A COUNTEREXAMPLE ?

Let R be a commutative ring and let $T \in \mathbb{M}_{3}(R)$ with $\operatorname{Tr}(T)=0$. To avoid too many indexes and emphasize the diagonal elements (i.e. the zero trace) we write $T=\left[\begin{array}{ccc}x & a & c \\ b & y & e \\ d & f & -x-y\end{array}\right]$. We consider the following two conditions
(A) $T^{2}=0_{3}$, and
(B) all 2×2 minors of T equal zero, and show that $(\mathbf{B}) \Longrightarrow(\mathbf{A})$ but $(\mathbf{A}) \Longrightarrow(\mathbf{B})$ only if 2 is not a zero divisor (i.e., is cancellable).

The condition (A), i.e., $T^{2}=0_{3}$ is equivalent to the following $(9=3 \times 3)$ equalities

$$
\begin{gather*}
x^{2}+a b+c d=0 \tag{1}\\
a(x+y)+c f=0 \tag{2}\\
a e=c y \quad(3) \\
b(x+y)+d e=0 \tag{4}\\
y^{2}+a b+e f=0 \tag{5}\\
b c=e x \tag{6}\\
b f=d y \\
a d=f x \tag{8}\\
(x+y)^{2}+c d+e f=0
\end{gather*}
$$

Denote by $T_{a b}^{c d}$ the 2×2 minor on the rows a and b and on the columns c and d. [The well-known properties of determinants yield $T_{b a}^{c d}=T_{a b}^{d c}=-T_{a b}^{c d}$].

The two terms equalities are equivalent to the vanishing of four 2×2 minors. Namely,
$(3) \equiv\left(T_{12}^{23}=0\right),(6) \equiv\left(T_{12}^{13}=0\right),(7) \equiv\left(T_{23}^{12}=0\right),(8) \equiv\left(T_{13}^{12}=0\right)$.
Further, two other equalities are equivalent to the vanishing of another two minors. Namely,
(2) $(a(x+y)+c f=0) \equiv\left(T_{13}^{23}=0\right)$,
and $(4)(b(x+y)+d e=0) \equiv\left(T_{23}^{13}=0\right)$.
Therefore this covers (if and only if) the six not diagonal 2×2 minors.
What remains is the vanishing of the three 2×2 diagonal minors, i.e.,
$T_{12}^{12}=0: x y=a b, T_{13}^{13}=0: x(-x-y)=c d$ and $T_{23}^{23}=0: y(-x-y)=e f$.
No condition needed for $(B) \Longrightarrow(A)$:
$x y=a b\left(T_{12}^{12}=0\right)$ and $c d=-x(x+y)\left(T_{13}^{13}=0\right)$ imply $x^{2}+a b+c d=0(1)$,
$x y=a b\left(T_{12}^{12}=0\right)$ and $e f=-y(x+y)\left(T_{23}^{23}=0\right)$ imply $y^{2}+a b+e f=0(5)$, and
$c d=-x(x+y)\left(T_{13}^{13}=0\right), e f=-y(x+y)\left(T_{23}^{23}=0\right)$ imply $(x+y)^{2}+c d+e f=0$ (9).

Seems that a condition is needed for $(A) \Longrightarrow(B)$.

By hypothesis all equalities (1) - (9) hold. In the 8 letters used, each equality has degree 2. Multiplication of any relation by any letter will increase the degree and
the vanishing of the diagonal 2×2 minors cannot be deduced, because cancellation is not possible (unless we assume some non zero divisors; e. g., see the lemma below, (ii)).

We focus on $T_{12}^{12}=0$.
The term $a b$ appears only in (1) and (5), while the term $x y$ appears only in (9).
From $x^{2}+a b+c d=0(1), y^{2}+a b+e f=0(5)$ and $(x+y)^{2}+c d+e f=0(9)$ we get $2 x y=2 a b$. This implies $x y=a b\left(T_{12}^{12}=0\right)$ iff 2 is not a zero divisor.

Finally using $x^{2}+a b+c d=0(1), y^{2}+a b+e f=0(5)$ and $x y=a b\left(T_{12}^{12}=0\right)$, we get the last two zero 2×2 diagonal minors: $x(x+y)+c d=0\left(T_{13}^{13}=0\right)$ and $y(x+y)+e f=0\left(T_{23}^{23}=0\right)$.

Remark. While in the proof above the hypothesis " 2 is not a zero divisor" is essential for the vanishing of the three diagonal 2×2 minors (actually for getting $a b=x y$ from $2 a b=2 x y$), we were not able to find a square-zero 3×3 matrix with zero trace over a ring where 2 is a zero divisor, which has a nonzero 2×2 minor. In searching for such an example, the following observations gathered in the following lemma may help.

Lemma 0.1. (i) Suppose $T^{2}=0_{3}$. If any diagonal 2×2 minor is zero, so are the other two diagonal 2×2 minors.
(ii) Suppose $T^{2}=0_{3}$. If any entry of T is not a zero divisor, then all 2×2 minors are zero.

Proof. As noticed in the previous proof, if $T^{2}=0_{3}$ then all (the six) not diagonal minors are zero.
(i) In the previous proof we already saw that $x y=a b$ implies $x(x+y)+c d=0$ and $y(x+y)+e f=0$.

If $x(x+y)+c d=0$, combining with $x^{2}+a b+c d=0$ we get $x y=a b$ and so the third diagonal minor vanishes.

If $y(x+y)+e f=0$, combining with $y^{2}+a b+e f=0$ we get $x y=a b$ and so the third diagonal minor vanishes.
(ii) As noticed in the proof of the previous theorem, our concern are the diagonal 2×2 minors. The proof can be done separately for each entry.

If x is cancellable, we multiply $x^{2}=-a b-c d$ by y and so $x^{2} y \stackrel{a e \equiv c y}{=}-a b y-a d e=$ $-a(b y+d e) \stackrel{b(x+y)+d e=0}{=}-a(-b x)=a b x$. By cancellation we get $x y=a b$ and so the other two diagonal 2×2 minors, using (i).

If a is cancellable, we multiply $a(x+y)+c f=0$ by x and using $a d=f x$ we obtain $x(x+y)+c d=0$ and the other two by (i).

If c is cancellable, we multiply $b c=e x$ by a and using $a e=c y$ we obtain $a b=x y$ and the other two.

If b is cancellable, we multiply $b(x+y)+d e=0$ by y and using $b f=d y$ we obtain $y(x+y)+e f=0$ and the other two.

If y is cancellable, we multiply $y^{2}=-a b-e f$ by x and using $f x=a d$ and $b x+d e=-b y$ we obtain $a b y=x y^{2}$. By cancellation we get $x y=a b$ and the other two.

If e is cancellable, we multiply $b c=e x$ by y and using $a e=c y$ we obtain $a b=x y$ and the other two.

If d is cancellable, we multiply $b f=d y$ by $x+y$ and using $b(x+y)+d e=0$ we obtain $y(x+y)+e f=0$ and the other two.

If f is cancellable, we multiply $a d=f x$ by y and using $b f=d y$ we obtain $a b=x y$ and the other two.

If $x+y$ is cancellable, we multiply $(x+y)^{2}=-c d-e f$ by x and using $b c=e x$ and $b f=d y$ we obtain $x(x+y)^{2}=-c d(x+y)$. By cancellation we get $x(x+y)+c d=0$ and the other two.

In conclusion, we are searching for a commutative ring with 2 being zero divisor, and a 3×3 matrix T, all whose entries are zero divisors, such that $T^{2}=0_{3}$ but all the diagonal 2×2 minors are nonzero.

Even more precisely, with the above notations, we need
$2 x y=2 a b$ but $x y \neq a b$,
$2 x(x+y)+2 c d=0$ but $x(x+y)+c d \neq 0$ and
$2 y(x+y)+2 e f=0$ but $y(x+y)+e f \neq 0$.

