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Abelian groups determined by subgroup lattices
of direct powers

By

Grigore Călugăreanu

Abstract. In this short note, we show that the class of abelian groups determined by the subgroup
lattice of their direct n-powers is exactly the class of the abelian groups which share the n-root
property. As applications we answer in the negative a (semi)conjecture of Pálfy and solve a more
general problem.

Recently, for an arbitrary group G, the subgroup lattice of the square G×G has received
some attention (see [10] and [13]) with respect to the following

P r o b l e m. If the direct squares of two groups are projective (i.e., have isomorphic
subgroup lattices), are these groups isomorphic? In other words, does the subgroup lattice
of the direct square determine the group up to an isomorphism?

This problem has negative answer: the A. Rottlaender groups (see [11]). However, for
simple groups (see [14]) and for finite abelian groups (see [9]) the answer is affirmative.

Let S2 be the class of the abelian groups which share the square root property (i.e.,
G ∈ S2 iff G ∼= H whenever G ⊕ G ∼= H ⊕ H ) and P2 the class of the abelian groups
which are determined by the subgroup lattice of their direct squares (i.e., G ∈ P2 iff G ∼= H

whenever L(G ⊕ G) ∼= L(H ⊕ H), lattice isomorphism; here L(G) denotes the subgroup
lattice of the group G). For notation and terminology we refer to [5].

Main result. S2 = P2.

Theorem 1. An abelian group is determined by the subgroup lattice of its direct square
if and only if it has the square-root property.
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P r o o f. Actually, more can be proved: let G be an abelian group and H an arbitrary
group. G × G is projective to H × H if and only if G × G and H × H are isomorphic.

If G is abelian, so is G × G. Hence L(G × G) is modular and so is L(H × H). Using
a result of Lukács-Pálfy, (see [9]), H must be abelian, too.

If G is not torsion then the torsion-free rank r0(G × G) is at least 2. Since G × G is
projective to H ×H , by an early result of Baer (see [3]), G×G and H ×H are isomorphic.

If G is torsion then the p-rank rp(G × G) is at least 2 for every p such that the primary
component Gp �= 0. Again, since G × G is projective to H × H , by a similar result due
to Fuchs (see [5, § 80]), G × G ∼= H × H . �

For every positive integer n � 2, the same ingredients are needed in order to show that

R e m a r k 1. An abelian group is determined by the subgroup lattice of its n-th direct
power if and only if it has the n-th root property (i.e., for abelian groups, Gn is projective
to Hn if and only if Gn is isomorphic to Hn).

E x a m p l e s. The only class mentioned in the literature as included in P2 is the class of
the finite (abelian) groups (see [9]). We can widely improve this: as for now, the following
classes of abelian groups are known to share the square-root property:

(i) countable torsion groups (Kaplansky, [8]),
(ii) countable mixed groups of torsion-free rank 1 (Rotman, [12]),

(iii) groups with semilocal endomorphism rings (actually these have the n-th root
property, for any positive integer n � 2); these are (see [4]) exactly

- finitely generated, if torsion
- with pG = G for all but a finite prime numbers p, if torsion-free of finite rank

(groups called semilocal in [2])
- splitting, with both torsion and torsion-free parts having semilocal endomorphism

rings, if mixed.

Applications. Our result enables us to translate problems related to projectivities into
problems related to decompositions. Pathologies of decompositions for (especially finite
rank torsion-free) abelian groups were intensively studied. From [7] (or [6, 90.3]), we recall
the following result:

Given any integer m � 2, there exist two (nonisomorphic) torsion-free indecomposable
groups of rank 2, A and C such that A ⊕ A ⊕ . . . ⊕ A ∼= C ⊕ C ⊕ . . . ⊕ C (n summands)
if and only if n ≡ 0 (mod m).

First, we answer in the negative a conjecture (almost) made by Pálfy in [10]: “it still may
be true that if the subgroup lattices of some power distinguish two groups then already the
cubes do”. That is, if for some n � 4 we have L(Gn) �∼= L(Hn) then also L(G3) �∼= L(H 3).
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Equivalently, if L(G3) ∼= L(H 3) then L(Gn) ∼= L(Hn). Using our previous remark,
this is also equivalent with: if G3 ∼= H 3 then also Gn ∼= Hn for all n � 4. In order to see
that this is false, in the above mentioned result it suffices to take m = 3 (and n = 3 and 4):
we have A3 ∼= C3 but A4 �∼= C4.

Finally, we have

Theorem 2. For m and n different positive integers L(Gm) ∼= L(Hm) implies L(Gn) ∼=
L(Hn) for every groups G and H if and only if both m, n � 2 and m divides n.

P r o o f. First suppose m, n � 2. By the above remark, equivalently, we have to deal with
Gm ∼= Hm implies Gn ∼= Hn, obviously true if m divides n (for any positive integer k,
Gm ∼= Hm implies Gkm ∼= Hkm). None of the remaining implications is true: indeed, in
the remaining case n �≡ 0 (mod m), so taking G = A and H = C, one has Gm ∼= Hm but
Gn �∼= Hn.

Secondly, consider m = 1 and n � 2, G = Qp = {m
n

∈ Q|(n; p) = 1} and H = Qq

(for different primes p and q). Since the type of Qp can be obtained from the type of Qq

by a permutation of the set of all the prime numbers, by a Theorem of Fuchs (see [5, p.
305]), L(Qp) ∼= L(Qq). Further, by the way of contradiction, suppose L(Qn

p) ∼= L(Qn
q).

Once again by the previous remark, this is equivalent to Qn
p

∼= Qn
q which implies Qp

∼= Qq

(these two groups are semi-local; therefore they share the n-th root property). But this is
impossible: these rank 1 torsion-free groups are determined by their types and consequently
are not isomorphic.

Finally, suppose m � 2 and n = 1. Once again, L(Am) ∼= L(Cm) (equivalent to
Am ∼= Cm) but A �∼= C. Nor L(A) ∼= L(C) is possible, because A, C are torsion-free
groups of rank 2 (Baer’s result would imply A ∼= C). �

R e m a r k 2. In particular, the above result shows that generally, there are no inclusions
between P1 the class of the abelian groups which are determined by their subgroup lattice
[which is better known; the only exceptions must have torsion-free rank 1] and P2 the class
of the abelian groups which are determined by the subgroup lattice of their direct squares,
nor between P2 and P3.

Example 2.11 from [1] (which actually comes back to Jónsson), points out two non-
isomorphic groups with projective squares, which are not projective.
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