly semiprime. Moreover, as already men-

tioned in the Introduction we can prove 1 the following

Proposition 15. Von Neumann regular rings are unit-semiprime.

Proof. Take an element 0 6= a ∈ R with a2 = 0. By hypothesis there exists an

element x ∈ R with a = axa. Then e = xa is an idempotent and for any r ∈ R,

1+ere is a unit. Choose r = x, that is u = 1+xax(1−xa) ∈ U(R), and compute

aua = a[1 + xax(1− xa)]a = axa = a 6= 0, since a2 = 0. �

1After completing this paper it was brought to my attention that more can be proved: any

nilpotent element in a regular ring is unit-regular.
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Here is the right place to mention an example which was studied and used a

lot, related to unit-regular, regular or Dedekind finite rings: R = EndD(V ), the

endomorphism ring of an infinite dimensional vector space V over a division ring

D. Since this is a regular ring (which is not unit-regular), R is unit-semiprime.

Here is a short undergraduate

Proof. Let 0 6= a ∈ R with a2 = 0. Then 0 < ima ≤ ker a < V , we choose

a basis B for ima, extend it to ker a (say B ∪ B′), and to the whole V (say

B ∪ B′ ∪ B′′). Thus for every v ∈ B′′, a(v) 6= 0. Select elements b ∈ B, b′′ ∈ B′′
and any automorphism (change of basis) u which maps b into b′′. If x ∈ V is such

that b = a(x) then aua(x) = a(b′′) 6= 0. �

Yet another proof can be given noticing that if dimD(V ) ≥ 2 then R is gener-

ated by its units (Zelinsky [7] 1954).

Due to known properties of the above endomorphism ring, we conclude that

unit-semiprime rings need not be Dedekind finite, and the above is an example

of unit-semiprime ring which is not unit-regular.

Since the last two results show that semisimple rings and Von Neumann regular

rings are unit-semiprime, the following is naturally in order:

Question. Are semiprimitive (i.e., J-semisimple) rings, unit-semiprime?

Recall that semiprimitive rings are semiprime and notice that, according to

(5.2) [5] and Theorem 7, R[T ] is unit-semiprime iff it is semiprimitive iff R is re-

duced. So these are equivalent properties for polynomial rings (over commutative

rings).

4. Examples, connections

We first refer to the chart given in the Introduction and show that ”prime”

and ”unit-semiprime” are independent properties.

In one direction, since reduced rings are not always prime, but are unit-

semiprime, a unit-semiprime ring might not be prime.

Conversely, the following is an example of a prime ring (and so semiprime too)

which is not unit-semiprime, given by George Bergman.

ConsiderR = k
〈
x, y|x2 = 0

〉
, for k any field. R is prime (and so also semiprime),

since for any two nonzero elements r, s ∈ R we have rys 6= 0.

To show that it is not unit-semiprime, we need to know its group of units. To

do this, regard R as the coproduct over k of R1 = k[x|x2 = 0] and R2 = k[y].

Then from Corollary 2.16 of [1], one can deduce that the units of R are just the

elements c+ dx+ xrx, where c, d ∈ k and r ∈ R. We see that for any such unit,

we have x(c+ dx+ xrx)x = 0; so unit-semiprimeness fails.
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To show that the arrows in the chart are not reversible, just notice that any

commutative reduced ring which is not an integral domain is (unit-)semiprime

but not (unit-)prime.

Related to the left arrow of this chart we prove

Proposition 16. Let R be a ring. Then R is a domain if and only if R is

unit-prime and units commute with nilpotent elements.

Proof. The conditions are clearly necessary. Conversely, assume R is a unit-

prime and units commute with nilpotent elements. Let a, b ∈ R with ab = 0. Then

rab = 0 for all r ∈ R. Since (bra)2 = 0, bra commutes with units. Let u ∈ U(R)

and aubraub ∈ (aub)R(aub) for any r ∈ R. Hence aubraub = abrau2b = 0, and so

(aub)R(aub) = 0. Since R is (semi)prime, we have aub = 0 for all u ∈ U(R) and

so aU(R)b = 0. By unit-primeness we get a = 0 or b = 0, and R is a domain. �

We also have

Proposition 17. Let R be a ring. Then R is reduced if and only if R is unit-

semiprime and units commute with nilpotent elements.

Proof. Only one way needs verification. Assume a ∈ R with a2 = 0. Then a

commutes with units and since R is unit-semiprime, aU(R)a = a2U(R) = 0, it

follows that a = 0, and so R is reduced. �

Rings whose units commute with nilpotent elements will be called uni rings

and studied elsewhere.

Recall that a ring is unit-central (see [4]) if U(R) ⊆ Z(R). Then

Proposition 18. If a unit-semiprime ring R is unit-central, or, has central ze-

rosquare elements, then R is reduced.

Proof. Obvious. �

Actually even less suffices: for every 0 6= a ∈ R, aU(R) ⊆ Ra, or, U(R)a ⊆ aR.

In particular, this holds for left or right duo rings.

It is known that unit-regular rings are clean and these are exchange. How-

ever, not even commutative unit-semiprime rings are clean or exchange: Z is a

domain and so unit-semiprime, but not exchange (and so not clean). For a non-

commutative (but Abelian) example we can take the ring of integral matrices

R = {
[
a b

c d

]
: a ≡ d(mod2), b ≡ c ≡ 0(mod2)}.
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Proof. Since (by computation) the nonzero zero-square matrices are N1 =[
0 2b

0 0

]
, b ∈ Z, or, N2 =

[
0 0

2c 0

]
, c ∈ Z, or N3 = 2

[
a b

−a2

b −a

]
with

a, b ∈ Z∗ and b a divisor of a2, the unit U =

[
1 2

2 3

]
suits well for NUN 6= 02

in all cases. While this is easily checked for N1 or N2, for N3 observe that

N3UN3 =

[
∗ 2(b2 − a2 − ab)
∗ ∗

]
6= 02 over the integers (indeed, x2 + x− 1 = 0

has no rational solutions). This ring is Abelian, has only trivial idempotents and

so is not clean nor exchange.

In a local ring the unique maximal ideal R − U(R) = J(R) is also unit-

semiprime: for a /∈ J(A) means a ∈ U(A) and so aU(R)a ⊆ U(R) and aU(R)a *
J(A).

However, local rings need not be unit-semiprime: by (19.8) [5], let k be a

division ring, R the ring of upper triangular n × n matrices over k and A the

subring of R consisting of matrices with a constant diagonal. Then A is local and

J(A) = J(R) = {matrices with zero diagonal} is the unique maximal ideal. As

seen in the beginning of Section three, R and similarly A are not unit-semiprime.
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