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ABELIAN GROUPS WITH SEMI-LOCAL
ENDOMORPHISM RING

Grigore Calugireanu

Dept. of Math. and Computer Sci.,
Babes-Bolyai University, 3400 Cluj-Napoca, Romania
E-mail: calu@math.ubbcluj.ro

ABSTRACT

The abelian groups with semi-local endomorphism ring are
characterized, with one exception: the infinite rank torsion-
free ones.

A ring R is called semi-local if R/rad R is semisimple artinian.

In his authoritative book on infinite abelian groups, Laszlo Fuchs, the
leading expert on this topic, asks: “For which abelian groups is the endo-
morphism ring semi-local?”” (¥, Problem 84). This problem has been open
for 26 years. Modules whose endomorphism ring is semi-local have been
investigated by several authors (see, e.g.,”) and the literature listed there).

The main result of this paper is the following theorem:

Theorem. Let G be an abelian group with endomorphism ring End(G) and
torsion subgroup T(G). Then:

o End(G) is semi-local if and only if T(G) is finitely generated and G is
a direct sum of form T(G) & F, where F is a torsion-free subgroup of
G such that End(F) is semi-local.

o If G isdivisible, then End(G) is semi-local if and only if G has finite rank.
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4106 CALUGAREANU

o If'G is torsion-free reduced of finite rank, then End(G) is semi-local if
and only if pG = G, for all but finitely many prime integers p.

1 PRELIMINARY RESULTS

In this note, “group” will mean “abelian group”. For unexplained
terminology and facts, we refer to Fuchs. We denote by r(G) the rank (the
Goldie dimension) of a group G.

We start our discussion with a few lemmas on groups with semi-local
endomorphism ring. Some of the next results may be known, but we include
some of proofs for the sake of completeness.

For an artinian ring R, if £ denotes the set of all finite subsets of
pairwise orthogonal idempotents whose sum is 1, notice that {card(E)|E €
&} is bounded. Tt is also bounded for each semi-local ring (non-zero
orthogonal idempotents do not collapse modulo J = rad(R), the Jacobson
radical of the ring R).

For easy reference we state the following lemma:

Lemma 1.1. If G is a group whose endomorphism ring End(G) is semi-local,
there is a positive integer m such that no direct decomposition of G has more
than m summands. OJ

Lemma 1.2. If the endomorphism ring End(G) of a group G is semi-local, then
every direct summand H of G has semi-local endomorphism ring.

Proof. If e is idempotent in a semi-local ring R, then eRe is also semi-local.
As a special case, if G = H® K and n: G — H denotes the corresponding
projection, we can identify End(H) with ¢End(G)e, where e =j-n with

Jj: H— G the inclusion. O

The following lemma is well known, and so the proof is omitted.

Lemma 1.3. Let A, B be rings, 4Cp be a bimodule and R = (g g)

Then rad(R) = (radO(A) iB))' Moreover,
ra
A/rad(4 0
R/rad(R) ~ ( fradd) B/rad<3)) ~ A/rad(4) @ B/rad(B). O

Corollary 1.1. In the setting of the previous lemma, if A and B are semi-local,
so is R. O
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Corollary 1.2. If G=H® K, H is a fully invariant subgroup of G and
End(H) and End(K) are semi-local, then End(G) is also semi-local.

Proof. Indeed, in this case Hom(H, K) = 0, End(G) ~ (
and the previous corollary applies.

End(H) Hom(K,H) )
0 End(K)

Corollary 1.3. If G = H® K, where K is a finite group, H is a finite rank
divisible group, and End(H) and End(K) are semi-local, then End(G) is also
semi-local. OJ

Lemma 1.4. If End(G) is semi-local, then End(G") is semi-local for every
positive integer n.

Proof. The endomorphism ring End(G") ~ M, (End(G)), the full matrix
ring, and consequently End(G")/J(End(G")) ~ M,(End(G)/J(End(G)) is
semi-simple. |

Lemma 1.5. If G = &, H, is a ( finite) direct sum of fully invariant subgroups
whose endomorphism rings End(H;) are semi-local, then End(G) is also semi-
local.

Proof. This is an immediate consequence of End(G) ~ []., End(H;)
and of the fact that finite direct products of semi-local rings are also
semi-local. O

It is easy to dispose of the mixed case by reducing the problem to the
torsion and torsion-free cases.

Proposition 1.1. A mixed group G has semi-local endomorphism ring if and
only if G=T®F with T torsion and F torsion-free, both with semi-local
endomorphism ring.

Proof. By Lemma 1.1, there is a positive integer m such that every decom-
position of G has at most m direct summands. Observe that in this case its
torsion part 7(G) has the same property.

To see this, suppose 7(G) = Ay + -+ + A + Ay is a direct sum of
m + 1 non-zero subgroups; then in each of these torsion groups A4;, one can
find a direct summand C; which is either a cyclic p-group or quasi-cyclic
p-group for some prime p (depending on A;). Then C| + -+ Cy; + Cpy1,
being a direct summand of 7(G), is a sum of a bounded pure subgroup and a
divisible subgroup of G and hence a direct summand of G. This gives a direct
decomposition of G with more than m direct summands.

Consequently, the subgroups of 7 satisfy the minimum condition, and
so T has finite rank. Therefore T is a direct sum of a bounded group and a
torsion divisible group. Hence G is splitting, as guaranteed by a classical
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result of Baer and Fomin [Theorem 100.1, chap XIV]. The rest follows
from Lemma 1.2.

Conversely, the use of the isomorphism

End(G) ~ (End(T) Hom(F,T)

) along with Corollary 1.1 completes the
proof. 0 End(F)

O

2 THE TORSION CASE

As is often the case in the theory of abelian groups, the discussion of
torsion groups can be reduced to the case of p-groups.

Proposition 2.1. The endomorphism ring of an infinite rank p-group is not
semi-local.

Proof. A p-group G has finite rank exactly if it satisfies the minimum con-
dition on subgroups, or, equivalently, if there is a positive integer m such
that no subset of pairwise orthogonal idempotents of End(G) whose sum is
1 has more than m elements.

Due to Lemma 1.1 we conclude that for an infinite rank p-group G,
End(G) is not semi-local. O

It should be emphasized that actually the number m above is the
length of the semisimple ring End(G)/rad(End(G)).

As a matter of fact, it is not difficult to give examples of torsion groups
whose endomorphism ring is not semi-local: if P is an infinite set of prime
numbers, just take 4 = @pcpZ(p).

Theorem 2.1. The endomorphism ring of a torsion group is semi-local if and
only if the group has finite rank.

Proof. Let G be a torsion group whose endomorphism ring is semi-local. As
the p-components of a torsion group are fully invariant subgroups, in view
of Lemma 1.5 and the previous proposition, only the sufficiency requires a
proof. Although this could be obtained in more generality (for an artinian
right R-module M the endomorphism ring Endg M is semi-local[”), we give
here a direct proof.

If G has finite rank, it is a finite direct sum of cocyclic subgroups (ecach
having a local ring of endomorphisms). To conclude that End(G) is semi-
local we only have to use Lemma 1.4, Lemma 1.5, Corollary 1.2 and the
Corollary 1.3. OJ
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3 THE FINITE RANK TORSION-FREE CASE

It is considerably more difficult to characterize torsion-free groups that
have semi-local endomorphism rings. We do not have a characterization in
general, but a fairly informative result is available for groups of finite rank.

We begin with some common reductions.

Proposition 3.1. A4 divisible group has semi-local endomorphism ring if and
only if the group has finite rank.

Proof. By Lemma 1.1, the endomorphism ring of an infinite direct sum of
groups is not semi-local. Thus a direct decomposition of such a divisible
group contains only finitely many copies of Z(p™) and Q.

Conversely, clearly End(&® Q) ~ M, (Q), the full matrix ring with
rational entries, is simple, thus artinian. Therefore the proof is completed
using Lemma 1.4 and Lemma 1.5 (for the quasicyclic summands). O

Proposition 3.2. Let G = D @ R be a direct sum of a divisible group D and a
reduced group R. Then End(G) is semi-local if and only if both End(D) and
End(R) are semi-local.

Proof. Indeed, since G = D ® R with D a divisible group and R a reduced
group, it is immediate that Hom(D,R) =0, and so End(G) =~
End(D) Hom(R,D)
0 End(R) ‘
End(G) semi-local, as desired. U

). Using Corollary 1.1 and Lemma 1.2 we obtain at once

In the following result we give a characterization of finite rank reduced
torsion-free groups with semi-local endomorphism ring.

Theorem 3.1. Let G be a finite rank reduced torsion-free group. The endo-
morphism ring End(G) is semi-local if and only if pG = G, for all but finitely
many prime integers p.

Proof. If E = End(G) is a semi-local ring, it has only finitely many maximal
(two-sided) ideals.

For an arbitrary prime number p consider the ideal pE of E. If pE < E
then pE is contained in a maximal ideal pE < M < E. Notice that when p
and ¢ are distinct prime numbers, no maximal ideal M contains both pE and
qFE (otherwise, pE + gE = E would imply M = E). In view of the previous
remark, pE = E must hold for almost all prime numbers p. But pE = E is
equivalent to pG = G (use 1g € FE and the fact that G is torsion-free), and
consequently pG = G holds, for all but finitely many prime numbers p.

For the converse, first observe that E has finite rank if G has finite
rank.
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To conclude that E/J is semisimple artinian we shall verify that the
Jacobson radical of E can be represented as finite intersection of maximal
left ideals.

We split the maximal left ideals of £ into two classes:

(i) Maximal left ideals between pE and E, for the finitely many prime
numbers p allowed by our hypothesis.

Since E has finite rank (as an abelian group) there are only finitely
many such maximal left ideals (because E/pFE is finite).

(i1) Maximal left ideals not in the previous class.

Let L be a maximal left ideal as in (ii). Since E/L is a simple E-module,
it must be torsion-free divisible as an abelian group and of finite rank. Set
J=L N---NL, and represent the radical J=JNLNL'N---=L,N---
NL,NLNL N--- where Ly,...,L, are the maximal left ideals of class (i)
and L, L’,... are the maximal left ideals of class (ii).

Suppose J>JNL>JNLNL >--- Then r(J)>r(JNL)+1,
r(JNL)>r(JNLNL)+1,... and r(E/J) <r(E/(JNL)<r(E/(JNLN
L") < --- Since the rank of E is finite, the sequence J > JNL >JNLNL >
-+ has to stop after finitely many steps. Thus, the Jacobson radical can be
represented as a finite intersection of maximal left ideals.

Consequently, E/J is semi-simple artinian and E is semi-local. O

Remarks. Using the characterization of the semi-local rings given in!!,
another proof of the second part of the previous theorem is available: if 7 is
the finite rank of a torsion-free group G and pG = G holds for all but finitely
many prime numbers p, then it is not hard to see that the mapping
d:End(G) — {0,1,...,n}, which assigns to each endomorphism f¢&
End(G) the torsion-free rank ro(co ker f'), satisfies Camps and Dicks’ con-
ditions from'"), and so End(G) is semi-local.

Notice that our result generalizes Corollary 3 oft. All the groups with
semi-local endomorphism ring have the cancellation (and so also the sub-
stitution) property. So far we do not see a direct link between these two
properties.

Examples. Finite rank torsion-free groups with semi-local endomorphism
ring are abundant. Take a finite algebraic extension A of Z and a finite
number of localizations A4, of 4 corresponding to prime numbers p of Z.
Then the intersection H = N}_, 4, is a semi-local ring. Using a well-known
result of Corner!®, there is a finite rank torsion-free group G such that
End(G) ~ H.
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