A SQUARE-ZERO MATRIX WITH NONZERO DETERMINANT

GRIGORE CĂLUGĂREANU

Abstract

If a 2×2 diagonal matrix has this property, the diagonal entries, say a, b must satisfy $a^{2}=b^{2}=0$ but $a b \neq 0$. Two examples are given over not commutative rings and over commutative rings.

Problem. Find a square-zero 2×2 diagonal matrix with nonzero determinant over a ring R, that is, $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ with $a^{2}=b^{2}=0$ but $a b \neq 0$.

Solution. 1) Over a not commutative ring: take $R=\mathbb{M}_{2}\left(\mathbb{Z}_{2}\right)$ and $E_{12}^{2}=E_{21}^{2}=$ $0, E_{12} E_{21}=E_{11} \neq 0 \neq\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=E_{12}+E_{21}$.
2) Over the commutative rings \mathbb{Z}_{n}, this is not possible: $\bar{a} \in N\left(\mathbb{Z}_{n}\right)$ for $n=$ $p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$, iff $p_{1} \ldots p_{m} \mid a$, but $\bar{a} \in S\left(\mathbb{Z}_{n}\right)$ iff $\left.p_{1}^{\left[\frac{k_{1}}{2}\right]+1} \ldots p_{m}^{\left[\frac{k_{m}}{2}\right]+1} \right\rvert\, a$. Hence for $\bar{a}, \bar{b} \in$ $S\left(\mathbb{Z}_{n}\right), \overline{a b}=\overline{0}$ since $n \mid a b$ [here $N(R)$ denotes the nilpotent elements of R and $S(R)$ its square-zero elements].
3) Over some suitable commutative ring.

From [1]:
Problem E 1665. Construct a commutative ring in which the square of each element is zero but not every product is zero. Prove that such a ring must have at least 8 elements.

Solution. The set of polynomials $2 a+b x, \bmod \left(4, x^{2}\right)$ where $a, b \in \mathbb{Z}$, furnishes an example of such a ring. Clearly $(2 a+x)^{2}=4 a^{2}+4 a x+x^{2} \equiv 0$ and $(2+x) x \not \equiv 0$. Suppose the ring has the properties and let $a b \neq 0$. Then $a+b \neq 0$; further $a b \neq a$ or b since $a b=a$ implies $0=a b^{2}=a b$. Thus $0, a, b, a+b, a b$ are distinct. Next $a b+a, a b+b, a b+a+b$ are also distinct from these.

Notice that this ring has no identity.
The subject of "square-zero rings" is elaborated in [2].
4) Over some suitable commutative ring with identity.

Simion Breaz

$\mathbb{Z}_{4}[X] /\left(X^{2}\right)$. The elements of this ring are represented by polynomials of degree at most 1 over \mathbb{Z}_{4}. Then $2+\left(X^{2}\right)$ and $X+\left(X^{2}\right)$ have the required properties.

References

[1] L. Carlitz Solution to E 1665. Amer. Math. Monthly 72 (1965), 80.
[2] R. P. Stanley Zero square rings. Pacific J. Math. 30 (1969), 811-824.

