MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

MATHEMATICA, Tome 25 (48), No 2, 1983, pp. 127-129

TORSION IN LATTICES

by

GRIGORE G. CĂLUGĂREANU

We will work within a complete lattice L, with smallest and lar-

gest elements denoted by 0 resp. 1.

1. Terminology. An element a is essential in L if $a \land c \neq 0$ holds for every $c \neq 0$ in L. An element c is a pseudocomplement of an element b in L if $b \land c = 0$ and c is maximal with this property. The lattice L is pseudocomplemented if for every interval $I \subseteq L$ and every $b \in I$, there is a pseudocomplement of a in I. For $a \leq b$ elements in L we shall use the notation $b/a = \{x \in L | a \leq x \leq b\}$. A non-zero element a of L is an atom if b < a implies b = 0. The socle s(L) of L is the join of all atoms of L.

A lattice L is noetherian/artinian/if L satisfies the ascending chain (or the maximum) condition/resp. the descending chain (or the minimum) condition/. L will be called atomic if for every non-zero element a, the sublattice a/0 contains atoms and strongly atomic if for every a < b, the sublattice b/a contains atoms.

L will be called torsion if for every $a \neq 1$, the sublattice 1/a contains atoms.

2. Well-known results.

(A) The essential elements form a filter in L.

(B) If L is modular and compactly generated, the socle s(L) is equal to the meet of all essential elements of L.

(C) If L is atomic the socle s(L) is essential. The filter mentioned in (A) is then principal, generated by s(L).

(D) If L is modular, c is a pseudocomplement of b iff $b \land c = 0$ and $b \lor c$ is essential in 1/c.

(E) L is strongly atomic iff $b \neq 1$ implies 1/b atomic.

(F) Every artinian lattice is strongly atomic. Every strongly atomic lattice is torsion.

(G) Every noetherian torsion lattice is artinian.

3. Results concerning torsion.

PROPOSITION 1 Every modular pseudocomplemented torsion lattice is atomic.

Proof. Let a be a non-zero element in L and b be a pseudocomplement of a. According to (D), $a \lor b$ is essential in 1/b and $a \land b = 0$.

Therefore $b \neq 1$ (otherwise a=0) and L being torsion, 1/b contains atoms. If c is an atom in 1/b, $(a \lor b) \land c \neq b$ implies $(a \lor b) \land c = b$ and then $c \in (a \lor b/b)$. Using a well-known isomorphism theorem in modular lattices we have $a \lor b/b \cong a/a \land b = a/0$. Hence $a \land c$ is atom in a/0 and L is atomic.

Remark. Every superior continuous modular lattice is pseudocomplemented. Hence, for such lattices the following implications are valid: $artinian \Rightarrow strongly atomic \Rightarrow torsion \Rightarrow atomic$.

PROPOSITION 2 Let a be an element of a modular pseudocomplemented lattice. Then L is torsion iff both sublattices a |0 and 1 | a are torsion.

Proof. L torsion implies 1/a torsion is clear. If b < a then $a/b \subseteq 1/b$. The last sublatice being torsion, we use prop. 1 in order to find atoms in a/b. Conversely, let $b \ne 1$ be element in L. If $b \land a = a$ then $b \in 1/a$ and 1/a being torsion 1/b contains atoms. If $b \land a \ne a$ then a/0 torsion implies $a/a \land b$ contains atoms. The rest is now done by the above mentioned isomorphism.

Definition. An element a of L is called torsion if the interval a/0 is torsion. We shall denote by T(L) the set of the torsion elements of L. Trivially, T(L) contains at I the atoms of L and 0.

Remark. If \hat{L} is a modular pseudocomplemented lattice we easily recover the well-known properties for a hereditary simple torsion theory.

(T1) If $b \le a$ and $a \in T(L)$ then $b \in T(L)$ and a/b is torsion. (T2) Conversely, if $b \in T(L)$, $a \ge b$ and a/b is torsion then $a \in T(L)$.

(T3) If $\{a_i\}_{i\in I}\subseteq T(L)$ then $\bigvee_{i\in I}a_i\in T(L)$.

As for (T3), if $0 \leqslant c < \bigvee_{i \in I} a_i$ there is a $j \in I$ such that $a_i \not< c$.

In this case $a_i \wedge c < a_j$ and a_j being torsion $a_j/a_j \wedge c$ contains atoms. But then $a_j \wedge c/c$ and hence $\bigvee a_i/c$ contains atoms.

Definition. The torsion part of a lattice L, denoted t(L) is the join of all the torsion elements of L.

PROPOSITION 3. If L is a complete modular lattice then T(L) is a principal ideal, generated by t(L).

Easy consequence of (T3).

PROPOSITION 4 $s(L) \leqslant t(L)$ and s(L) = 0 iff t(L) = 0. Clear.

PROPOSITION 5. The torsion part has the "radical" property, i.e. t(1/t(L)) = t(L).

Proof. We show that s(1/t(L)) = t(L). Let b be an atom in 1/t(L).

We shall prove that $b \in T(L)$, which will be a contradiction.

Let a be such that b > a. If a = t(L) then b is atom in b/a and if a < t(L), t(L)/a and consequently b/a contains atoms. In the remaining case, a < t(L), we have $t(L) < a \lor t(L) \le b$ and hence $a \lor t(L) = b$. Again, using the isomorphism theorem $b/a = a \lor t(L)/a \cong t(L)/a \land t(L)$ and all these intervals contain atoms.

Remark. Moreover, if for an element c of L we have t(1/c) = c then

 $t(L) \leqslant c \land$ a bas $6 \land 1$ ni leitus

Proof. If there is an element $a \in T(L)$ such that $a \nleq c$, then $a \land A$ $\wedge c < a$ and $c < a \lor c$ so that $a/a \land c \subseteq a/0$ and $a \lor c/c \subseteq 1/c$ and all these intervals contain atoms. Hence $s(1/c) \neq c$ and $t(1/c) \neq c$.

Definition. The lattice L satisfies the restricted socle condition (RSC)

if $b \neq 1$, b esential in L implies 1/b contains atoms $(s(1/b) \neq b)$.

PROPOSITION 6 A modular atomic lattice is torsion iff it is RSC.

Proof. Only one way needs comments. We prove that if L is atomic and RSC then L is torsion. For an element $b \neq 1$ of L only two cases are possible: b essential in L or there is an non-zero element a of Lsuch that $a \wedge b = 0$. In the first case, RSC assures that 1/b contains atoms and in the second one we have $a/0 = a/a \wedge b \cong a \vee b/b$. L being atomic all these contain atoms and so is also 1/b. Hence L is torsion.

PROPOSITION 7 If L is a compactly generated modular lattice with RSC then the following properties are equivalent:

(i) s is essential in L; (ii) $s(L) \leq s$ and 1/s is torsion.

Proof. If s is essential in L it is known from [3] that $s(L) \leq s$. Further if $s \le a < 1$ then a is essential in L and RSC implies that 1/a contains atoms. Hence 1/s is torsion.

Conversely, let s satisfy (ii) but not (i). There is $a \neq 0$ such that $s \wedge a = 0$. We again have $a/0 \cong s \vee a/s$ and 1/s being atomic, let a'be atom in a/0. The conditions $a' \leq a$, $s(L) \leq s$ and $a \wedge s = 0$ imply that $a' \wedge s(L) = 0$. But then a' < s(L), which is a contradiction.

Corollary. If L is a compactly generated modular lattice with RSC

then the following properties are equivalent:

(a) c is a pseudocomplement of b in L; (b) $b \lor c$ is essential in 1/c;

(c) $s(1/c) \leq b \vee c$ and $1/b \vee c$ is torsion.

Consequently, if M is a left module over the ring R, and M satisfies RSC for submodules, the submodule C is a pseudocomplement of the submodule B iff $S(M/C) \leq B \oplus C$ and $M/B \oplus C$ is semiartinian.

Remark. For Z-modules, i.e. abelian groups the restricted socle condition is always true, and the conditions mentioned above (semiartinian = = torsion) caracterize pseudocomplements (or B-high subgroups) of abelian groups.

REFERENCES

- [1] Călugăreanu Grigore, Some remarks about mutual pseudocomplements in lattices. Mathematica, 22 (45), 2, (1980), 237-239. Crawley P., Dilworth R. P., Algebric theory of lattices, Prentice Hall Inc., 1973.
- [3] Stenström B., Radicals and socles of lattices, Arch. Math. 20, (1969), 258-261.

[4] Stenström B., Rings of Quotients, Springer Verlag, 1975.

Received 29.11.1981.

Faculty of Mathematics "Babeş-Bolyai" University 3400 Cluj-Napoca