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Abstract

With respect to socle and radical we can define dual notions for fully

invariant, characteristic respectively normal subgroups of groups. These

turn out to coincide with the initial notions.

1 The ”dual” notions

Introduced in 1933 by F. Levi for groups, the role of the fully invariant subob-
jects in several algebra categories (and especially for groups) is well-known. A
subgroupH of a group G was called strongly invariant in G (see [1] and also [2]),
if f(H) ≤ H for every group homomorphism f : N −→ G. Recently, a study
of such subgroups was initiated by the author, mainly in the case of Abelian
groups (see [1]).

A useful notion (merely used for modules and Abelian groups, as a special
case) is the following

Definition. For any pair of groups H , G, the H-socle of G is SH(G) =
〈
⋃
{imf |f : H −→ G}〉 (=

∑
{imf |f : H −→ G}, for Abelian groups).

An immediate application of this construction is

Lemma 1 A subgroup H of a group G is strongly-invariant iff SH(G) = H.

Proof. Obviously, H ≤ SH(G) (because H is the image of the inclusion i :
H −→ G) and SH(G) ≤ H iff f(H) ≤ H for every morphism f : H −→ G.

Now consider the dual notion for the H-socle
Definition. For any pair of groups H,G, the H-radical of G is RH(G) =⋂

{ker f |f : G −→ H}.
Dually, for a normal subgroup K of G, let G/K be a factor group of G.

Then RG/K(G) =
⋂
{ker f |f : G −→ G/K}.

Obviously RG/K(G) ≤ K (K is the kernel of the canonical projection pK :
G −→ G/K).

Hence, the notion which should be dual to strongly invariant, is:
Definition. A subgroup K of a group G is called strongly co-invariant if

RG/K(G) = K.
Equivalently, for every morphism f : G −→ G/K, ker f ≥ K (i.e., ker f ≥

ker pK) (i.e., RG/K(G) ≥ K).
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Further, recall that a subgroupH of a group G is fully invariant if im(f ◦i) ≤
im(i) holds for every endomorphism f of G (here i denotes the inclusion).

Finally, the dual notion for fully invariant is given by the following
Definition. A subgroup K of a group G is called fully co-invariant if

ker(pK ◦ f) ≥ ker pK for every endomorphism f of G, i.e., ker(pK ◦ f) ≥ K.

From this point of view we can continue with the following dual definitions
A subgroup K of a group G is co-characteristic if ker(pK ◦ f) ≥ ker pK

for every automorphism f of G, i.e., ker(pK ◦ f) ≥ K, and co-normal if this
holds for every inner automorphism of G. This way, fully co-invariant =⇒
co-characteristic =⇒ co-normal.

However these notions turn out to be self-dual

Proposition 2 A subgroup is fully co-invariant (respectively co-characteristic
or co-normal) iff it is fully invariant (respectively characteristic or normal).

Proof. Immediate from definitions: K is fully co-invariant iff for every endo-
morphism f of G, (pK ◦f)(K) = {K}. But this means f(k)K = K or f(k) ∈ K
for every k ∈ K, which is the usual definition of a fully invariant subgroup.
Similar co-characteristic ≡ characteristic, and co-normal ≡ normal.

However, strongly co-invariant subgroups do not coincide with strongly in-
variant. Here is an example: consider G = Z2 ⊕ Z8 = 〈a, b|2a = 8b = 0〉. Then
the socle G[2] = {0, 4b, a, a+ 4b} is strongly invariant ([1]). However, it is not
strongly co-invariant: for G/G[2] = {G[2], b+G[2], 2b +G[2], 3b+G[2]} define
g : G −→ G/G[2] by g(a) = g(b) = 2b +G[2]. Then g(G[2]) = {0, 2b+G[2]} 6=
G[2] that is ker(g) � G[2].
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