A SQUARE-ZERO MATRIX WITH NONZERO DETERMINANT

GRIGORE CĂLUGĂREANU

ABSTRACT. If a 2×2 diagonal matrix has this property, the diagonal entries, say a, b must satisfy $a^2 = b^2 = 0$ but $ab \neq 0$. Two examples are given over not commutative rings and over commutative rings.

Problem. Find a square-zero 2×2 diagonal matrix with nonzero determinant over a ring R, that is, $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ with $a^2 = b^2 = 0$ but $ab \neq 0$.

Solution. 1) Over a **not** commutative ring: take $R = \mathbb{M}_2(\mathbb{Z}_2)$ and $E_{12}^2 = E_{21}^2 = 0$, $E_{12}E_{21} = E_{11} \neq 0 \neq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = E_{12} + E_{21}$.

2) Over the commutative rings \mathbb{Z}_n , this is **not** possible: $\overline{a} \in N(\mathbb{Z}_n)$ for $n = p_1^{k_1} \dots p_m^{k_m}$, iff $p_1 \dots p_m \mid a$, but $\overline{a} \in S(\mathbb{Z}_n)$ iff $p_1^{\left\lfloor \frac{k_1}{2} \right\rfloor + 1} \dots p_m^{\left\lfloor \frac{k_m}{2} \right\rfloor + 1} \mid a$. Hence for $\overline{a}, \overline{b} \in S(\mathbb{Z}_n)$, $\overline{ab} = \overline{0}$ since $n \mid ab$ [here N(R) denotes the nilpotent elements of R and S(R) its square-zero elements].

3) Over some suitable commutative ring. From [1]:

Problem E 1665. Construct a commutative ring in which the square of each element is zero but not every product is zero. Prove that such a ring must have at least 8 elements.

Solution. The set of polynomials 2a + bx, mod $(4, x^2)$ where $a, b \in \mathbb{Z}$, furnishes an example of such a ring. Clearly $(2a + x)^2 = 4a^2 + 4ax + x^2 \equiv 0$ and $(2 + x)x \neq 0$. Suppose the ring has the properties and let $ab \neq 0$. Then $a + b \neq 0$; further $ab \neq a$ or b since ab = a implies $0 = ab^2 = ab$. Thus 0, a, b, a + b, ab are distinct. Next ab + a, ab + b, ab + a + b are also distinct from these.

Notice that this ring has no identity.

The subject of "square-zero rings" is elaborated in [2].

4) Over some suitable commutative ring with identity.

Simion Breaz

 $\mathbb{Z}_4[X]/(X^2)$. The elements of this ring are represented by polynomials of degree at most 1 over \mathbb{Z}_4 . Then $2 + (X^2)$ and $X + (X^2)$ have the required properties.

References

[1] L. Carlitz Solution to E 1665. Amer. Math. Monthly 72 (1965), 80.

[2] R. P. Stanley Zero square rings. Pacific J. Math. 30 (1969), 811-824.