STRONGLY π -REGULAR 2×2 MATRICES OVER INTEGRAL DOMAINS

GRIGORE CĂLUGĂREANU

In this note, R denotes an associative ring with identity. We denote by U(R) the set of all the units of R and by N(R) the set of all the nilpotents of R.

An element a of a ring R is called *clean* if a = e + u with $e^2 = e$ and a unit u. If we want to emphasize the idempotent, we say that a is *e-clean*. If this idempotent is trivial (i.e., $e \in \{0, 1\}$ we say a is trivially clean. Otherwise, it is nontrivial(ly) clean.

A clean element is called *strongly* clean if the idempotent and the unit commute, i.e., eu = ue. Notice that an *e*-clean element is strongly clean iff ea = ae. Also notice that trivially clean elements are strongly clean.

Definition. An element a of a ring R is called strongly π -regular if there exists a positive integer n (depending of a) and an element $b \in R$ such that $a^n = a^{n+1}b$. It was proved in [3] (Proposition 2.5) that

Proposition 1. *a* is strongly π -regular iff there exist an idempotent *e* and *a* unit *u* such that a = e + u, ea = ae and eae = ea = ae is nilpotent.

Thus, strongly π -regular elements are a special type of strongly clean elements.

In this short note we characterize the strongly π -regular 2 × 2 matrices over integral domains.

First observe that every unit in any ring is 0-clean, so strongly clean and even π -regular since $0 \cdot a = 0$ is nilpotent.

Next, any sum a = 1 + u in any ring is 1-clean, so strongly clean. However, in order to be also strongly π -regular, since $1 \cdot a = a$, a should be nilpotent. Hence *nilpotents are strongly* π -regular (indeed, if $a \in N(R)$ then a = 1 + (a - 1) with unit a - 1).

Therefore the strongly π -regular elements in a ring are the units, the nilpotents and the strongly nontrivial *e*-clean elements *a* for which $ea \in N(R)$.

In what follows, we deal with *nontrivial* clean (i.e., the idempotent $e \notin \{0,1\}$) 2×2 matrices over an integral domain D.

Since nontrivial idempotent 2×2 matrices over integral domains are of form $\begin{bmatrix} x & y \\ z & 1-x \end{bmatrix}$ with $x^2 - x + yz = 0$ (i.e., trace equal 1 and zero determinant), we first recall the following known characterization

Theorem 2. $A \ 2 \times 2 \ matrix \ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over an integral domain is nontrivial clean iff the system

 $x^2 - x + yz = 0$ (1)

 $(a-d)x + cy + bz + \det(A) - a \in U(R)$ (2)

with unknowns x, y, z, has at least one solution over D.

Proof. Indeed, condition (1) assures that $E = \begin{bmatrix} x & y \\ z & 1-x \end{bmatrix}$ is an idempotent and condition (2) assures that $\det(A - E) \in U(R)$.

As a simple consequence we have

Corollary 3. $A \ 2 \times 2 \ matrix \ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over an integral domain is nontrivial strongly clean iff the system

 $x^2 - x + yz = 0$ (1)

 $(a-d)x + cy + bz + \det(A) - a \in U(R)$ (2)

(a-d)y = b(2x-1), (a-d)z = c(2x-1), bz = cy (3)

with unknowns x, y, z, has at least one solution over D.

Proof. Indeed, with the notations in the previous proof, condition (3) assures AE = EA.

Finally

Theorem 4. A 2×2 nontrivial strongly clean matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over an integral domain is nontrivial strongly π -regular iff det $(A - I_2) - 1 \in U(R)$.

Proof. Since det(E) = 0 we also have det(AE) = 0. Thus, for nilpotent AE, we only need Tr(AE) = ax + cy + bz + d(1 - x) = 0.

Hence (a - d)x + cy + bz + d = 0 and using (2), $\det(A) - \operatorname{Tr}(A) \in U(R)$. Equivalently, $\det(A - I_2) - 1 \in U(R)$.

Remarks. 1) In order to have nilpotent matrices characterized by the vanishing of all coefficients in the characteristic polynomial, excepting the first, we do not need R to be an integral domain.

Indeed, as early as 1973, G. Almkvist proved that over any commutative ring R, an $n \times n$ matrix is nilpotent iff all coefficients in the characteristic polynomial, excepting the first, are nilpotent.

Therefore, if R is any *reduced commutative* ring, an $n \times n$ matrix is nilpotent iff all coefficients in the characteristic polynomial, excepting the first, equal zero (i.e., the characteristic polynomial is t^n). Hence, the above theorem holds over any reduced commutative ring.

2) In the first theorem, we have used the fact that any nontrivial idempotent 2×2 matrix E is characterized, over any *integral domain*, by $\det(E) = 0$ and $\operatorname{Tr}(E) = 1$. If R is only a commutative ring, we can only use Cayley-Hamiton's theorem, which if $E^2 = E$ amounts to $[\operatorname{Tr}(E) - 1]E = \det(E)I_2$, not necessarily $\det(E) = 0$ and $\operatorname{Tr}(E) = 1$.

Example. Over \mathbb{Z}_{12} consider $E = 4I_2$. Since $4^2 = 4$, $E^2 = E$ is nontrivial idempotent. However, $\operatorname{Tr}(E) = 8$, $\det(E) = 4$ and $[\operatorname{Tr}(E) - 1]E = 4I_2 = \det(E)I_2$. 3) $\det(A - I_2) - 1 \in U(R)$ means that $\det(A - I_2)$ is quasiregular in R.

Since all conditions in Proposition 1 are invariant to conjugation, strongly π -regular elements (and in particular, square matrices) are invariant to conjugation (resp. similarity). Also notice that the rôle of the entries a and d is symmetric since $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\begin{bmatrix} d & b \\ c & a \end{bmatrix}$ are similar under $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Following Steger [4], we say that a ring R is an ID ring if every idempotent matrix over R is similar to a diagonal one. Examples of ID rings include: division rings, local rings, projective-free rings, principal ideal domains, elementary divisor rings, unit-regular rings and serial rings.

In the sequel we assume R is an ID ring. Hence every nontrivial idempotent 2×2 matrix is similar to E_{11} (or E_{22} ; these two are conjugate under $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$). Therefore, in order to give another characterization of nontrivial strongly π -regular 2×2 matrices over ID rings, up to similarity, it suffices to describe the E_{11} -strongly π -regular matrices, that is, to take x = 1, y = z = 0 in the above characterizations. This way we obtain

Theorem 5. Up to similarity, a 2×2 matrix A over a commutative ID ring R, (i) is nontrivial clean iff $det(A) - d \in U(R)$ or $det(A) - d \in U(R)$;

(ii) is nontrivial strongly clean iff b = c = 0 (i.e., A is diagonal) and $(a - 1)d \in$ U(R) or $a(d-1) \in U(R)$;

(iii) is nontrivial strongly π -regular iff A is diagonal and both $(a-1)d, ad-a-d \in$ $U(R) \text{ or } a(d-1), ad-a-d \in U(R).$

Proof. Special case of Theorem 2, for (i), of Corollary 3, for (ii), and for Theorem 4, for (iii).

Examples. 1) Suppose $U(R) = \{1\}$ (e.g., charR = 2). Then, up to similarity, only E_{22} (or E_{11}) is strongly π -regular over R.

2) Suppose $U(R) = \{\pm 1\}$ (e.g., $R = \mathbb{Z}$). A matrix E + U is strongly clean (see also [2]) iff it is either of form $E \pm I_2$ or else of form $E \pm \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, with diagonal idempotent E (i.e. $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with $a, b \in \{0, 1\}$).

Up to similarity, only $\pm E_{22}$ (or $\pm E_{11}$) or $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ are π -regular over

3) $\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} = E_{11} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is (nontrivial) strongly clean (see also [2]) but not strongly π -regular.

References

- [1] G. Almkvist Endomorphisms of finitely generated projective modules over a commutative ring. Ark. Mat. 11 (1-2) (1973) 263-301.
- [2] G. Călugăreanu Clean integral 2 × 2 matrices. Studia Sci. Math. Hungarica 55 (1) (2018), 41-52.
- [3] A. Diesl Nil clean rings. J. of Algebra 383 (2013), 197-211.
- [4] A. Steger Diagonability of idempotent matrices. Pacific J. Math. 19 (3) (1966) 535-542.