Self-dual notions for groups

Grigore Călugăreanu

Abstract

With respect to socle and radical we can define dual notions for fully invariant, characteristic respectively normal subgroups of groups. These turn out to coincide with the initial notions.

1 The "dual" notions

Introduced in 1933 by F. Levi for groups, the role of the fully invariant subobjects in several algebra categories (and especially for groups) is well-known. A subgroup H of a group G was called *strongly invariant* in G (see [1] and also [2]), if $f(H) \leq H$ for every group homomorphism $f : N \longrightarrow G$. Recently, a study of such subgroups was initiated by the author, mainly in the case of Abelian groups (see [1]).

A useful notion (merely used for modules and Abelian groups, as a special case) is the following

Definition. For any pair of groups H, G, the H-socle of G is $S_H(G) = \langle \bigcup \{ \inf f | f : H \longrightarrow G \} \rangle$ (= $\sum \{ \inf f | f : H \longrightarrow G \}$, for Abelian groups).

An immediate application of this construction is

Lemma 1 A subgroup H of a group G is strongly-invariant iff $S_H(G) = H$.

Proof. Obviously, $H \leq S_H(G)$ (because H is the image of the inclusion $i : H \longrightarrow G$) and $S_H(G) \leq H$ iff $f(H) \leq H$ for every morphism $f : H \longrightarrow G$.

Now consider the dual notion for the H-socle

Definition. For any pair of groups H, G, the *H*-radical of *G* is $R_H(G) = \bigcap \{ \ker f | f : G \longrightarrow H \}.$

Dually, for a normal subgroup K of G, let G/K be a factor group of G. Then $R_{G/K}(G) = \bigcap \{ \ker f | f : G \longrightarrow G/K \}.$

Obviously $R_{G/K}(G) \leq K$ (K is the kernel of the canonical projection $p_K : G \longrightarrow G/K$).

Hence, the notion which should be dual to strongly invariant, is:

Definition. A subgroup K of a group G is called strongly co-invariant if $R_{G/K}(G) = K$.

Equivalently, for every morphism $f: G \longrightarrow G/K$, ker $f \ge K$ (i.e., ker $f \ge ker p_K$) (i.e., $R_{G/K}(G) \ge K$).

Further, recall that a subgroup H of a group G is fully invariant if $\operatorname{im}(f \circ i) \leq \operatorname{im}(i)$ holds for every endomorphism f of G (here i denotes the inclusion).

Finally, the dual notion for fully invariant is given by the following

Definition. A subgroup K of a group G is called *fully co-invariant* if $\ker(p_K \circ f) \ge \ker p_K$ for every endomorphism f of G, i.e., $\ker(p_K \circ f) \ge K$.

From this point of view we can continue with the following dual definitions

A subgroup K of a group G is co-characteristic if $\ker(p_K \circ f) \ge \ker p_K$ for every automorphism f of G, i.e., $\ker(p_K \circ f) \ge K$, and co-normal if this holds for every inner automorphism of G. This way, fully co-invariant \Longrightarrow co-characteristic \Longrightarrow co-normal.

However these notions turn out to be self-dual

Proposition 2 A subgroup is fully co-invariant (respectively co-characteristic or co-normal) iff it is fully invariant (respectively characteristic or normal).

Proof. Immediate from definitions: K is fully co-invariant iff for every endomorphism f of G, $(p_K \circ f)(K) = \{K\}$. But this means f(k)K = K or $f(k) \in K$ for every $k \in K$, which is the usual definition of a fully invariant subgroup. Similar co-characteristic \equiv characteristic, and co-normal \equiv normal.

However, strongly co-invariant subgroups do not coincide with strongly invariant. Here is an example: consider $G = \mathbb{Z}_2 \oplus \mathbb{Z}_8 = \langle a, b | 2a = 8b = 0 \rangle$. Then the socle $G[2] = \{0, 4b, a, a + 4b\}$ is strongly invariant ([1]). However, it is not strongly co-invariant: for $G/G[2] = \{G[2], b + G[2], 2b + G[2], 3b + G[2]\}$ define $g: G \longrightarrow G/G[2]$ by g(a) = g(b) = 2b + G[2]. Then $g(G[2]) = \{0, 2b + G[2]\} \neq G[2]$ that is ker $(g) \not\geq G[2]$.

References

- [1] Călugăreanu G. Strongly invariant subgroups. 2012, submitted
- [2] http://groupprops.subwiki.org/wiki/Homomorph-containing_subgroup