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A solution to a problem on lattice isomorphic Abelian
groups
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Abstract. This paper completes the solution to the problem of deciding when two Abelian groups
will have the lattices of their subgroups isomorphic.
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1 Introduction

This paper completes the last step in the investigation initiated by R. Baer [1] to
answer the question: when two Abelian groupsG andH have their subgroup lattices
L(G) andL(H) isomorphic? In this case, following Baer [1], we say thatG andH are
projectivegroups. Note that ifG is projective withH, thenG need not be isomorphic
to H as is clear whenG andH are cyclic groups of orderpn andqn respectively, where
p andq are different prime numbers.

R. Baer made substantial progress in solving this problem and proved, among other
things, the following major results:

Theorem 1.1 ([1], [2]). Let G andH be two Abelian groups andL(G) andL(H) be
their subgroup lattices.

(a) If G has torsion-free rank> 1, thenL(G) ∼= L(H) if and only if G ∼= H.
(b) If G is a torsion group, thenL(G) ∼= L(H) if and only if there is a bijection

between the primary components ofG and H such that the corresponding primary
componentsP andQ are isomorphic wheneverrankP > 1, and if P has rank 1, say
P ∼= Z(pn) for some primep with n > 0 or n = ∞, then the corresponding primary
componentQ is isomorphic toZ(qn) for some (perhaps different) primeq.

(c) If G is torsion-free and has rank 1, thenL(G) ∼= L(H) implies thatH is a
torsion-free group of rank 1. Moreover,G ∼= H, if G is, in addition, infinite cyclic.

L. Fuchs( [2]) extended Theorem 1.1 (c) by proving the following:

Theorem 1.2 ([3]). LetG be a rank 1 torsion-free Abelian group of type

(k1, ..., kn, ...).
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If G is projective with an Abelian groupH, thenH is a rank 1 torsion-free group with
type(l1, ..., ln, ...) where theli’s are obtained from theki’s by a permutationπ of the
indexing set of primes.

Extracting some of the ideas from the paper by R. Baer ([1]) and L. Fuchs [2] and
making corrections, K. Mahdavi and J. Poland ([5]) obtained the following necessary
condition for two mixed groups of torsion-free rank 1 to be projective:
Theorem 1.3 ([5]). Let G andH be two mixed Abelian groups of torsion-free rank 1.
If f : L(G) → L(H) is a lattice isomorphism, then the torsion partT (G) ∼= T (H), the
height matrixU(H) results fromU(G) by a permutationπ of the primes (the rows of
U(G)) which fixes the primesp occurring as orders of elements inG andπ andf are
related by the property that for any subgroupS of G and primep, f(pS) = π(p)f(S).

The permutationπ in Theorem 1.3 is actuallymultiplicative, that is, it extends to an
endomorphism of the multiplicative semigroup of positive integers. Further, as pointed
out in ([5]), the equationf(nS) = π(n)f(S) holds for all positive integersn and for
all subgroupsS of G.

An example of Megibben (see [7], [6]) shows that the converse of Theorem 1.3 is
false. This raises the problem of describing the mixed Abelian groupsG andH with
torsion-free rank 1 for whichL(G) ∼= L(H).

K. Mahdavi and J. Poland ([5], [6]), and independently, U. Ostendorf ([8]), partially
answered this by considering the special case whenG is a splitting mixed Abelian
group.

Our main theorem answers this problem completely.

Theorem 1.4. Let G and H be mixed Abelian groups of torsion-free rank 1. Then
L(G) ∼= L(H) if and only if

(i) G andH have isomorphic torsion parts:T (G) ∼= T (H);
(ii) There exist elements of infinite ordera ∈ G, b ∈ H such that the height matrix

H(b) = U(H) arises fromH(a) = U(G) by a permutationπ of primes which fixes
those primes occurring as orders of elements inG and is multiplicative;

(iii) There is a bijection between thep-components ofG/ 〈a〉 andH/ 〈b〉 such that
the corresponding components are isomorphic if they have rank>1 and, if for a prime
p, (G/ 〈a〉)p has rank 1 and corresponds to(H/ 〈b〉)q for some (not necessarily distinct)
primeq, then they are of the formZ(pn) andZ(qn) respectively, wheren is a positive
integer or∞.

Observe that condition (iii) simply states thatG/ 〈a〉 andH/ 〈b〉 are projective.

Our methods involve using a key idea of constructing a projectivity of a divisible
group by Mahdavi and Poland [5] and, following Warfield, viewing a mixed Abelian
group as an extension of a torsion-free group by a torsion group.

Thus Theorem 1.4 together with Theorem 1.1 provides a complete solution to the
problem of describing when two Abelian groups have isomorphic subgroup lattices.
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2 Preliminaries

Let P be the set of all prime integers. All groups that we consider are additively
written Abelian groups and we generally follow the notation and terminology of the
books by L. Fuchs [3] and R. Schmidt [9]. For an Abelian groupG, L(G) denotes the
lattice of subgroups ofG under set inclusion.T (G) denotes the torsion part ofG . For
a primep, Gp denotes thep-component ofT (G) andG[p] denotes the subgroup
{a ∈ G | pa = 0}. For a subsetS of G, 〈S〉 denotes the subgroup generated byS.
If g ∈ G, 〈g〉 denotes〈{g}〉, the cyclic subgroup generated byg. For all ordinalsα,
the subgroupspαG are defined inductively:pG = {pa | a ∈ G}; if α = γ + 1 then
pγ+1G = p(pγG)) and ifα is a limit ordinal, thenpαG =

⋂
γ<α

pγG.

If a ∈ pαG anda /∈ pα+1G, we saya hasp-height α and writehp(a) = α. If
a ∈ pαG for all α, thena has infinite height and we writehp(a) = ∞.

The height matrixof an elementa in a groupG is a doubly infinite matrixH(a)
indexed by the primesp and non-negative integersn whose(p, n) entry ishp(pna). If
G is a mixed group of torsion-free rank one and ifa, b are two infinite order elements
in G, thenH(a) andH(b) areequivalent, that is, almost all rows are equal and if the
pth-rows ofH(a) andH(b) are not equal, then there exist integersn andm such that
hp(pn+ia) = hp(pm+ib) for everyi ∈ {0, 1, 2, ...}. Thus to each mixed Abelian group
G of torsion-free rank one we can assign uniquely an equivalence classU(G) of the
height matrix of any infinite order element inG. The pth-row of H(a) is called the
p-indicatorof a.

An indicator(σ0, σ1, ...) is said to have agap if, for somek ≥ 0, σk + 1 < σk+1;
in this case the gap is said tofollow σk or precedeσk+1. For any primep, the αth

Ulm-Kaplansky invariant ofG is denoted byfp
α(G) and is defined as the dimension

dim
(

pαG[p]
pα+1G[p]

)
. We shall be using the well-known result (see [3]), that two countable

Abelianp-groups with the same Ulm-Kaplansky invariants are isomorphic.

3 The main result

We begin by mentioning two lemmas by R. Hunter [4] about mixed groups of
torsion-free rank 1.

Lemma 3.1 ([4]). LetG be a mixed Abelian group of torsion-free rank one anda ∈ G
an element of infinite order andp-indicator (σ0, σ1, ...). Then, for any ordinalσ,

fp
σ(G) =





fp
σ(G/ 〈a〉) + 1 if σ = σn and a gap followsσn

fp
σ(G/ 〈a〉)− 1 if σ + 1 = σn and a gap precedesσn

fp
σ(G/ 〈a〉) otherwise

.
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Lemma 3.2 ([4]). If G andH are mixed Abelian groups of torsion-free rank 1, then
G ∼= H if and only if there exist infinite order elementsa ∈ G, b ∈ H such that
H(a) = H(b) andG/ 〈a〉 ∼= H/ 〈b〉.

The next result (which is Theorem 1.3.2 of [9]) states that certain bijections between
cyclic subgroups induce projectivities.
Proposition 3.3 ([9]). LetG andH be two Abelian groups. Ifg is a bijection from the
set of cyclic subgroups ofG to the set of cyclic subgroups ofH, theng extends to a
projectivityf fromG to H if g satisfies the property

A ≤ B + C ⇔ g(A) ≤ g(B) + g(C) (3.1)

for all cyclic subgroupsA, B,C of G.

We now consider the construction of autoprojectivities of a divisible Abelian group
of torsion-free rank one corresponding to specific permutations of the setP of primes.
The following result is a special case of Theorem E of [5]. For the sake of complete-
ness, we shall give a (slightly simpler) proof which is more group-theoretical.

Following L. Fuchs [3], a primep is said to berelevantto a groupG, if G has an
element of orderp. A positive integern is said to berelevant to a groupG if each
prime factor ofn is relevant toG.
Proposition 3.4 ([5]). Let D be a divisible mixed Abelian group of torsion-free rank
one and letπ be a permutation of the setP of primes which is multiplicative and fixes
those primes that are relevant toD. Then there is a lattice isomorphismf : L(D) −→
L(D) such thatf(nS) = π(n)f(S) for all subgroupsS of D and all positive integers
n.

Proof. Let D = T ⊕Q with T torsion divisible andQ the additive group of rational
numbers. LetP ′ be the set of primes relevant toT . Let K be the localization ofZ at
the primes not relevant toT , that is,K is the subgroup ofQ generated by{ 1

pk : p ∈
P ′, k ∈ Z} i.e., K = 〈{1/m : m positive integer relevant toT}〉, so thatZ < K and
K/Z ∼= ⊕{Z(p∞) : p ∈ P ′}. ClearlyK is the union of cyclic subgroupsCm = 〈xm〉,
wherexm = 1/m for various positive integersm relevant toT . Note that ifm = rs,
thenrxm = xs andxm is in 〈xn〉 if and only if m|n.

Let D = T ⊕Q′ with Q′ ∼= Q be another decomposition ofD with 〈y〉 = Z ′ < Q′

and Z ′ ∼= Z. ChooseK ′ > Z ′ analogous to the subgroupK , so thatK ′/Z ′ ∼=⊕{Z(p∞) : p ∈ P ′} and we realizeQ′/K ′ ∼= {Z(p∞) : p ∈ π(P )\P ′}. As before,K ′

is the union of cyclic subgroupsC ′m = 〈ym〉 = 〈1/m〉 for various positive integersm
relevant toT with ym satisfyingmym = y and ifm = rs, thenrym = ys.

Let H = T ⊕K andH ′ = T ⊕K ′. If a ∈ D is an element of infinite order with
o(a + H) = e, then there is a smallest integern such thatea ∈ T ⊕ Cn so that

ea = u + dxn = d(v + xn) with u = dv ∈ dT = T. (3.2)

Similar equation (3.2) holds with respect toT + H ′.
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Now given such ana satisfying (3.2), chooseb in D such that

π(e)b = π(d)(v + yn). (3.3)

Such an elementb exists and is unique sinceD is divisible andπ(e) is not relevant
to T ⊕ H ′. Note that ifa is not in H, thenb is not in H ′ asπ(e) is not relevant to
H ′/(T ⊕ Z ′). Also the minimality ofe andn implies thatgcd(d, e) = 1 = gcd(d, n).

We now wish to define a bijectionf from the set of cyclic subgroups ofD to itself
satisfying the property (3.1) of Proposition 3.3.

To this end, we use the natural isomorphismK −→ K ′ and the identity mapT −→
T , and define the functiong by

g(〈a〉) =





〈a〉 if a ∈ T

〈ryn〉 if a = rxn ∈ H

〈b〉 if a has infinite order satisfying (3.2), andb satisfies (3.3)

.

Using the uniqueness ofe, d, m and the inverse permutationπ−1, it is easy to see
thatg is a bijection between cyclic subgroups ofT ⊕Q andT ⊕Q′ respectively.

To finish off the proof, we need only verify the condition (3.1) of Proposition 3.3 for
the non-trivial case when〈z〉 < 〈t〉⊕ 〈w〉, wherew ∈ T andz, t have infinite order and
then apply Lemma 3.1 of [5]. Specifically, ife1z = d1(v1 +xm) ande2t = d2(v2 +xn)
as per equation (3.2) andz = at + bw with a, b in Z, then a direct calculation as done
in the proof of Lemma 3.1 of [5] shows thatm, e1, d2 are divisors respectively ofn, e2

andd1 so thatn = a1m, e2 = a2e1, andd1 = a3d2, a = a1a2a3 and
d1(v1− a1v2) = e1bw and conversely. Sinceπ is multiplicative, the corresponding ele-
mentsz′,t′ whereg(〈z〉) = 〈z′〉 andg(〈t〉) = 〈t′〉, satisfy the similar equation needed to
reach the conclusion that〈z′〉 is in 〈t′〉⊕ 〈w〉 and conversely. Hence the condition (3.1)
of Proposition 3.3 holds and sog induces a projectivityf from D to D that satisfies
f(nS) = π(n)f(S) for all cyclic (and hence any) subgroupS of D and any positive
integern.

Proof of Theorem 1.4

The conditions are necessary: Supposef : L(G) → L(H) is a lattice isomorphism
and leta ∈ G be an infinite order element withH(a) = U(G). If for someb ∈ H,
f(〈a〉) = 〈b〉, then by Theorem 1.3, conditions (i) and (ii) are satisfied. Moreover,f
induces a lattice isomorphismf : L(G/ 〈a〉) −→ L(H/ 〈b〉). Then, by Theorem 1.1(b),
condition (iii) holds.

The conditions are sufficient: SupposeG andH satisfy conditions (i)-(iii). Identify-
ing the divisible hulls ofT (G) andT (H), we may assume, without loss of generality,
thatG andH are (essential) subgroups ofD⊕Q, whereD is a torsion divisible Abelian
group andQ is the additive group of rational numbers.

Now apply Proposition 3.4 to construct a projectivityf : D ⊕Q −→D ⊕Q corre-
sponding to the permutationπ with the property that for all subgroupsS of D⊕Q and
primesp, f(pS) = π(p)(f(S)).
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So if K = f(G) and〈c〉 = f(〈a〉), thenG is projective withK, H(c) arises from
H(a) by permuting the rows ofH(a) by π andG/ 〈a〉 is projective withK/ 〈c〉. By
Theorem 1.3,T (K) ∼= T (G). In view of condition (iii) of our hypothesis, Theorem
1.1(b), shows thatG/ 〈a〉 is projective withH/ 〈b〉. Putting these facts together, we
conclude thatT (K) ∼= T (H), HK(c) = HH(b) andK/ 〈c〉 is projective withH/ 〈b〉.
By Theorem 1.1(b), there is a bijection between thep-components of the torsion groups
K/ 〈c〉 andH/ 〈b〉 such that the corresponding components are projective and those of
rank>1 are isomorphic.

NowT (K) ∼= T (H) implies the equality of the Ulm-Kaplansky invariantsfp
σ(K) =

fp
σ(H) for all primesp and ordinalsσ. SinceHK(c) = HH(b), Lemma 3.1 implies

thatK/ 〈c〉 andH/ 〈b〉 have the same Ulm-Kaplansky invariants, that isfp
σ(K/ 〈c〉) =

fp
σ(H/ 〈b〉).

Let P ′ = {p prime|rank(K/ 〈c〉)p = 1}. If, for somep ∈ P ′, (K/ 〈c〉)p
∼= Z(pn)

with n a positive integer or∞, then from the equality of the Ulm-Kaplansky invariants
fp

σ((K/ 〈c〉)p) = fp
σ(K/ 〈c〉) = fp

σ(H/ 〈b〉), which holds for all ordinalsσ, we derive
(H/ 〈b〉)p 6= 0 and cannot have rank> 1. Hence(H/ 〈b〉)p has rank 1 and is therefore
a countablep -group with the same Ulm-Kaplansky invariants as(K/ 〈c〉)p and by [3],
(K/ 〈c〉)p

∼= (H/ 〈b〉)p. ThusK/ 〈c〉 ∼= H/ 〈b〉. Finally, sinceHK(c) = HH(b), we
conclude, by Lemma 3.2, thatK ∼= H. HenceG is projective withH and the proof is
complete.

4 Corollaries

A simply presentedgroup is an Abelian groupG defined by generators and defining
relations such that all the relations are induced by relations involving two generators,
having the formpx = y or px = 0 wherex, y belong to the given generating set andp
varies over primes. A direct summand of a simply presented group is called aWarfield
group.

First we specialize Theorem 1.4 to Warfield groups.

Corollary 1 . If G andH are Warfield groups of torsion-free rank one, thenL(G) ∼=
L(H) if and only if G andH satisfy conditions(i) and(ii) of Theorem 1.4.

Proof. All one needs is to observe that in the proof of Theorem 1.4,K/ 〈c〉 andH/ 〈b〉
are now simply presented torsion groups with the same Ulm-Kaplansky invariants and
hence are isomorphic.

Corollary 2 . SupposeG andH are mixed Abelian groups of torsion-free rank one
and, for every primep, G has an element of orderp. ThenL(G) ∼= L(H) if and only if
G ∼= H.

Proof. Let f : L(G) → L(H) be the lattice isomorphism. By Theorem 1.4 (i), (ii),
T (G) ∼= T (H) and, sinceπ now fixes every primep, there exista ∈ G, b ∈ H such that
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H(a) = U(G) = U(H) = H(b), wheref(〈a〉) = 〈b〉. SinceT (G) ∼= T (H), Lemma
3.1 implies that the torsion groupsG/ 〈a〉 andH/ 〈b〉 have the same Ulm-Kaplansky
invariants.

Now proceed as in the proof of Theorem 1.4 replacing the role ofK by G, to
concludeG/ 〈a〉 ∼= H/ 〈b〉. Then Lemma 3.2 yields thatG ∼= H.

Corollary 3 . SupposeG andH are mixed Abelian groups of torsion-free rank one
andT (G) is ap-group for some primep. ThenL(G) ∼= L(H) if and only if conditions
(i) and (ii) of Theorem 1.4 hold andG/ 〈a〉 ∼= H/ 〈b〉, wheneverT (G) has rank> 1.
¤
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